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Abstract

Video frame interpolation, which aims to synthesize non-exist intermediate frames
in a video sequence, is an important research topic in computer vision. Existing
video frame interpolation methods have achieved remarkable results under specific
assumptions, such as instant or known exposure time. However, in complicated real-
world situations, the temporal priors of videos, i.e., frames per second (FPS) and
frame exposure time, may vary from different camera sensors. When test videos
are taken under different exposure settings from training ones, the interpolated
frames will suffer significant misalignment problems. In this work, we solve
the video frame interpolation problem in a general situation, where input frames
can be acquired under uncertain exposure (and interval) time. Unlike previous
methods that can only be applied to a specific temporal prior, we derive a general
curvilinear motion trajectory formula from four consecutive sharp frames or two
consecutive blurry frames without temporal priors. Moreover, utilizing constraints
within adjacent motion trajectories, we devise a novel optical flow refinement
strategy for better interpolation results. Finally, experiments demonstrate that one
well-trained model is enough for synthesizing high-quality slow-motion videos
under complicated real-world situations. Codes are available on https://github.
com/yjzhang96/UTI-VFI.

1 Introduction

Video frame interpolation aims to synthesize non-exist intermediate frames and thereby provides a
visually fluid video sequence. It has broad application prospects, such as slow motion production [13],
up-converting frame rate [3] and novel-view rendering [6].

Many state-of-the-art video interpolation methods [1, 12, 17, 34] aim to estimate the object motion
and occlusion with the assistance of optical flow. Through refining forward and backward motion
flows among several frames, these methods can directly warp pixels to synthesize desired intermediate
frames. To achieve this goal, some popular datasets, of which either triplet images or 240fps high-
frame-rate videos, are collected as the ground-truth of real-world motions. Meanwhile, to evaluate the
performance of proposed methods, the well-trained model is tested using frames collected in a similar
way. Although significant improvement has demonstrated by experiments of recent works, people
may ask if the same (or similar) performance can be achieved in complicated real-world situations.
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Figure 1: (a) Illustration of frame acquisition in video shooting. In real-world situation, the time
interval t0 and t1 are unknown and may vary under different exposure setting. In the specific example
in the figure, the time intervals are set to t0/t1 = 6 : 4, which indicates the intra-frame and inter-frame
interpolation should be 7 and 3 frames respectively when we want to interpolate 10 frames. (b) Our
proposed method aims to determine the uncertain time intervals and perform interpolation from the
four consecutive states.

To comprehensively discuss this question, we first revisit the principle of video frame acquisition.
As illustrated in Fig. 1 (a), the frame acquisition process usually includes two phases: exposure
phase and readout phase. In the exposure phase, the shutter opens for a duration of t0 so that the
photosensitive sensor is exposed. In the readout phase, the camera reads the charge on the pixel
array and convert the signal to get the pixel value. Considering different technologies of cameras,
the readout phase could be either overlapped or non-overlapped with the exposure phase. Here, Fig.
1 (a) is an example of non-overlapped exposure. For easy discussing, we define the time interval
between two exposures as t1. Thus, a complete shutter period is defined as the time period t0 + t1.
Correspondingly, frames per second (FPS) is defined as the reciprocal of the shutter period. Note
that, t1 cannot be eliminated because of the intrinsic demand of the sensor. Meanwhile, t0 cannot be
too short compared to shutter period, otherwise it will produce a visually discontinuous video.

The exposure time t0 and the interval time t1 (or FPS 1
t0+t1

) are two important parameters of a camera
sensor, and they could vary largely across different cameras [4]. Therefore, when we perform frame
interpolation on real-world videos, following challenges should be further considered: 1) Due to the
existence of exposure time, the movement of the camera and object may produce motion/dynamic
blur within a video frame. Directly performing the interpolation between blurry frames would lead to
inferior visual results. A more severe blur would usually occur in the lower frame-rate video since the
exposure time is relatively long. 2) Simply combining deblurring and video interpolation techniques
may not handle the blurry video frames well. For blurry video frames, we should not only focus on
the inter-frame interpolation, but also perform the intra-frame interpolation. 3) Note that t0 and t1
may vary due to the limitation of equipment or different exposure settings, the number of interpolated
frames and corresponding motion trajectories will vary accordingly. For example, in the instance of
Fig 1 (a), if we want to up-convert the FPS by 10 times, we should interpolate 7 frames underlying
each blurry frame, and 3 frames between the two consecutive frames. Similarly, the estimation of
the motion trajectory must consider the uneven time intervals. According to our observation, most
existing works cannot overcome these three challenges simultaneously. Although the most recent
works [13, 27] manage to solve the problem of motion blur in video interpolation, they are trained on
the specific exposure setting and could be hard to generalize to different situations.

