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Abstract

In many learning problems, the domain scientist is often interested in discover-
ing the groups of features that are redundant and are important for classification.
Moreover, the features that belong to each group, and the important feature groups
may vary per sample. But what do we mean by feature redundancy? In this paper,
we formally define two types of redundancies using information theory: Repre-
sentation and Relevant redundancies. We leverage these redundancies to design
a formulation for instance-wise feature group discovery and reveal a theoretical
guideline to help discover the appropriate number of groups. We approximate
mutual information via a variational lower bound and learn the feature group and
selector indicators with Gumbel-Softmax in optimizing our formulation. Experi-
ments on synthetic data validate our theoretical claims. Experiments on MNIST,
Fashion MNIST, and gene expression datasets show that our method discovers
feature groups with high classification accuracies.

1 Introduction

Data samples are typically represented by features that domain experts assume to be important for a
learning problem; however, not all features are important. The goal of feature selection is to select
which features are needed to improve learning performance. Moreover, knowing which features are
important helps in understanding learning algorithms.

Traditionally, Feature Selection algorithms find a global set of features for the entire data [1, 2, 3, 4, 5,
6, 7, 8, 9, 10]. While knowing the most important global features are useful, feature importance may
vary across the entire population. For example in images, while one set of pixels may help us identify
a shoe, a vastly different set of pixels would be required to identify a shirt. From this observation,
there is an additional need for Feature Selection to be on a case-by-case basis, an approach also
known as Instance-wise Feature Selection. A novel concept that has only been recently investigated
in the context of explaining black-box models [11, 12, 13, 14]. Learning saliency maps [15] in
some ways also provide some form of instance-wise feature importance by highlighting (weighting)
important pixels in an image.

While Instance-wise Feature Selection focuses on each feature’s relationship to its labels, it ignores
the interaction among features. Multiple features may be equally important and yet redundant in
relation to each other. Traditional feature selection algorithms (such as LASSO [16]) tend to select
just one of these redundant features. However, in some domains such as gene expression applications,
we are interested not only in which genes (features) are important but also in which genes interact
together for disease prediction. Therefore, in addition to Instance-wise Feature Selection, we wish
to also group the features based on their relationship with each other and to the label. There exist
∗Signifies equal contribution.
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methods like group Lasso (GLasso) [17] that selects which feature groups are important given a
predefined grouping. Yet, in many applications the feature groups are unknown. Thus, methods
that learn feature groups have been proposed [18, 19, 20, 21]. While these methods perform group
feature selection, the groups are global and not instance-wise. In contrast to these approaches, this
paper introduces instance-wise methods that can learn the feature group structure and identify its
importance for prediction from an information theory perspective. We refer to this approach as
Instance-wise Feature Grouping.

Our Contribution. We introduce a novel method for learning instance-wise feature grouping, the
group Interpreter (gI). Our formulation is made possible by our theoretical contribution of defining the
concept of redundancy in this setting. Leveraging mutual information’s ability to measure dependency,
we formally define two types: Representation Redundancy captures the dependency between features
while Relevant Redundancy captures the dependency between features and its corresponding labels.
We prove how these redundancies can be captured and describe the mechanisms by which information
is preserved. Our analysis leads to a lower bound to identify the number of groups for each sample.
Moreover, we provide a practical algorithm that approximates mutual information (MI) through
a variational lower bound. The algorithm also learns a mapping function that identifies the most
important feature groups on a sample by sample basis. Finally, our theories are experimentally
verified on both synthetic and real data from ongoing research. Indeed, our method reveals the
difference in gene expression based on smoking status. We make the source code publicly available
at https://github.com/ariahimself/Instance-wise-Feature-Grouping.

Related Work. Many traditional global feature selection utilizes MI as criterion for selection (as it
is a natural criterion for measuring dependency among random variables). However, in global feature
selection, the goal is to find the minimal subset of features relevant for prediction [4, 5, 6, 22, 1, 23].
A way to achieve finding this minimal subset is to maximize feature relevance while minimizing
feature redundancy [24, 25]. Note that they wish to remove redundancy. In contrast, our goal is
to learn which features group (i.e., cluster) together, where we define similarity of features based
on redundancy. For example, mRMR [25] maximizes feature relevance while minimizing feature
redundancy. If features F1 and F2 are highly dependent and relevant to prediction, only one will be
chosen. In contrast, gI would select both as a group, highlighting to domain scientists that these two
features are both relevant and redundant to each other. Unlike traditional feature clustering, our
goal is to learn feature similarity not just based on their redundancy with each other (representation
redundancy) but also on their redundancy based on their prediction ability (relevant redundacy). We
formally define these concepts in this paper.

