A Proof of Lemmas in Section

In this section we provide the proofs of lemmas we use in Section [5|for the proof of our main results.
We first introduce the following notations. We denote f(t) = (f(p¢, x1), - . -, f(pt,%Xn)) | . Moreover,
we define

/g\l <t707u) = _aES[vf¢(f<pt7X)ay>h(07X) ) (Al)
/g\2 (ta 07 ’LL) = _CYES [vf(b(f(ptv X)7 y)uVGh’(07 X)} . (Az)

A.1 Proof of Lemma

Here we give the proof of Lemma[5.1] The following lemma summarizes some basic properties of
the activation function i (0, u).

Lemma A.l. Under Assumptions and [4.2] for all x and 0, it holds that |h(6,x)| <
G [Voh(0,X)l2 < G, |AKO,X]] < G, [Veh(6:,2) — Voh(Bs,2)la < Gl|61 — 6s]]a,
va (Vgh(97x) . 0)”2 <G, ||V9A9h(97X)H2 <G@.

We also give the following two lemmas to characterize the difference between the Gram matrices
defined with pg and some other distribution p that is close to pg in 2-Wasserstein distance.

Lemma A.2. Under Assumptions and for any distribution p with Wa(p, pg) < v/d + 1 and
any r > 0,

H1(p) — Hi(p0)|lco.c0 < G? [\/Sd +10+ 2r2G2} Wa(p, po) + 2G*E,, [ud 1(|Jug > 7])].

Lemma A.3. Under Assumptions and for any distribution p with Wa(p, pg) < vVd + 1,

[ Hz2(p) — H2(p0)] 00,00 < 2G*Wa(p, po).

The following lemma gives a tail bound with respect to our initialization distribution pg, which we
frequently utilize for truncation arguments.

Lemma A.4. The initialization distribution p satisfies the following tail bound:

Epolu 1 (Juo] > )] < SR,

We are now ready to provide the proof of Lemma5.1]

Proof of Lemmal[5.1] Here we first give the definition of R in Theorem .4 with specific polynomial
dependencies.

R = min {m, poly(G, 1og(n/A))n/A]*1}
< min {\/m7 (8G2\/m + 64G? log(SA_lnGz)) _1n_1A}.

Note that the definition of R, the results for Lemmas andhold for all p with Wh(p, po) < R.
Now by Lemma[A.2] for any p with Wa(p, po) < R and any r > 0,

| H1(p) — Hi(po)||oo,00 < GZRVEd + 10 + 2r2°G?R + 2G?Ep, [ud L(|ug > 7|)].  (A3)

Choose r = 24/log(8A~1nG?), then by Lemmawe have

Epo [ug 1(|ug > 7])] < Tonc? (A4)
Moreover, by the definition of R, we have
-1
R< (8G2\/8d 110+ 16G2r2) nlA. (A5)
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Plugging the bounds on E,, [u 1(|ug > r|)] and R given by (A-4) and (A23) into (A3) gives

[H1(p) — Hi(p0)lloo.00 < GZRVSd + 10 + 2r2G* R + G*E,y, [ug 1(Jug > r])] (A.6)
A A
< 8777, + 87n (A7)
A
=1 (A.8)

By LemmalA.3] for any distribution p with W»(p, po) < R,

[Hz(p) — Ha(po)|lsc,00 < 2G*R. (A.9)

The definition of R also leads to the following bound:
R < (8G*)'n~'A. (A.10)
Therefore we can plug the bound (A-10) into (A.9), which gives

A
HHQ(p) - HQ(pO)”oo,oo < Z (A.11)
n
Combining (A.6) and (A1) further gives
A
2n’
Then by standard matrix perturbation bounds, we have Apin(H(p)) > Amin(H(po)) — ||H(p) —
H(po)ll2 > Amin(H(po)) — n||H(p) — H(po)||co,00 > A/2, which finishes the proof. O

IH(p) = H(po)lloc.co < [H1(p) — Hi(po)lloc,c0 + [[H2(p) — Ha(po)lloo,c0 <

A.2 Proof of Lemma

Here we give the proof of Lemma[5.2] The following lemma summarizes some basic calculation on
the training dynamics. Here we remind the readers that the definitions of g1 (¢, 0, ) and g»(t, 6, u)

are given in (A.) and (A22) respectively.
Lemma A.5. Let p; be the solution of PDE (3.4). Then the following identity holds.

oL ~
a(ft) = —/ pt(f),u)llgl(t,f),U)||§d9du—/
R’H'l

2 (07 u)|§2 (tv 03 ’LL) |2d0du
R’H'l

+ )\/ . pt(a,u)[ﬁl U +§]\2 . 0 — Vu . §1 — VQ . §2]d0du (A12)
Rd+1

Lemma decomposes the time derivative of L(p;) into several terms. The following two lemmas
further provides bounds on these terms. Note that by the definition in (A-T)) and (A-2), Lemma[A6]
below essentially serves as a bound on the first two terms on the right-hand side of (A12).