To address these issues, in this work, we consider the video frame interpolation problem in a more
general situation and aim to deliver more accurate interpolation results. Specifically, giving a
video sequence as the input, we first train a second-order residual key-states restoration network to
synthesize the start and the end states for each frame, e.g. L0 and L1 in Fig. 1 (b). If there exists zero
movement (misalignment) between two states, the video frame is regarded as one instant frame (i.e.
without blur). Otherwise, the exposure time cannot be ignored, and both inter- and intra-interpolation
are performed. Moreover, following the same assumption as [34], i.e. the acceleration of motion
remains consistent during consecutive frames, we apply the quadratic model [18, 34] to the general
video acquisition situation. We derive the general curvilinear motion representation without temporal
priors from consecutive four key-states, such as L0, L1, L2 and L3 in Fig. 1 (b). Meanwhile, the
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relationship between t0 and t1 can be determined by the displacements between key-states, i.e. S01,
S12 and S23. In addition, to reduce the adverse effects caused by inferior optical-flow estimation,
we further refine the optical flows with the derived trajectory priors. Finally, the refined optical flows
are utilized to perform high-quality intermediate frame synthesis.

Overall, in this paper, we make following contributions: 1) We propose a restoration network to
synthesize start and end states of the input video frames. This network is able to handle different
exposure settings, and remove blur in the original video clip; 2) We derive a curvilinear motion
representation which is sensitive to different exposure settings, thereby providing a more accurate
frame alignment for uncertain time interval interpolation; 3) We further refine the optical flow with
the trajectory priors to improve the interpolation results. We construct different datasets to simulate
the different exposure settings in real scenarios. Comprehensive experiments on these datasets and
real-world vidoes demonstrate the effectiveness of our proposed framework.

2 Related Works

Video frame interpolation. Most popular video interpolation methods utilize optical flow [12, 34,
17, 1, 2, 35] to predict the motion for the interpolated frame. Some methods [23, 22, 9] estimate
space-varying and separable convolution filters for each pixel, and synthesize the interpolated pixel
from a convolution between two adjacent patches. Xu et al. [34] proposes a quadratic interpolation to
allow the interpolated motion to be curvilinear instead of being uniform and linear. However, all these
methods will encounter difficulties when processing the blurry video since the optical flow/motion
estimation will be inaccurate.

Video/Image deblurring. Conventional video deblurring methods [5, 10, 33] usually apply the
deconvolution algorithm with the assistance of image priors or regulations. To make full use of
adjacent frames, Hyun et al. [11] utilize inter-frame optical flow to estimate blur kernels. Ren et al.
[25] also apply optical flow to facilitate the segmentation result. More recently, deep convolutional
neural networks (CNN) have been applied to bypass the restriction of blur type or image priors
[19, 30, 7, 20, 16, 36], and enable an end-to-end training scheme by introducing the synthetic real-
world scene datasets [19, 30]. To exploit the temporal relationship, Nah et al. [20] propose a recurrent
neural network (RNN) to iteratively update the hidden state for output frames. Wang et al. [32]
devise a pyramid, cascading and deformable alignment module to conduct a better frame alignment
in feature level, and their method won the first place in the NITRE19 video deblurring challenge [21].
There are also some works [37, 14, 24] learning to extract a video clip from a blurry image, which
can be considered as a combination of image deblurring with intra-frame interpolation.

Joint video deblurring and interpolation. Recent methods [13, 27] have been proposed to address
the blurry video interpolation problem. Among them, Jin et al. [13] first extract several keyframes,
and then interpolate the middle frame from two adjacent frames. Meantime, Shen et al. [27] proposed
a joint interpolation method, where they simultaneously output the deblurred frame and interpolated
frame in a pyramid framework. Both these methods have pre-defined a specific setting for the blurry
video exposure mechanism, which may fail when applied to a video acquired from other equipment
or other camera settings.

3 The Proposed Video Interpolation Scheme

To address the aforementioned challenges of video frame interpolation without temporal priors,
in this section, we introduce the proposed interpolation scheme in detail. Firstly, to overcome the
problem caused by the uncertainty of the time interval, we derive a new quadratic formula for different
exposure settings. Then, utilizing the motion flow priors contained in the formula, we further refine
the estimated optical flow for more accurate time interval and trajectory estimation. Finally, we
introduce the second-order residual learning strategy for key-states restoration from input frame
sequences.