Among other global feature group learning methods, Chormunge and Jena [19] learn feature groups
based on k-means clustering then apply gLasso; Bilevel Learning [20] learns the feature groups
through a multi-task learning setting using bilevel optimization; OSCAR [18] automatically learns
the feature groups by encouraging equality in the magnitude of each pair of variables. All these
group feature selection methods are global; whereas, our proposed method gI learns feature groups
instance-wise.

2 Ingredients of Feature Group Learning

Overall Framework. We summarize the overall network framework of our method in Figure 1,
followed by a description of each component in this section.

Given data set X ∈ Rn×d with n samples and d features, and let Y ∈ Rn be its corresponding labels;
the ith sample input and its label are denoted as xi ∈ Rd and yi ∈ R. Our goal is to separate the
features into k non-overlapping groups and select the m most important groups for each sample.
We learn for each sample a matrix G to indicate each feature’s group membership. The G matrix is
specifically constrained such thatG ∈ {0, 1}k×d whereGi,j = 1 if the jth feature of a sample belongs
to the ith group. After compressing the features into k groups, we also learn a vector s ∈ {0, 1}k
where sµ = 1 if the µ group is among the m most important groups.

The Group Membership Matrix G. We denote G as a random variable over a set of all possible
G matrices where G ∈ {G ∈ {0, 1}k×d|

∑k
i=1Gij = 1}. This allows us to generate instance-wised

G matrices for each sample by learning P (G|X), and use its most likely outcome as G where
G = arg maxG P (G|X ). To learn G, we propose to train a non-traditional autoencoder ψθG that
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Figure 1: Flowchart of our instance-wise feature grouping framework.

maps the data X into a low dimensional embedding Z ∈ Rn×k with X̂ ∈ Rn×d as its decoded
output where ψθG(X) = X̂. The encoder and decoder functions are denoted as TG : Rd → Rk

and T+
G : Rk → Rd where for a given sample i, zi = TG(xi) = Gxi, x̂i = T+

G (zi) = GT zi, and
x̂i = ψθG(xi) = T+

G ◦TG(xi) = GTGxi. Note that each feature of zi is a summation of only features
of the same group, therefore, each feature encapsulates the characteristics of its corresponding group;
accordingly, we refer to them as characteristic features.

The Group Selector s. Each G matrix is coupled with its own m-hot vector s that indicates the m
most important groups. By defining the random variable S ∈ {s ∈ {0, 1}k|| s| = m}, we also learn s
indirectly by learning the distribution P (S|Z), where s = arg maxS P (S|Z). This is accomplished
given a 2nd autoencoder φθS ,θG(xi) = GT (Gxi � s) which selects m characteristic features that
corresponds to the m most important groups, where � is an element wise product or Hadamard
product. Hence, given X we have φθS ,θG(X) = X̄ where the ith row is x̄i.

Defining Feature Redundancy. Intuitively, features can be redundant if it is highly dependent on
another set of features, we call this Representation Redundancy. Simultaneously, features can also be
redundant if their inclusion does not improve the data/label dependency, i.e., given the occurrence
of a feature, additional features may not provide any extra label-predicting information; we call
this Relevant Redundancy. Formally, let Xj be a random variable representing the jth feature, and
let X = {X1, . . . , Xd} be a set of all features with the cardinality of |X |. By leveraging mutual
information (MI, I), we define the two redundancies below.
Definition 1. Feature Xj is Representation Redundant with respect to a set of random variables Z iff

I(Xj ;X ) 6= 0 and I(Xj ;X|Z) = 0. (1)
Definition 2. Feature Xj is Relevant Redundant with respect to a set of random variables Z iff

I(Xj ; Y) 6= 0 and I(Xj ; Y|Z) = 0. (2)

Note that in Def. (1), while condition I(Xj ;X ) 6= 0 is always true since Xj ∈ X , it is nevertheless
included to preserve the symmetry with Def. (2). Following these definitions, we present our method,
the Group Interpreter (gI), which implicitly learns G and s by maximizing

max
θG,θS

I(X̂; X) + λI(X̄; Y), s.t: X̂ = ψθG(X), X̄ = φθS ,θG(X). (3)

This objective is theoretically motivated by Defs. 1 and 2. Indeed, the X̂ that maximizes I(X̂; X)
captures Representation Redundancy while I(X̄; Y) identifies the optimal X̄ to capture Relevant
Redundancy. The control parameter λ then balances the two criteria. We formally prove these claims
in the following two theorems with their proof included in App. C.