Lemma A.6. Under Assumptions[4.1] [.2]and[4.3] let A, be defined in Theorem Then for ¢t < t*,
it holds that

2
/RW pe(0, W) [[Es[(f (pe, x) = )h(8, ]I + [[Es[(f (pe. X) — y)uVeh(8, x)]|3] dOdu > %L(pt)-

Lemma A.7. Under Assumptions[d.J]and[.2] let A; be defined in Theorem 4] Then for ¢ < ¢*,it
holds that

/d+ pe(0,u)[g1-u+G2-0 — V- g1 — Vo - g2]dOdu < 2aA1+/L(p;).
R 1

We now present the proof of Lemma[5.2] which is based on the calculations in Lemmas[A.3] [A6]and
[A77]as well as the application of Gronwall’s inequality.
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Proof of Lemma[5.2] By Lemmal[A.5] we have

OL ~ —~
) — | [ 0l 0.0 a0t [ p(6.)a(e. 6.0 Pdedsan
t Rd+1 Rd+1
I
+)\/ pt(H,u)[§1u+§20—V§1—V§Q]d9du, (A13)
]R’H'l
I3
For I, we have
h=ta® [ p®.w)[Esl(fnx) - b8 )] (A.14)
Rd+1
+Es[(f(prr %) — y)uVeh(8,x)]|3] dOdu (A.15)
> 202 A3 L(py), (A.16)

where the equation follows by the definitions of i (¢, 0, u), ga2(¢,0,«) in (A), (A1), and the
inequality follows by Lemma[A.6] For I, we directly apply Lemma[A.7and obtain

I, < 2A1aA\/L(p:). (A.17)
Plugging the bounds (A.16)) and (A.17) into (A.13) yields
oL
a(ft) < =202 N\ L(py) + 2A10A\/L(py). (A.18)
Now denote V'(t) = \/L(p;) — A1 Aa~" Ay 2. Then (A.I8) implies thaﬂ
oV (¢)

< =NV ().

ot

By Gronwall’s inequality we further get

V(t) < exp(—a®M\2t)V(0).

By V(0) = \/L(po) — Aida"'\;% < +/L(po) < 1, we have
L(pe) < exp(—a®A3t) + A da 152 (A.19)

This completes the proof. O

A.3 Proof of Lemma

In this subsection we present the proof of Lemma[5.3]

Lemma A.8. Under Assumptions and[.3] let Ao be defined in Theorem[4.4] Then for ¢ < ¢*
the following inequality holds

D (pel|po) < 242072054 + 2424202\ 442

If A # 0, the KL distance bound given by Lemma[A.8|depends on ¢, we can give a tighter bound by
the monotonically deceasing property of Q(p;) given by the following lemma, which states that the
energy functional is monotonically decreasing during training. Note that this is not a new result, as it
is to some extent an standard result, and has been discussed in Mei et al. [28| [27]], Fang et al. [[17].

Lemma A.9. Let p, be the solution of PDE (3.4). Then Q(p;) is monotonically deceasing, i.e.,

9Q(pt)
<0. A.20
o~ ( )
*The derivation we present here works as long as L(p:) # 0. A more thorough but complicated analysis can
deal with the case when L(p:) = 0 for some ¢. However for simplicity we omit the more complicated proof,
since loss equaling to zero is a trivial case for a learning problem.
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Proof of Lemma[5.3] Notice that for A = 0, Lemma[A-8]directly implies the conclusion. So in the
rest of the proof we consider the situation where A > 0. Denote to = A7 'a~*A\~!, we consider two
cases tg > t, and tg < t, respectively.

If tg > t,, then for t < t* we have t < t
Dir(pe||po) < 242072054 + 2424202\ 42
< 2430720t + 24340202
— 4420 2A5"
< 443070t +4ATNQ TN,
where the first inequality is by Lemma[A.8|and the second inequality is by ¢ < ¢.
If ty < ts, then for t < ty, we also have
D (pellpo) < 44307225 < 4430720 + 44T Na 2N
For tg < t < t,, consider Q(p;) = L(p:) + ADkL(pt||po). The monotonically deceasing property
of Q(p;) in LemmalA.9)implies that,

Dxr(pellpo) < A7'Q(pe) < A Q(pr,).- (A.21)

Now we bound Q(p, ). We first bound L(py, ). Squaring both sides of the result of Lemma5.2]and
applying Jensen’s inequality now gives

L(p:) < 2exp(—2a2X\2t) + 2420202\, (A.22)
Plugging to = A7 'a~' A" into (A.22) gives
L(ps,) < 2exp(—2a2A3t) + 2420202\ *
=2exp (— 247N aA]) + 24707 2Nt
<4A2N 20720, (A.23)

where the last inequality is by exp(—22) = [exp(—2z)]? < [1/2]? for any z > 0. We then bound
Dx1.(pto||po)- By LemmalA.8| we have

