
Appendix A Proofs

Lemma 1. Consider a continuously differentiable function L : Rn ! R that maps W 7! L(W).
Suppose that parameter vector W decomposes into L parameter groups: W = (W1,W2, ...,WL),
and consider making a perturbation �W = (�W1,�W2, ...,�WL). Let ✓k measure the angle
between �Wk and negative gradient �gk(W) := �rWkL(W). Then:

L(W + �W) � L(W) �
LX

k=1

kgk(W)kF k�WkkF

cos ✓k � max

t2[0,1]

kgk(W + t�W) � gk(W)kF
kgk(W)kF

�
.

Proof. By the fundamental theorem of calculus,

L(W + �W) � L(W) =
LX

k=1

gk(W)T�Wk +

Z 1

0

⇥
gk(W + t�W) � gk(W)

⇤T
�Wk dt

�
.

The result follows by replacing the first term on the righthand side by the cosine formula for the dot
product, and bounding the second term via the integral estimation lemma.

Modelling assumption 1. [Deep relative trust] Consider a neural network with L layers and parame-
ters W = (W1,W2, ...,WL). Consider parameter perturbation �W = (�W1,�W2, ...,�WL). Let
gk(W) := rWkL(W) denote the gradient of the loss. Then the gradient breakdown is bounded by:

kgk(W + �W) � gk(W)kF
kgk(W)kF

LY

l=1

✓
1 +

k�WlkF
kWlkF

◆
� 1 (for k = 1, ..., L).

Theorem 1. Let L be the continuously differentiable loss function of a neural network of depth L that
obeys deep relative trust. For k = 1, ..., L, let 0 �k ⇡

2 denote the angle between |gk(W)| and
|Wk| (where |·| denotes the elementwise absolute value). Then the multiplicative update in Equation
3 will decrease the loss function provided that:

⌘ < (1 + cos �k)
1
L � 1 (for all k = 1, ..., L).

Proof. Using the gradient reliability estimate from deep relative trust, we obtain that:

max
t2[0,1]

kgk(W + t�W) � gk(W)kF
kgk(W)kF

 max
t2[0,1]

LY

l=1

✓
1 +

kt�WlkF
kWlkF

◆
� 1

LY

l=1

✓
1 +

k�WlkF
kWlkF

◆
� 1.

Descent is guaranteed if the bracketed terms in Lemma 1 are positive. By the previous inequality, this
will occur provided that:

LY

l=1

✓
1 +

k�WlkF
kWlkF

◆
< 1 + cos ✓k (for all k = 1, ..., L) (6)

where ✓k measures the angle between �Wk and �gk(W). For the update in Equation 3,

W + �W = W � (1 � ⌘ signW � sign g(W)).

Therefore the perturbation is given by �W = �⌘ |W | � sign g(W). For this perturbation,
k�W⇤kF /kW⇤kF = ⌘ for any possible subset of weights W⇤. Also, letting](·, ·) return the
angle between its arguments, ✓k and �k are related by:

✓k :=](�Wk,�gk(W))

=](�⌘ |Wk| � sign gk(W),�gk(W))

=](|Wk| � sign gk(W), gk(W))

=](|Wk|, |gk(W)|)
=: �k.

Substituting these two results back into Equation 6 and rearranging, we are done.

13

Table 3: Complete results for FP32 Madam. We quote top-1 error, FID [36] and perplexity for the
classifiers, GAN and transformer respectively. Lower is better in all cases. The mean result is quoted
with a range based on three repeats.

Note: all Madam runs use initial learning rate ⌘ = 0 .01 .
For all algorithms, ⌘ is decayed by 10 when the loss plateaus.