Theorem 1. The maximum mutual information I(X̂; X) is achieved if and only if its characteristic
features Z induced by the model makes X representative redundant based on Def. (1), i.e.

max
G

I(X̂; X) = I(X; X) ⇐⇒ min
G

I(X; X|Z) = 0,

s.t. G ∈ {0, 1}k×d,
k∑
i=1

Gij = 1, Z = TG(X), X̂ = ψθG(X).
(4)
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Theorem 2. The maximum mutual information I(X̄; X) is achieved if and only if its m-selected
characteristic features Z� s induced by the model makes X relevant redundant based on Def. (2),
i.e.

max
G

I(X̄; Y) = I(X; Y) ⇐⇒ min
G

I(X; Y|Z� s) = 0,

s.t. G ∈ {0, 1}k×d,
k∑
i=1

Gij = 1, Z = TG(X), X̄ = φθS ,θG(X), s ∈ {0, 1}k, |s| = m.
(5)

Approximating Mutual Information. Since the various distributions required to compute MI are
difficult to obtain, we instead maximize MI’s variational lower bound [11] as a surrogate. We provide
here a summary of the key formulations while leaving the detail derivations to App. G. First, we solve
Eq. (3) by first simplifying it into expectations

max
θG,θS

EX,X̂[log(P (X|X̂)] + λEY,X̄[log(P (Y|X̄)] s.t: X̂ = ψθG(X), X̄ = φθS ,θG(X) (6)

This objective can be approximated by computing its empirical estimate using samples from P (X|X̂)

and P (Y|X̄). We generate X̂, X̄ samples via ancestral sampling [26] from

P (X̂|Z,G)P (Z|G,X) P (G|X) P (X), (7)

P (X̄|Z� s,G)P (Z� s|S,Z)P (S|Z)P (Z|G,X)P (G|X)P (X). (8)

However, since both P (X|X̂) and P (Y|X̄) are unknown, we further use their variational lower bound
to approximate their distributions via two additional networks. Specifically, we use QθR(X|ψθG(X))

to approximate P (X|X̂), and QθP (Y|φθS ,θG(X)) for P (Y|X̄). This affords us the advantage of
combining the four networks (ψθG , φθS ,θG , QθR , and QθP ) into a large single network and jointly
optimize them via Stochastic Gradient Descent (SGD). The resulting formulation becomes

min
θG,θS ,θP ,θR

n∑
i=1

||xi −QθR(ψθG(xi))||2 − λ
n∑
i=1

p(yi)log(QθP (yi|(φθS ,θG(xi))). (9)

Solving Eq. (9) relies on drawing samples from P (G|X) and P (S|Z). However, since G and s are
constrained to be indicators, how do we enforce the categorical constraint on the output of ψθG and
φθS ,θG? We clarify how adding a Gumbel-softmax layer [27] achieves this in the next section.

Gumbel-Softmax. Standard networks cannot perform backpropagation through samples. Gumbel-
softmax overcome this obstacle by generating differentiable samples from a categorical distribution.
Leveraging this technique, we sample a k-dimensional vector ε from a Gumbel distribution where
its ith element is sampled via εi = − log(− log ui), ui ∼ Uniform(0, 1). This enables us to apply
the reparameterization trick [28], which consequently samples from a concrete distribution, C ∼
Concrete(log p1, ..., log pk), where the ith element is computed with

Ci =
exp(log pi + εi)/τ∑k
j=1 exp(log pj + εj)/τ

s.t. lim
τ→0

P (Ci = 1) =
pi∑k
j=1 pj

. (10)

The sharpness of the concrete distribution is controlled by τ ; where as τ → 0, the concrete random
variable approaches to the categorical distribution as defined in Eq. (10). Therefore, θG in Fig. 1
represents the combination of a network QθG : Rd 7→ Rk×d with a Gumbel-softmax layer. Since
QθG outputs a dimension of k × d, the output can be reorganized into d columns of size k vectors,
where the ith column represents the group membership probability [p1, ..., pk]T for the ith feature.
By passing each column into the Gumbel-softmax layer, it consequently generates a one-hot vector
for each column of the G matrix, representing samples from P (G|X). Similarly, θS consists of
QθS : Rk 7→ Rk with a Gumbel-softmax layer. However, an m-hot vector is generated by repeating
Gumbel-softmax m times. Specifically, let each trial be Ct, then s is generated by

Ct ∼ Concrete(QθS ), for t = 1, . . .m, s = [s1, . . . , sk]T , sj = max
t
Ctj . (11)
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Discovering the Number of Groups. Instead of randomly guessing the number of groups, k, is
there a theoretical guideline? We tackle this question from an information-theoretic perspective,
by asking if there exists a minimum k such that all relevant information is preserved. To state the
question precisely, what is the minimum m and k such that I(X; Y) = I(φθS ,θG(X); Y)?