Dxr(pro||po) < 243072051 + 24242020\ M2 = 4430720 (A.24)
Plugging (A-23) and (A24) into (A-21)) gives
Dxw(pellpo) < A7'Q(pry) = A7 L(p,) + Diw(pi, |Ipo) < 4A5a72A5" + 44707225

This completes the proof. O

A4 Proof of Lemma

Proof of Lemma[5.3] Our proof is inspired by the Rademacher complexity bound for discrete distri-
butions given by Meir and Zhang [29]]. Let y be a parameter whose value will be determined later in
the proof. We have

R (Fer (M) = = - Ee sup / TN" &uh(8,x,)p(6, u)dOdu
v p:Dic(pllpo) <M JRa+1 T i
< % : {M-i-Eg log [/eXp (ZZ&uh(&Xi))po(e,u)dadU] }
=1
<2 {M + log /]Eg exp (WZfiuh(ﬁxi))m(e?u)d@d“} }7
v nia

where the first inequality follows by the Donsker-Varadhan representation of KL-divergence [14],
and the second inequality follows by Jensen’s inequality. Note that &3, . . ., &, are i.i.d. Rademacher
random variables. By standard tail bound we have

n 2 n
E¢ exp lz Zfiuh(e, xz)] < exp l;nQ Zu2h2(0, Xl)] .

=1 i=1
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Therefore

Ry, (Fi(M)) < % : {M-l—log

7N
/exp <2n2 Zu2h2(0,xi)>p0(0,u)d0du] }
i=1

Now by the assumption that (0, x) < G, we have

22

2 n
/exp ( ’Lz Zu2h2(0,xi))po(0,u)d0du < /exp (722 u2>p0(0,u)d0du
i=1

_ 1 2T

- NG Vi1 Z v2G2p1
B 1
“Vi1i-2Gm 1T

Therefore we have

Ry (Frr(M))) < — -

a
~

1
M+ log <\/ Manﬂ

Setting v = G~1v/Mn and applying the inequality log(1 — z) > —2z for z € [0, 1/2] gives

1 | M
< .
e M+log< 1—M> < 2Ga -

R (FxL(M))) < —
This completes the proof. O

A.5 Proof of Lemma

Proof of Lemmal[5.6] We first introduce the following ramp loss function, which is frequently used
in the analysis of generalization bounds [7} 23] for binary classification problems.

0 ify'y >1/2,
gramp(y/: y) = _2y/y +1, if0< yly < 1/2’
1, if y'y < 0.

Then by definition, we see that {rump(y’, y) is 2-Lipschitz in the first argument, lramp(y,y) = 0,
[ Cramp (', y)| < 1, and

MY ) < lamp (YY) < |y -yl (A.25)

forall y' € Rand y € {£1}. By the Lipschitz and boundedness properties of the ramp loss, we
apply the standard properties of Rademacher complexity [8, 130, 33]] and obtain that with probability
atleast 1 — 0,

Bl bme (7 5),1)/2] < B lral £),)/2) + 298 (Fi (M) + 3 2L
for all f € Fxi.(M). Now we have
Bolt® (7)) < 2o (£, 1)/
< Esltra (/). )] + AR (Fea (M) + 6/ B
< Es1£x) — ol] + 9%, (Fea (M) + 61 2220
< VESTFG0 = oP] + 4%, (Fra (00)) + 6,/ £

Here the first and third inequalities follow by the first and second parts of the inequality in (A.25)
respectively, and the last inequality uses Jensen’s inequality. This completes the proof. O
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B Proof of Lemmas in Appendix @

In this section we provide the proof of technical lemmas we use in Appendix [A]
B.1 Proof of Lemma[A.1|
Here we provide the proof of Lemma[A.T] which is essentially based on direct calculations on the

activation function and the assumption that ||x||2 < 1.
Proof of LemmalA.1I} By h(0,x) = 1(67x), we have the following identities.
Voh(0.x) =1/ (0"x)x, Ah(0Tx) =Y h"(0 x)2? = 1" (0 x)||x][3, Voh(6,x) -0 =1 (8Tx)0 x.

i=1
By |h(z)| < G in Assumptionand Ix|l2 < 1in Assumption we have
h(8,x)| < G,

which gives the first bound. The other results can be derived similarly, which we present as follows.
By |h/(2)] < G and ||x||2 < 1, we have

IVeh(8,x)ll2 = I (6" x)x]l2 < G,
which gives the second bound. By |1”(z)| < G and ||x||2 < 1, we have
|AR(6,x)| = 1" (67x)|x3] < G.
Moreover, based on the same assumptions we also have
IVoh(61,%) — Voh(8a,x)||2 = |1 (8] x)x — 1 (65 x)x|2
< [W'(6] %) — (85 x)|
< GO/ x — 0, x|
<G| — 6 ||a-

Therefore the third and fourth bounds hold. Applying the bound \(zﬁ’ (z))/| < Gand ||x]|2 <1
gives the fifth bound:

IVo(Voh(60,x)-0)[l2 = Ve (W' (0Tx)0 x)|l2 = [[x]|2| (21 (2)) |.—07«| < G.
Finally, by |h"/(z)| < G and ||x]|5 < 1, we have
IVo20h(8,)2 = Vol (8 x)ll2lx[I3 < 1" (6T x)|[x]|3 < G.
This completes the proof. O

B.2 Proof of Lemma

The following lemma bounds the second moment of a distribution p that is close to pg in 2-Wasserstein
distance.