3.1 From equal time interval to uncertain time interval

To interpolate intermediate frame Lt between two consecutive frames L1 and L2, the optical flow
based video interpolation methods [12, 17, 34] aim to estimate the optical flow from frame L1 to Lt,
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or frame L2 to Lt. Recently, inspired by [18], Xu et al. [34] have relaxed the constrains of motion
from linear displacement to quadratic curvilinear, which corresponds to acceleration-aware motions:

S1t = (S12 − S01)/2× t2 + (S12 + S01)/2× t, (1)
where Sab means the displacement of pixels from frame a to frame b, and it is calculated by
optical flow. In order to keep the pixel coordinates aligned in each optical flow map, the start
point of these optical flows should be the same. In general, the displacements are calculated as
Ŝ12 = f1→2, Ŝ01 = −f1→0, where fa→b denotes the optical flow from frame a to frame b.

However, Eq.(1) is based on the equal time interval assumption. This assumption is not applicable
to the general situation where the time intervals t0 and t1 may vary accordingly. Here, we define a
shutter period as one unit time, and the ratio between t1 and t0 is λ, i.e. t0 + t1 = 1, t1/t0 = λ.
Different from [34] which employs three neighboring frames to calculate the quadratic trajectory,
we take four consecutive key-states into consideration as shown in Fig. 1 (b). Naturally, if the time
intervals become unknown, four key-states (i.e. three flows) are requested to determine a unique
quadratic movement. If we assume the acceleration remains constant from frame L0 to L3, then we
can express S01,S12 and S23 with velocity and acceleration:

2S12 = (2v1 + at1)× t1,
S01 + S23 = (2v1 + at1)× t0. (2)

This equation set indicates that vector S12 has a same direction with vector resultant S01 + S23. In
addition, we can derive the time interval ratio λ as:

λ =
t1
t0

=
2S12

S01 + S23
. (3)

By far, we are able to solve the t0 and t1 under the condition that t0 + t1 = 1. Further deriving the
velocity and acceleration of the movement, we can get the expression of trajectory between frame L1

and frame L2:
S1t = (λ+ 1)(S23 − S01)/2× t2 + (λS01 + (S01 + S23)/2)× t, t ∈ (tL0

, tL1
). (4)

Note that when the time intervals are equal, i.e. λ = 1, our Eq.(4) can be degraded to Eq.(1), i.e. the
QVI interpolation [34] is a special case of our framework.

3.2 Optical flow refinement

As shown in Eq.(3) (4), we can obtain flow S1t using the pixel displacements among four key-states.
In order to keep the position aligned, S23 should be represented as:

Ŝ23 = f1→3 − f1→2, (5)
which denotes the movements of pixels in frame L1 from time tL2

to tL3
. In practical, we estimate

all the optical flows using the state-of-the-art PWC-Net [31]. However, directly using flow calculated
by Eq.(5) does not work well in our situation, since there may exist serious errors in two aspects: 1)
the flow estimation error owing to the long time interval between frame 1 and frame 3, i.e. f1→3; 2)
the pixel misalignment when we conduct vector subtraction.

Therefore, we propose a flow refinement network FR to acquire the refined flow Ŝ
′

23. Since it is hard
to obtain the ground-truth of the target flow S23, we employ the trajectory prior implied in Eq.(2) (3)
as our penalization. Specifically, Ŝ01 + Ŝ23 and Ŝ12 should have following two implicit constraints:
1) these two vectors have the same direction; 2) since λ is a constant, the ratio of the two vectors
should be uniform across the image. With these two priors as constraints, we are able to correct the
value of one optical flow when the other two are fixed. Note that, although f1→0 and f1→2 are also
the estimation of pixel displacements, they could deliver more accurate motion estimation than Ŝ23.
Therefore, the refinement process can be formulated as:

Ŝ
′

23 = FR(f1→0,f1→2, Ŝ23). (6)
We use a U-Net [26] with skip connections to learn the mapping from the original flow to the refined
outputs. Aforementioned priors are implicitly encoded into our loss function, where we utilize f0→1

and f1→2 to constrain the output flow. The loss function is calculated as:

Lr = |Ŝ23 − (2/λf1→2 + f1→0)|1. (7)

Finally, the refined Ŝ
′

23 can be substituted into Eq.(4) to compute a more accurate S1t.
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Figure 2: Overview of our key-states restoration network. The left figure shows the inputs and
outputs of each sub-network. The right figure shows the backbone structure of F1 and F2.