Since we compress the original features into characteristics features and then remove the least
important groups, how can information retention be possible? By studying the simpler case where all
groups are kept, we identified a set of conditions which this becomes possible and discovered a lower
bound for k. Specifically, we simplify the problem by letting m = k such that ψθG = φθS ,θG , then
we study if T+

G and TG individually preserves information. Conceptually, since ψθG = T+
G ◦ TG,

information is preserved if T+
G and TG both preserve information. This intuition is supported by

Kraskov et al. [29]: they show that MI is invariant under diffeomorphism mappings. Therefore, we
investigate if TG and T+

G are diffeomorphisms and formalize these findings in the following two
lemmas with their proof in App. B.

Lemma 1. The decoder T+
G : Z→ Im(T+

G ) is a Diffeomorphism map.

Lemma 2. If k < d then the mapping TG : Rd → Rk is not injective, thus not a diffeomorphism.

Since k is always less than d when features are grouped together, our analysis proves that ψθG
cannot be a diffeomorphism; a disappointing result. Yet, we note that while having diffeomor-
phism guarantees information preservation, nothing is stated about non-diffeomorphism mappings.
Indeed, by digging deeper, we found that information preservation is still possible under certain
non-diffeomorphism conditions. Specifically, we prove that relevant information can still be preserved
if k is sufficiently large, i.e., larger than the number as defined by Eq. (63). In fact, in these cases, we
proved the existence of a matrix G such that I(X̂; Y) = I(X; Y). We formally state this finding in
Theorem 3; the proof can be found in App. D.

Theorem 3. Let X = {X1, . . . , Xd} be a random variable that consists of all features , let relevant
features U be

U = {Xj | I(Xj ; Y) 6= 0 ∨ ∃A ⊆ X I(Xj ; Y|A) 6= 0}, (12)

and let irrelevant features be Uc, then, ∃G ∈ G such that I(TG(X); Y) = I(X; Y) if

k ≥ |U|+ 1(|U| 6= d) (13)

where 1(|U| 6= d) is an indicator function equal to one when |U| 6= d and zero when |U| = d.

While Theorem 3 provides a theoretical bound for k, in practice, the computation of U assumes prior
access to complex posterior distributions. Since this assumption is rarely true in practice, we provide
an alternative bound that only requires the correlation coefficient between the features and the labels.
We formally state this theorem and its corollaries below with their proofs in App. E.

Theorem 4. Given ρ as the correlation measure and C = {Xj |ρ(Xj ; Y) 6= 0 ∨ ∃A ρ(Xj ; Y|A) 6=
0} then |C| ≤ |U|.
Corollary 4.1. Theorems 3 and 4 yields a lower bound for k where |C|+ 1(|C| 6= d) ≤ k.

Corollary 4.2. For Gaussian distributions the inequality turns into equality where |C| = |U|.

By leveraging Corollary 4.1, a more tractable set C can be obtained in place of U to bound k.

Computational and Memory Complexities. Since our algorithm can be solved via SGD, gI
has efficient memory and computational complexities of O(kd2) and O(nkd2) respectively. For a
detailed derivation of these complexities, refer to App. H.

Feature Selection vs Explaining Black-Box Models. Due to the common confusion between fea-
ture selection, and black-box explanatory models (BEM), we emphasize that our focus is feature
selection. Our method, gI, learns a classifier Qθp(y|φθS ,θG(x)) via feature grouping that approxi-
mates the true underlying posterior P (Y|X). Note that one can easily extend gI to explain black-box
models by changing P (Y|X) to a complex black-box learned classifier PM (Y|X) (e.g., neural
networks [30], random forest [31]) similar to Chen et al. [11]; where, Qθp(y|φθS ,θG(x)) now approx-
imates PM (Y|X) by learning from training data with Y generated from the output of PM (Y|X) for
each xi. Although gI can be easily extended to BEM, we leave this extension for future research.
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3 Experiments

Datasets. We validate the theoretical claims with nine synthetic datasets constructed from a
combination of three Representation (D1, D2, D3) and three Relevance (R1, R2, R3) redundancy
patterns as shown in Table 1. Recall thatXj indicates the jth feature. For Representation Redundancy
(D patterns), the features within the same parentheses are correlated with each other. For Relevance
Redundancy (R patterns) the P (Y = 1|X) is directly proportional to a function of the features
indicated. We generate 100000 training, 1000 validation, and 1000 test samples for each combination.
For each combination, we evaluate gI’s ability to correctly identify the number of groups (k), the
redundancy patterns, and classification results.