Dataset Adam ⌘ Adam train Adam test SGD ⌘ SGD train SGD test Madam ⌘ Madam train Madam test

CIFAR-10 0.001 0.01 ± 0.01 6.6 ± 0.2 0.1 0.01 ± 0.01 8.2 ± 1.3 0.01 0.01 ± 0.01 7.8 ± 0.2
CIFAR-100 0.001 0.02 ± 0.01 29.8 ± 0.4 0.1 0.03 ± 0.01 29.1 ± 0.2 0.01 2.35 ± 0.08 30.2 ± 0.1
ImageNet 0.01 19.8 ± 0.2 26.7 ± 0.3 0.1 17.7 ± 0.1 24.1 ± 0.1 0.01 25.4 ± 0.1 28.9 ± 0.1

cGAN 0.0001 23.1 ± 0.8 23.9 ± 0.9 0.01 34 ± 1 34 ± 1 0.01 19 ± 2 19 ± 2
Wikitext-2 0.0001 109.8 ± 0.5 173.4 ± 0.9 1.0 149.9 ± 0.2 169.6 ± 0.6 0.01 126.9 ± 0.2 173.3 ± 0.6

Appendix B Experimental details

FP32 Madam The initial learning rate was set to ⌘ = 0.01 across all tasks, while the weight
clipping threshold �

⇤ was tuned over the range 1 to 5. The learning rate schedule was set specific to
each task, although the general strategy was to decay the learning rate upon plateau of the loss.

B-bit Madam For 12-bit Madam, the base precision ⌘0 was set to 0.001 across all tasks. To reduce
precision to 10 bits and 8 bits, we maintained the same dynamic range as for 12 bits by increasing
the base precision ⌘0. For example, in all the image classification experiments, the initial learning
rate ⌘ was set to 0.016 for all bit widths, while the learning rate was decayed to 0.001 in the 12-bit
experiments, 0.004 in the 10-bit experiments and never decayed in the 8-bit experiments. In the GAN
and transformer experiments, the initial learning rate ⌘ was set to 0.01. The difference between an
initial learning rate of 0.016 and 0.01 was not highly significant—the learning rate of 0.016 was
chosen to be compatible with code that decayed the learning rate by powers of two. The weight
clipping threshold �

⇤ was set to the value used in FP32 Madam for each task.

CIFAR-10 classification We evaluated the different optimisers on the CIFAR-10 dataset [44] using
a Resnet-18 model [45]. CIFAR-10 consists of 60,000 images in 10 different classes. For simplicity,
we switched off the learnable affine parameters in batch norm. The network was trained for 300
epochs, and we used a fixed learning rate decay schedule that decayed every 100 epochs.

CIFAR-100 classification The CIFAR-100 dataset is similar to CIFAR-10, but contains 100 classes
containing 600 images each [44]. Again, we used a Resnet-18 model with the batch norm affine
parameters switched off. The other hyperparameters were chosen in the same way as for CIFAR-10,
including the epoch budget and learning rate decay strategy.

ImageNet classification The ILSVRC2012 ImageNet dataset consists of 1.2 million images be-
longing to 1,000 classes [46]. We used a Resnet-50 network architecture to benchmark the optimisers
[45]. Again, we switched off the affine parameters in batch norm for simplicity. The network was
trained for 90 epochs. We applied a learning rate warm-up for the first 5 epochs of training, and
decayed the learning rate after every 30 epochs.

CIFAR-10 GAN We trained a class-conditional generative adversarial network (cGAN) using a
custom implementation of the BigGAN architecture [47], to learn to generate the CIFAR-10 dataset
[44]. The same learning rate was used in both the generator and discriminator. The networks were
trained for 120 epochs. The learning rate was decayed after 100 epochs of training, by a factor of 10
in the FP32 experiments and to the base precision in the B-bit experiments. Bias parameters were
initialised from a Normal distribution with mean zero and variance 0.01.

Wikitext-2 transformer WikiText-2 is a language modeling dataset that contains over 100 million
tokens extracted from Wikipedia [48]. We trained a transformer network architecture [49] that was
smaller than the transformers that are typically used for this task, explaining the general degradation
of results compared to the state of the art for this dataset. The network was trained for 20 epochs with
a single learning rate decay at epoch 10. In 12-bit Madam, decaying the learning rate to 0.005 rather
than to the base precision of 0.001 slightly improved the results.

14

	Introduction
	Related work
	Mathematical model
	Sketch of the main idea
	First-order optimisation of continuously differentiable functions
	Descent via multiplicative weight updates

	Making the algorithm practical—the Madam optimiser
	B-bit Madam

	Benchmarking Madam in FP32
	Benchmarking B-bit Madam
	Discussion
	Limitations and future work
	Proofs
	Experimental details