Lemma B.1. For Ws(p, po) < v/d + 1, the following bound holds:
E,(|0]3 +u?) < 4d+4

The following lemma is a reformulation of Lemma C.8 in Xu et al. [38]. For completeness, we
provide its proof in Appendix [B}

Lemma B.2. For Wy (p,po) < vd + 1, let g(u,0) : R4t — R be a C* function such that

VVug(u,0)2 + [Vog(u, 0)[% < Ciy/u? + [|0]]3 + Co, ¥x € RY

for some constants C, Cy > 0. Then

By [9(1,0)] = By g0, 00)]| < (2C1VA+1 + Ca ) Wa(p,po)-
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Proof of Lemma[A2] Let 7* be the optimal coupling of Wh(p, po). Then we have
’Hl (p)i7.j — H1 (pO)i,j’ = ’Eﬂ—* [u2V9h(0, Xi) . Vgh(e, Xj)] — Eﬂ—* [Ungh(ao, Xi) . VQh(Go, Xj)”
< |Ere [(w® — ug)Voh(8, z;) - Voh(6,z;)]|

I
+ |Exe [ug (Voh(0,2:) - Voh(0,z;) — Voh(8o,x:) - Voh(6o, z;))]| -
Iy
(B.1)
We first bound I; as follows.
I < G*Eqe[|u® — ug]

< G VE-[(u— w02 B [(u + u0)?]
< GPWs(p, po) /2B, [u?] + 2B, [u}]

< G2W2(p7p0) V8d + 107 (BZ)

where the first inequality is by ||[Veh(0,z;)|]2 < G in Lemma [A.1} the second inequality is by
Cauchy-Schwarz inequality, the third inequality is by Jensen’s inequality and the last inequality is by
Lemma [B.T} Next, We bound I, in (B-I)). For any given r > 0 we have

Iy < Ere [ud L(|uo < 7|)|Voh(6, ;) - Voh(0,2;) — Voh(6o,x;) - Voh(6o,z;)|]
+ Eﬂ* [Ug ]1(|U0 Z ’I”|)|Vgh(0,xz) . VQh(97$j) — Veh(@o, 1‘1) . Vgh(@o, IE])H
< 1*Er[|Voh(0,2;) - Voh(0, ;) — Voh(6o, ;) - Voh(6o,z;)|] + 2G*Er- [uf 1(Juo > )],
(B.3)

where the second inequality is by || Veh(6,z;)||> < G Lemma[A.1] We further bound the first term
on the right-hand side of (B3),

Er [|[Voh(8, ;) - Voh(0,x;) — Voh(8o,z;) - Voh(0o, z;)|]

< En+ [|[Voh(0,2:) - (Voh(0,2;) — Voh(Bo,z;))]]

+ Ere [|Voh(Bo, ;) - (Voh(8,z;) — Voh(8o,2:))|]

< 2GPWi(p, po), (B.4)
where the last inequality is by | Veh(0,x)||2 < G and ||Vgh(0,x) — Voh(0o,x)||2 < G||0 — 6¢||2
in Lemmal[A.T} Plugging into (B.3) yields

Iy < 2r°G*Wa(p, po) + 2G?E [ug 1(Jug > 7|)]. (B.5)
Further plugging (B-2) and (B-3) into (B:I)), we obtain

[Hi(p)i; — Hi(po)ij| < G*Wa(p, po)VBd + 10 + 2r°G*Wa(p, po)
+ 2GRy, [ud 1(|ug > 7))

This finishes the proof. O

B.3 Proof of Lemma

Here we provide the proof of Lemma [A3] which is essentially based on a direct application of
Lemma[Aland the definition of 2-Wasserstein distance.

Proof of LemmalA.3] Denote ﬁi7j(9,u) = h(0,x;)h(0,%x;), then we have Hy(p);,; =
E,[H; ;(6,u)]. Calculating the gradient of H; ;(60,u), we have
Vullij(0,u) =0, Vol ;(6, w2 < 2][Voh(8, x:)[2[n(6, ;)| < 2G*,

where the second inequality is by Lemma[AZT]. Applying Lemma[B.2] gives
[Ha(p)i.; — Ha(po)ij| < 2G°Wa(p, po).

This finializes our proof. O
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B.4 Proof of Lemma

Lemmal[A 4] gives a tail bound on py, which is essentially a basic property of Gaussian distribution.
For completeness we present the detailed proof as follows.