We also evaluate our method on a real-world gene expression data as quantified by RNA sequencing
from the COPDGene Study, an observational study to identify genomic markers associated with
chronic obstructive pulmonary disease (COPD) [32]. The dataset is divided into a training and test
set of 1500 and 407 patients along with the expression of 439 most relevant genes based on Gene
Ontology categories [33]. We additionally test on benchmark image datasets from MNIST, and
Fashion MNIST (F-MNIST) [34, 35] to evaluate our method’s ability to generate visual results.

D1 (X1, X2), (X3, X4)

D2 (X1, X3), (X2, X4)

D3 (X1, X3, X4), (X2)

R1 P (Y = 1|X) ∝ eX1∗X3

R2 P (Y = 1|X) ∝ e
∑4

i=1 X2
i−4

R3 P (Y = 1|X) ∝ e− sin(2X1)+2|X2|+X3+exp(−X4−2.4)

Table 1: Synthetic data generation patterns

Model MNIST-2 MNIST-10 F-MNIST
gI 96.7± 0.2 91.6± 0.85 94.6± 0.6

L2X 97.1± 0.5 80.5± 2.5 96.0± 0.6
shap 99.24± 0.46 90.8± 1.9 94.45± 2.62
INV 91.23± 3.48 77.94± 2.35 89.63± 3.45

Lasso 96.01± 0.2 86.03± 0.02 96.7± 0.0
Group Cluster 94.36± 0.05 85.0± 0.09 92.04± 0.06

OSCAR 95.56± 0.31 90.94± 0.27 95.0± 0.3
OWL 95.8± 0.25 90.92± 0.31 94.90± 0.16
LPA 95.63± 0.56 87.72± 1.23 94.83± 0.97

Table 2: gI m = 1, k = 2, image Classifica-
tion accuracy comparison.

Experimental Settings. All experimental accuracies are reported via the mean and standard
deviation of 10 runs. The experiments are implemented with Python, Numpy, Sklearn, and TensorFlow
[36, 37, 38, 39] on a single NVIDIA GTX 1060Ti GPU. We use a neural network of width 100 and
depth 2 to generate the probability inputs for the Gumbel-Softmax to obtain G and S; the Gumbel
temperature was set to 0.1. ReLU was used as the activation function with softmax at the final layer for
prediction. Adam optimizer with a learning rate of 0.001 and hyperparameters β1 = 0.9, β2 = 0.999
was used without further tuning. All datasets are centered to 0 and normalized to have a standard
deviation of 1. For all data, we used two fully connected layers of width 32 and 16. All λs are
identified by maximizing the objective given a validation set.

Competing Methods. We compare gI against nine related feature selection and explainable methods.
For all methods, we learn from samples of the true underlying posterior P (Y|X) (i.e., ground-truth
training data) to fairly compare them.
• Global feature selection: Lasso (Least Absolute Shrinkage and Selection Operator) [23] is

a regression method that utilizes l1 regularization to induce sparsity and effectively perform
feature selection. GLasso (sparse Group Lasso) [40, 41] is a Lasso version that assumes a feature
grouping structure, enforces l1 sparsity and performs group selection with an l1,2 regularizer.

• Deep instance-wise feature selection: SHAP (SHapley Additive exPlanations) [12] provides a
unified framework for explaining models by identifying a class of additive feature importance
measures for prediction. SHAP learns feature importance (Shapley values) based on a game
theoretic approach. L2X [11] performs instance-wise feature selection for explaining black-box
models by maximizing the mutual information between the selected features and the response
variable. In addition, L2X uses Gumbel softmax to learn a continuous relaxation of the feature
selector. INV (INVASE) [14] is an extension over L2X without the need to specify the number
of selected features in advance and is capable of discovering subsets of features with a different
size per instance. LPA (Learn to Pay Attention) [15] is A visual-attention based deep learning
model for learning saliency maps from the original input images. We adapted the original model
to a fully-connected version based on the architecture used by all methods in this paper for fair
comparison. Note that these models cannot learn and do not use the feature grouping structure.
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• CAE [42]: An end-to-end unsupervised global feature selection to reconstruct the input data,
with a Gumbel softmax layer as the encoder and a standard neural network as the decoder. As an
unsupervised method, we only apply CAE to the visual MNIST and F-MNIST experiments.

• Global feature selection with group learning: OSCAR (octagonal shrinkage and clustering
algorithm for regression) [18] learns feature groups in regression by regularizing the weights
with l1 and pairwise l∞ norm to encourage correlated predictors that have a similar effect on the
response to form clusters represented by the same coefficient. OWL-Lasso [43] performs linear
regression and group feature selection by utilizing a weighted l1 regularization. Group Cluster
groups the features based on hierarchical correlation clustering [44] followed by GLasso.

Results on Synthetic Data. We use synthetic datasets to answer the following questions:
• Can our model correctly identify the features that are highly dependent on each other?
• Can our model correctly identify the most relevant features in predicting Y?
• Is k based on Theorems 3 and 4 a tight lower bound?
• How does the accuracy of our method compare to existing interpretable methods?

Given all 9 redundancy combinations of (Di, Rj) plus six additional Gaussian noise features, Table 3
indicates that both gI(m = k) and gI(m < k) are capable of achieving high class accuracy while
learning the latent group structure (high representation (rep) and relevant (rel) accuracies), thereby
confirming Thms. 1 and 2. Moreover, since the recommended k value by Thm. 4 is a lower bound,
we investigated the bound by plotting the classification accuracy at each increment of k in Fig. 2 and
circle the lower bound predicted by Thm. 4. As predicted by our theorem, after the number of groups
passes the lower bound calculated by Thm. 4 the preservation of the mutual information between X
and Y is possible and indeed after the number of groups passes the lower bound there is no decline
in the classification accuracy.

Class Acc (gI(m = k)) k (gI(m = k)) Group Rep Acc (gI(m = k)) Class Acc (gI) m (gI) Group Rel Acc (gI)

D1 D2 D3 D1 D2 D3 D1 D2 D3 D1 D2 D3 D1 D2 D3 D1 D2 D3

R1 96.9± 1.5 100± 0 99.5± 1.5 3 2 2 99.8± 0.3 100± 0 100± 0 91.0± 3 99.6± 1 98.5± 2 1 1 1 100± 0 100± 0 100± 0

R2 100± 0 100± 0 99.6± 0.4 3 3 3 100± 0 100± 0 99± 1.8 92± 3 95.4± 2 94± 1 2 2 2 100± 0 100± 0 100± 0

R3 98.9± 0.8 97.6± 0.6 99.2± 0.8 3 3 3 100± 0 100± 0 99.5± 0.9 94.4± 3 94.7± 2 90.9± 5 2 2 2 100± 0 100± 0 100± 0

Table 3: Measuring gI’s ability to identify the most relevant groups using nine redundancy patterns. Note that gI
is capable of identifying the relevant groups while achieving a high classification accuracy.

Figure 2: Accuracy versus number of groups used: We
circle the number of groups predicted by Thm. 4.

Data D1 D2 D3 D1 + D2

gI

R1 98.4± 1 99.7±0.46 95± 3.8 98.7± 1.3
R2 100± 0 99.5± 0.5 100± 0 100± 0
R3 98.8± 0.9 99.4± 0.6 99.4± 0.6 99.2± 0.4

L
2X

R1 85± 3.5 100± 0.0 85.7± 6 88± 4
R2 95± 2 95± 1.4 95± 2.1 99.7± 0.5
R3 94± 2.2 95± 1.1 87.7± 1 93± 1.3

Sh
ap

R1 70.25,± 0.83 100± 0.0 100± 0.0 89.2± 0.97
R2 88.0± 0.0 94± 0.0 82± 0.0 94.4± 0.48
R3 94.6± 0.48 95± 0.0 95± 0.0 95.4± 0.48

IN
V

R1 87.2± 3 88.5± 3 87.2± 3 86± 2
R2 73± 3 80.9± 4 68± 3.5 75± 4
R3 74± 4 79± 2 73± 4 74± 4

L
as

so R1 49± 3 100± 0.0 100± 0.0 74± 1
R2 66± 1 61± 1 67± 2 58± 2
R3 75± 2 84± 2 59± 3 81± 8