Proof of Lemma By the definition of py we have

2 & 2 >
Byl (] > 7)] = —— / ud exp(—u/2)dug = — / 1 (=t

Now by the fact that 42 /7 < exp(z), Vz € R, we have

Ep, [ug L(|uo > 7))] < / exp(—t/2)dt = = exp ( _ ’“)7
r2/2 2

which finalizes our proof. O

B.5 Proof of Lemma

We first introduce some notations on the first variations. For ¢ € [n], 6257?1‘ , f’ggt) , 8DKLa (pptt llpo) and

%p’:t) are defined as follows.
of(t);
L= h 0, i)s B6
o auh(0,x;) (B.6)
oL
S s — B[V 0(J (1)) - auh(0, )] ®.7)
¢
Okt wllo) ; _ 1ogipy o) + 1, (B.8)
Opy
0Q(pt) | _ OL(py) + )\aDKL(pthO)
opr Opy Opt
=Es[Vy o (f(pe;x),y) - auh(8,x) + Mog(p:/po) +A].  (B.9)

The following lemma summarizes some direct calculations on the relation between these first
variations defined above and the time derivatives of £(¢);, L(p:), DxvL(pt||po) and Q(p¢). Note
that these results are well-known results in literature, but for completeness we present the detailed
calculations in Appendix [C3]

Lemma B.3. Let of(t)i i aL(Pt)’ aDKL(pthO)’
Op¢ Opt Opt

8%(’) ) be the first variations defined in (B.6), (B.7).
(B:8) and (B.9). Then

Pt

Olf(t)i —yi] / of(t); dp

at - Rd+1 apt dt dadu’
OL(p:) _ / OL(p:) dps

ot B Rd+1 8}9,5 dt dedU7

9Dk (pt|[po) :/ aDKL(PtHPO)@deu’

ot Rd+1 8pt dt
9Q(pr) _/ QQ(pt)@

3t - Rd+1 8pt dt dadu

The following lemma summarizes the calculation of the gradients of the first variations defined in

(B27). and (B.9).
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OL(p:) 9Dk (p:lpo) 9Q(p+)
Lemma B.4. Let =52, == PE0 and =5 22 be the first variations defined in (B.7), (B.8) and

(B-9). Then their gradients with respect to u and 6 are given as follows:

OL(pr) _ OL(pr)
=—qg1(t,0 = —gs(t,0
8}% gl( ) au)vvﬂ (919,5 92( 3 7u)7
oD oD
v, KL (Pt||po) = u+ Vo log(p:), Ve KL (Ptl[Po)
Op: Opt
2@ _ 0L |\ IDx(pillpo)
Ipy Opy Opy
Moreover, the PDE (3.4) can be written as

e _ g, [ (0,u)V

Vu

=0 + Vg log(p:),

b 9Q(pr) } .

Opy

Proof of Lemma[A.5] By Lemma|B.3] we have the following chain rule

IL(pr) _/ 8L(pt)%
at o Rd+1 8pt dt dad

— OL(p) [ w 3Q(Pt)] »
*/]Rd“ Do; Vo p(0,u)V on; ded

_ _/RM (0, 1) [vag;lzt)} . [vag;’:t)]dedu

9L(pt) IL(p:)
C [ o [v2lm] [o2Len]
I
- /\/ pe(0,u) [VaL(pt)] : [vaD(pt”pO) } d6du, (B.10)
Rd+1 Ipt Ipy
Ip)
where the second and last equation is by Lemma|[B.4] the third inequality is by apply integration by

parts. We now proceed to calculate I; and I based on the calculations of derivatives in Lemma
For I, we have

I :/ pt(O,u)||§1(t,0,u)||§d0du—|—/ pt(H,u)\’g\g(t,O,u)|2d0d0du. (B.11)
Rd+1

Rd+1

Similarly, for I», we have

I = /Rd+1 pe(0,u)[=g1(t, 0,u)] - [u+ V, log(p;)]dOdu
+ /Rdﬂ pe(8,u)[~g2(t,0,u)] - [0 + Vg log(p;)]dOdu
- /Rdﬂ (6, w)[G1 (£, 0, ) - u+ Ga(t, 6, u)0]dOdu
- /WH [G1(t.0,w) - Vupi(t,0,u) + Ga(t.0,1) - Vopi(t, 0, u)ldBdu
- /R (8, w)[G1 (1, 0, w) - u+Ga(t, 6, u)0]dOdu

+ / p(t,0,u)[Vy - q1(t,0,u) + Vo - g2(t, 0,u)|dOdu, (B.12)
Rd+1

where the second equation is by p;V log(p:) = Vp; and the third equation is by applying integration
by parts. Plugging (B.11)) and (B.12)) into (B.10), we get

OL(py) _ _/ pe(8, )71 (2,8, u)|2 d0du—/ pe(6,w)[G2(t, 0, u)[2dfdOdu
at R+ Rd+1

+A pe(0,u)[g1 - u+Gz2-0 — V- g1 — Vo - G2]dOdu.