G
L

as
so R1 49± 1 100± 0.0 100± 0.0 76.0± 0.4

R2 64± 0.08 62± 0.4 49± 0.4 56± 0.4
R3 74± 1 83± 0.5 68± 1.3 79± 2

O
SC

A
R R1 49.0± 0.31 100± 0.0 100± 0.0 50.0± 0.0

R2 50.0± 0.3 50.3± 0.11 50.0± 0.3 50.1± 0.05
R3 74.7± 0.2 84.03± .15 66± 0.14 79.2± 0.13

O
W

L R1 49.0± 0.31 100± 0.0 100± 0.0 50.0± 0.0
R2 50.0± 0.3 50.3± 0.11 50.0± 0.3 50.1± 0.05
R3 74.7± 0.2 84.03± .15 66± 0.14 79.2± 0.13

Table 4: The classification prediction accuracy
on synthetic datasets.

In Table 4, we compare gI against competing methods. In addition to mixing D and R redundancies
together, we increase the data complexity by combining D1 relationships with D2 as D1 +D2, where
half of the samples generated are randomly chosen to have D1 redundancies while the other half is
set to have D2 redundancies. Since only our model performs classification based on instance-wise
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grouping of features, the D1 +D2 pattern is of particular interest to validate our advantage, i.e., given
its correct assumption of the data, our model is expected to outperform all alternative methods. By
marking the best results as bold in Table 4, we can see that gI is almost always the best performing
classifier. As expected, the accuracy difference is particularly prominent with D1 +D2.

COPDGene Dataset. Given the effect of smoking on health, there is significant interest in its impact
on gene expression. Specifically, how does exposure alter gene expression, and how do groups of
genes exhibit coordinated changes given exposure? This data highlights the insufficiency of learning
a single global group structure because smokers and non-smokers may be characterized by completely
different gene groups. We emphasize the importance of identifying this variability by applying gI
to the COPDGene dataset to learn the most predictive group of genes on smoking status. Instead
of trying to pinpoint a single group of the most important genes, gI’s instance-wise capability is
designed to automatically identify multiple groups.

Figure 3: Gene expression (input features) of patients
XT . No pattern is visually noticeable.

Figure 4: Prediction accuracy vs. number of features
selected. gI consistently outperforms other methods.

Figure 5: The important genes selected by G and s.
The selected genes (rows) are indicated by white pixels
for each patient (column) and black when not selected.

Figure 6: Each column represents the characteristic
features of each patient, i.e., Zs. Note that visually,
smokers and non-smokers are clustered appropriately.

Fig. 4 compares the test accuracy between several competing methods given increasing number of
features; gI consistently achieves the highest accuracy. Moreover, note that Group Lasso represents
the traditional method of applying biologically predefined groups. Yet, even when domain knowledge
is incorporated within Group Lasso, the instance-wise capability of gI identifies the gene groups that
achieves much higher predictive accuracy.

We next studied the group structure produced by gI. First, notice that the original gene expression
matrix in Fig. 3 lacked any visually noticeable patterns. We then plot the most relevant group of
genes selected by G and s in Fig. 5, where the selected genes (rows) are indicated by the white pixels
for each patient (column). Even with the high variance between patients, a pattern emerges; gI has
identified the group of genes that are common across smokers and non-smokers respectively. As
suggested by our results, there exists a visual difference in gene expression between the two groups
and gI has identified the specific genes for each group. We next plot out the characteristic features
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formed by each G matrix. As predicted by Thm. 4, this compressed representation of the original
input features retained the most relevant information despite the compression.

Since different genes tended to be selected in smokers compared to nonsmokers, we performed
Gene Set Enrichment Analysis (GSEA) as implemented in the GenePattern Cloud instance
(https://cloud.genepattern.org/) using a set of curated immunologic gene signatures (the C7 set)
from the Molecular Signatures Database. Immunologic signatures is well suited for analysis of
blood expression data since the majority of cells present in blood are immune cells. The analysis
determines whether predefined gene sets are enriched in the extremes of the ranked list of genes,
where ranking is based on each gene’s likelihood of being selected among each of the two cohorts. In
this analysis, using a 10 percent false discovery rate, 20 significantly enriched immunologic gene sets
were identified among the most frequently selected genes for smokers, whereas no similar enrichment
of immunologic signatures was observed among the genes selected the most among nonsmokers.