Rd+1
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This completes the proof. O

B.6 Proof of Lemma

Here we prove Lemma[A.6] which is based on its connection to the Gram matrix of neural tangent
kernel.

Proof of Lemma[A-6] We first remind the readers of the definitions of the Gram matrices in (3.6).
Let b(p;) = (f(pe;x1) — Y1, f(Pe,Xn) — yn) | € R™. Then by the definitions of H;(p;) and
H,(p;) in (3.6), we have

[ pO ) [Es((7 1) — )h(0,))FdBdu = ~55(0) H (1) bl
[ 2O B 01.30 = 0)uToh (6. 0] 3] d6du = —b(p) Hap)b(r)
Therefore by (3.6) we have

[ 2@ B (or ) = h(6. X)) + [Es[(F 00, ) = 1)uVoh(.)] 3] a0

1
= —5b(p) "H(p)b(p1). (B.13)
By the definition of ¢*, for ¢ < t* we have Wh(p, po) < R, and therefore applying Lemma gives
1 Al|b 2\
b0 Hpb(p) > M _ 0 ®.14)

where the equation follows by the definition of b(p;). Plugging (B:14) into (B:I3) completes the
proof. O

B.7 Proof of Lemma

Lemma B.5. Under Assumptions and for all W(p,po) < vd+ 1 and x the following
inequality holds.

|Ep [uh(6,%) + uVh(8,%) - 6 — uAh(0,x)]| < Ay,
where A is defined in Theorem £.4]

The proof of Lemma[A77]is based on direct applications of Lemma[B.5] We present the proof as
follows.

Proof of LemmalA.7] We have the following identities:

91(t,0,u) = —Es[Vo(f (pr, %), y)ah(0,x)],

§2 (ta 0) U) = _ES [vf¢(f(pt7 X)v y)auVeh(O, X)]7
V- g1(t,0,u) =0,
Ve - /9\2 (ta 0, u) =—-Es [qub(f(ptv X)? y)a’U'Ah(av X)]

Base on these identities we can derive

[ p®G w20~ 9,51~ Vo Galdbdu
Re+1

aEg |:vf¢(f(ptﬁx)7y)Ept [(Uth(gtaxi) +u Vh(0s,%;) - 0, — UtAh(Otyxi))H ‘

< 201 Es[ f (pe, ) — y]

< 2OZA1 \% L(pt)a

where the first inequality is by Lemma[B.3] the second inequality is by Jensen’s inequality. O
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B.8 Proof of Lemma
The following lemma summarizes the calculation on the time derivative of Dkt (p¢||po)-
Lemma B.6. Let p, be the solution of PDE (3.4). Then the following identity holds.

oD
ODlpln) —x [ p@)0+ alog(polE — 3 [ pil.uu+ V. log(r)P
Rd+1 Rd+1

[ n@ad w0 VG~ Vo uldd.
Ri+1

In the calculation given by Lemma. we can see that the (potentially) positive term in M

naturally coincides with the corresponding term in 9 d(f t) given by Lemma | and a bound of it has
already been given in Lemma[A.7} However, for the analysis of the KL- dlvergence term, we present

the following new bound, which eventually leads to a sharper result.

Lemma B.7. Under Assumptions@.1]and[f.2] let A5 be defined in Theorem[#.4] Then for ¢ < ¢*,it
holds that

/d+ p(0,u)[G1 - u+Go-0 — Vi -Gi — Ve - Ga]d0du < 2045/ L(p:)\/ Dxw(p:|[po)-
RA+1

Proof of Lemma[A-8] By Lemma[B.6]

D
ODxLPillpo) _ _, / p(8,u)16 + Vo log(ps)[2 — A / p(8, )+ V. log(py)
ot Rd+1 Rd+1

+/ N pt(07u)[§1u+§29—VU§1—V9§2]d0du
Rd+1

< 2Asa+/L(p:)/Dxw(p:[po), (B.15)

where the inequality is by Lemma Notice that v/ Dxr,(po||po) = 0, /DxL(pt||po) is differen-
tiable at \/ Dxr,(p¢||po) # 0 and from (B:13) the derivative

D oD 1
th(PtHPO) _ KL (Pe|[Po)) < Asar/L(py),

ot 2/ Dxuw(pe|[po)

which implies

Dt (pillpo) < /O Asa/L(pa)ds

t
< Aga/ exp(—a?X\2s) + Ajha P\ 2ds
0

< Aga NG 4 A AN 2,
where the second inequality holds due to Lemma[5.2} Squaring both sides and applying Jensen’s
inequality now gives
Diu(pellpo) < 24307 2A5" + 2AFATN2NG 2.
This completes the proof. O

B.9 Proof of Lemma

Proof of Lemma[A-9 By Lemmal[B.3] we get
9Q(pr) _ / Q) dpt 4,
Rd+1

ot Jpy dt
8Q(pt) [ 5@(]%)}
- V- (0, u)V dod
/Rd+1 apt pt( U) 3pt Y
2
/ H 6Q( ) d@du
Rd+1 8 Dt P