Competing Method Performance on Image Datasets. Table 2 reports the classification accuracy
for all methods on MNIST-2, MNIST-10 (all 10 digits) and F-MNIST. Notice that while L2X and
Shap performed slightly better on the simpler F-MNIST and MNIST-2 (3 vs. 8) datasets, gI performed
better on the more complex MNIST-10 (all 10 digits) dataset.

In Fig. 7, we compare the visual patterns generated by gI against several best performing deep models.
For each image, each method identifies and displays the most informative pixel group in white; the top
row is the original image while the results of each method are displayed below. While L2X, LPA, and
Shap are all instance-wise and can achieve high predictive accuracy, it is not clear visually from their
white pixels in Fig. 7 why these pixels are important. CAE outputs a discernible shape of 8, however,
its features are global, resulting in the same pixel choice across all samples. In contrast, gI discovered
the pixels that are equally important, resulting in a visually compelling segmentation in the shape of
the classification object. Our result suggests that capturing and identifying redundancies within the
data produces visually interpretable explanations, highlighting the importance of combining group
structure with instance-wise flexibility. While other methods struggle to identify the different digits
and clothing, gI handled the complexity independent of the number of classes.

An even more challenging task is to also capture the style variation within the same class. We
highlight this ability with 10 digits of diverse shapes in Fig. 7 under INSTANCE-WISE MNIST
STYLE; a larger collection showcasing a variety of style variation results can be found in App. F. For
these results, notice how the explanatory pixels follow closely to the style of the original image.

Figure 7: Comparing the most important pixels as identified by each competing algorithm.

4 Conclusion

Our theoretical contribution formally defines the concept of redundancy between features based
on MI. This clarifies how features can be grouped together, and how many groups should exist
while retaining the most relevant information. It further enables us to formulate an objective (gI)
that captures these redundancies on an instance-wise basis. Our theories are corroborated by both
synthetic and real experimental results. We have applied our instance-wise feature group discovery
and selection method to lung disease gene expression data; of which we discovered gene expression
patterns common to smokers and non-smokers respectively.
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5 Broader Impacts

In this paper, we introduce a novel algorithm for instance-wise feature group discovery and selection.
The algorithm learns mapping functions that identify the appropriate group membership of each
feature along with each group’s importance as an instance-wise label predictor. Namely, we have
focused our paper on feature selection to model the features important for capturing the information
in the underlying true posterior P (Y|X). While we have focused on feature selection, there are also
other strategies to define and approach interpretability [45].

Instead of estimating the posterior distribution P (Y|X), one can apply our method to capture the
information for trained black-box models PM (Y|X), e.g., deep neural networks and random forests.
Consequently, the algorithm can be used to perform instance-wise group feature selection on the
black-box model, learning the features which a given black-box model perceives as important. In
this approach to explainability, our method has the potential impact on making black-box models
explainable in terms of knowing how the features were used during prediction. This gives rise to
future research directions that can help data scientists check for bias, fairness, vulnerabilities of the
models they use [46, 47].

Although this paper focuses on the machine learning aspect of our discovery, our work is also
relevant from its consequential findings on the lung disease dataset. The feature selection results
on the lung disease data allow us to discover the genes that interact together for predicting smoking
and non-smoking. This can potentially impact our understanding of lung disease, in particular by
identifying cooperative relationship between genes that can delineate important aspects of their
biological functions. However, to make an impact to medical research would require further and
careful investigation to confirm the findings with appropriate medical collaborators. As a warning to
our ML and data analyst colleagues, we encourage applying ML to applications that is beneficial
to society, such as health. But, to do so properly, one needs to work closely with domain expert
collaborators to make nontrivial contributions to their fields of research.

Beyond applications to lung disease, learning important features for prediction and the features that
interact together is important in genetic understanding of other diseases [48, 49]. In general, feature
selection has been impactful in a variety of domains beyond medicine – for example, climate [50],
law[51]. Given the potential impact it can have, including on the most pressing diseases of today,
we seek to widely disseminate this research and make our source code publicly available at https:
//github.com/ariahimself/Instance-wise-Feature-Grouping.

Lastly, while our method is useful in identifying feature groups that interact together for prediction.
We caution that this does not imply causation, and poses a potential misuse of our technique.
Additionally, since our model is learned from a training set, its conclusions are limited by the quality
and characteristics of what it was trained on. Therefore, inherent biases that pre-existed in the
data will lead to biased feature groups and conclusions. As with any supervised machine learning
algorithms, our method can be applied to a variety of applications (e.g., health, climate, image
analysis) with potential impact to multiple sectors of society. Our intent is to build such models for
societal good and we encourage others to as well.
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