/ 0.5z = 26 ~ XVolog(p)[ — [ pi(8u)lf ~ N~ AV, o)
Rdt+ Ra+
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where the third equation is by applying integration by parts and the fourth equation is by Lemma
O

C Proof of Auxiliary Lemmas in Appendix

C.1 Proof of Lemma

Proof of Lemma[B.1} Let 7*(po, p) be the coupling that achieves the 2-Wasserstein distance between
po and p. Then by definition,

Er (1613 4 u*) < Ex-(2]16 — 60|13 + 2116015 + 2(u — uo)* + 2ug)
<2R?>+2d+2
< 4d + 4,

where the last inequality is by the assumption that W (p, po) < v/d + 1. This finishes the proof. [J

C.2  Proof of Lemma|B.2]
Proof of Lemma|B.2] By Lemma C.8 in Xu et al. [38]], we have that

E,lg(u, 8)] — Ep, [g(uo, 00)]| < (Cro + Co)Wa(p,po),

where 0% = max{E,[u® + 0%],E, [uf + 63]}. Then by Lemma [B.1} we get o < 2\/d+ :

Substituting the upper bound of ¢ into the above inequality completes the proof.

C.3 Proof of Lemma
Proof of Lemma|B.3] By chain rule and the definition of f(¢), we have

AW~y _ d |
ot _ﬁAMmM&MM&mww

:/ ouh(6,%:) L (60, u)d0du
Rd+1 dt

o 8f( ) dpy
_/Rd+1 Bpt dt ded

where the last equation follows by the definition of the first variation ( ) . This proves the first
identity. Now we bound the second identity,

OL(p: [
2 — s | 9,6 00%).9)

(jtf(Pta )}

ZESVMMNMdeyiéﬁfwma@mwﬂmwm}

dt
=Eg Vy/¢(f(pt,x),y)/R auh(@,x)dptg’u)dedu}

d+1
_ / OL(pt) dpy Pt 9du,
Rd+1 Opy dt

oL (pt

where the last equation follows by the definition of the first variation ). This proves the second

identity. Similarly, for %, we have
ODk1(pe||po) _ d dpt dpy ODxkuL(ptl|po) dp:
— o a4 /pt log(pt/po)d@du —/Elog(pt/po) + Ed@d /Rd+1 T op dt
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Notice that Q(p¢) = L(p:) + ADkr(p¢||po), so we have

9Q(pt) _ OL(py) 4 )\aDKL(pthO)

ot ot ot
OL(py) d oD d
:/ (pt)ﬂdedu—i—/\ KL(MHPO)ﬁdOdU
pa+1  Opy dt Rd+1 Opy dt
d

Rd+1 8pt dt
where the last equation is by the definition agz(ft”') = alégz 2 4 )\aDKLa(;th o) " This completes the
proof. O

C.4 Proof of Lemma
Proof of Lemma By Lemma B3] we have

Vu%pﬁ = VuEs[Vy ¢ (f(pr,x), y)auh(8,%)] = —Gi(t,0,u),
W%i = VoEs [Vy & (f(pr,x), y)auh(8,x)] = —Ga(t, 0, u),
VUW = Vy(log(pt/po) +1) = u + Vy log(py),
V@W = Ve (log(pt/po) + 1) = 6 + Vg log(p,).

This proves the first four identities. For the last one, by the definition

g2QW) _ G OLWw:) | G ODki(pillpo)
Opy Opy Opy
we have
5Q(pt)} [ 8L} [ 9Dxw(pt||po)
V- 0, u)V =V- 0, u)V—| + V- 0, u)V——m——-—=
Pi{ ) Opt Pl ) Opt Pl ) Opt
= —Vu-[pe(0,u)g1] — Vo - [pe(0,u)g2] + AV - [pe (6, u)u]
+ AV - [p(0,u)0] + AV - [p:V log(pt)]
=—Vy- [pt(97 u)gl (t7 0, u)} E [pt(oa u)gQ(t’ 0, u)] + /\A[pt(ea u)]
_ dne
dt’
where the third equation is by the definition g1 (¢, 0, u) = g1 (¢, 0, u) — Au, g2(t, 0, u) = G2(t, 0, u) —
A0 and p;V log(p;) = Vp,. O

C.5 Proof of LemmaB.5]
Here we give the proof of Lemma [B.3]

Proof of Lemma([B-3] The proof is based on the smoothness properties of 7(6,x) given in Lemma
[A1l We have

|E,[(uh(6,%) + uVh(8,x) - 6 — uAh(6,x%))]|
< Ep[[ulG + Glul[|6]]2 + Gul]
= GEy[|ul[[0]|2] + 2GE[|u]]

2 2
< GE, {“*2“’”2] 126, /E, [u2),
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where the first inequality is by |h(0,x)| < G, |[Vgh(0,x)||2 < G and |Ah(0,x)| < G in Lemma
[A71] the second inequality is by Young’s inequality and Cauchy-Schwartz inequality. Now by

W(p,po) < vd+1and Lemma we have
‘Ep [(uh(a, x) + uVh(0,x) - 0 — uAh(6, x))] ‘

<2G(d+1)+4GvVd+1
=A;.
This completes proof. O

C.6 Proof of Lemma

Proof of Lemma([B.6| By Lemma[B.3] we have

9DxkL(pe|po) :/ 9Dk (pellpo) dpe 41
6t R’H'l

(9pt dt

[ 2Dty T v 2] g,
RA+1 Opy ’ Opr

- _ aDKL(Ptho)]_[ aQ(Pt)}
= /R Mm(&n){V on, v 5pr d0du

= f)\/ pi(6, ) [VaDKL(p”pO)} : {VaDKL(p”pO)}dOdu
Rd+1 8pt 32%

oD oL
_/ (6, ) [VKL(P%WO)} . {v(pf)] d0du, (C.1)
Rd+1 Opt Opt
where the second and last equations are by Lemma[B.4] the third inequality is by applying integration
by parts multiple times. We further calculate by Lemma[B-4]

0Dk (pt||po) } { 0Dk, (pt|po) ]
9, \Y% |V dld
/Rdﬂ pt( U) { Opy Opy "

— [ nO.wlo+Tolosol + [ p®wlu+ Vil (€2
Ra+1 Rd+1

Moreover, for the second term on the right-hand side of (C.I) we have

/ pe(0,u) [V 0Dk (pi| |p0)] . [V 8L(pt)] d@du
Ra+1 8pt 8pt

- /R pe(0,w)[=G1(¢,0, u)] - [u + V., log(p,)]dbdu

* /Rdﬂ pe(0,u)[—Ga(t, 6, u)] - [0 4+ Vo log(p)|dOdu
T /Rdﬂ pe(6,u)[g1(t,0,u) - u+g2(t, 6, u)0]dOdu

- /Rdﬂ [G1(¢,0,w) - Vupi(t, 0,u) + Go(t,0,) - Vopy(t, 6, u)|d0du
T /WH pe(0,u)[G1(t,0,u) - u+ Ga(t, 8, u)8]dOdu

+ / pe(t,0,u)[Vy - q1(t,0,u) + Vo - g2(t, 0,u)|dOdu, (C.3)
Ra+1

where the second equation is by p; V log(p;) = Vp; and the third equation is by applying integration
by parts. Then plugging (C.2)) and (C3) into (C.I)), we get

oD
ODrlnllen) — 3 [ 30,010 + Vo lox(po) 3 — [ p®.wlu+ V. log(po)
Rd+1 Rd+1

+/d (0, 0)[G - U+ Go -0 — V- G1 — Vo - Go]dOdu.
Rd+1

This completes the proof. O
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C.7 Proof of Lemma
Proof of Lemma(B.7] 'We remind the readers the definitions of g; and g» in (A:I) and (A:T). We have

/d (O, W)[G1 -1+ G- 0 — Vo -Gy — Vo - GaldOdu
Ri+1

= 2aFg [(f(pt, X) —y) /R (uh(0,x) + uVeh(6,x) - 6 — uAh(6,x))p:(6, u)dOdu | .

d+1
Denote 1(0,u,x) = uh(0,x) + uVeh(0,x) - 6 — uAh(0,x), then we have
|VoI(0,u,x)] =|h(0,x) + Vah(0,x) - 0 — AR(0,%x)| < G||0]2 + 2G, (C4
where the inequality holds by Lemmal[A.T] Similarly, we have

[VeI(0,u,x)|2 = [|uVeh(0,x) +uVe(Veh(8,x)-0) —uVgAgh(8,x))||2
< 3G|ul. (C.5)

Therefore, combining the bounds in (C.4) and (C.5) yields

VVuI(0.0,%) + [ VoI(0.u,x)[3 < 4G /u? + |0]3 +26.

By Lemma [B.2] we have that

By, 1181, 11, )] = Epy 16, u0,%)) < [8GVA+1 + 2G| Wi(po. p)

< A/ Dkw(ptl[po),

where the last inequality is by Lemma and A, = 16Gvd+ 1+ 4G. By E,, [I(09, uo, x)] =
Ep, [uo]Epy [1(60, %) + Voh(09,x) - g — Agh(6y,x)] = 0, we further have

Ep, [1(8¢, ut,x)] < A2/ Dxr(ptl|po)- (C.6)

Then we have
/d+ pt(H,u)[@\l-u+’g\2~0—V~§1—V-’g\2}d6du
Rd+1

=2aEg [(f(pta X) - y)Ept, [I(etv Ut, X)H
< 20451/ Dxw(pil[po) v/ L(pe),
where the last inequality is by (C.6) and Cauchy-Schwarz inequality. This completes the proof. []
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