3.3 Second-order residual learning for key-states restoration

Our principle for choosing key-states is to ensure that they are unambiguous under different exposure
settings. For each input frame, we attempt to restore its instant states of the start and end of the
exposure, since their physical meaning is consistent in different exposure settings. For sharp images
(i.e. without motion blur), the start and end states should be the same. For blurry frames, the start and
end states define the boundary of the motion blur, which makes them easier to restore. In addition,
ours could short the temporal range for subsequent interpolation, which leads to more accurate
interpolation results. More discussion can be found in the experiment section.

As shown in Fig. 2, we propose the second-order residual learning pipeline to extract the key-states
from input frames. Firstly, in order to avoid the temporal ambiguity of the start and end states, four
consecutive frames are fed into the network F1. Utilizing the implicit motion direction existed in
the input sequence, the network is trained to synthesize residuals to be summed up with input blurry
frames, and deliver the start and end states of B1 and B2. This process can be formulated as:

(L̂s
i , L̂

e
i ) = F1(Bseq) +Bi, i = 1, 2, (8)

where (L̂s
i , L̂

e
i ) denotes the the estimated instant start and end states respectively, and Bseq denotes

the input sequence {B0, · · · , B3}.
In the experiments, although the network F1 achieves reasonable performance, we find it still suffers
from some limitations. Firstly, the network gets four inputs to eliminate the temporal ambiguity,
which decreases its deblurring capability more or less. Secondly, the fitting ability of residual is
relatively poor when modeling a more severe blur. To address these issues, we further improve the
deblurring performance by introducing the second-order residual learning. Specifically, we refer the
Eq.(8) as first order residual, and derive the second-order residual learning as:

(L̂s
i , L̂

e
i ) = F2(Bi,F1(Bseq) +Bi) + F1(Bseq) +Bi, i = 1, 2. (9)

Here, the network F2 aims to synthesize higher order residual of the target mapping. Since the
temporal order of L̂s

i and L̂e
i has been initially determined by function F1, F2 can focus on restoring

a pair of key-states. In experiments, this structure could improve the PSNR by around 1.5 dB.

4 Experiments

In this section, we introduce the datasets we used for training and test, and the training configuration of
our models. Then we compare the proposed framework with state-of-the-art methods both quantitative
and qualitative. Finally, we carry out an ablation study of our proposed components.

4.1 Datasets

To simulate the real-world situations and build datasets for more general video interpolation, we
synthesize low-frame-rate videos from the sharp high-frame-rate video sequence. Considering the
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video acquisition principle we discussed before, we average several consecutive frames taken by a
240fps camera to simulate one frame taken by a low-frame-rate camera. Similar to all the existing
blurry image/video datasets, such synthesis is feasible if the relative motion between camera and
object is not too large to produce the ’ghosting’ artifacts. Meanwhile, we discard several consecutive
frames to simulate the shutter closed time interval. In this way, we create videos filmed in different
exposure settings by altering the number of frames averaged and discarded. Specifically, we denote
the number of exposure frames as m, and the number of discarded frames as n, thus m+ n frames
constitute a shutter period. We set m+ n = 10 to down-sample the original 240 fps video to 24 fps,
which is a common FPS setting in our daily life. For fair comparisons, we set m as odd numbers
(m = 5, 7, 9), since most other methods request the middle frame as ground-truth.

We apply the synthetic rule on both GoPro dataset [19] and Adobe240 dataset [30], and name these
synthetic datasets as “dataset-m-n”. Finally we get “GoPro-5-5”, “GoPro-7-3”, “GoPro-9-1” and
“Adobe240-5-5”, “Adobe240-7-3”, “Adobe240-9-1” respectively. In addition, we also provide datasets
“GoPro-5-3” and “GoPro-7-1” to perform a fair comparison with [27] since it can only upsample the
video by multiple of 2. Noted that the other video interpolation datasets such as UCF101 [29] and
Vimeo-90k [35] are not applicable for our comparison, since they only provide sharp frame triplets.

4.2 Implementation details

To train the key-states restoration network, we first train the network F1 for 200 epochs and jointly
train the network F1 and F2 for another 200 epochs. To train the optical flow refinement network,
100 epochs are enough for convergence. We use Adam [15] solver for optimization, with β1 = 0.9,
β2 = 0.999 and ε = 10−8. The learning rate is set initially to 10−4, and linearly decayed to 0. All
weights are initialized using Xavier [8], and bias is initialized to 0. In total, we have 34.4 million
parameters for training. In test phase, it takes 0.23s and 0.18s to run a single forward for key-states
restoration network and interpolation network respectively via a NVIDIA GeForce GTX 1080 Ti
graphic card.

4.3 Comparison with the state-of-the-art methods

Comparison methods. We employ two types of interpolation solution as our comparisons. The first
one is the cascade model, which concatenates a deblurring model with a video frame interpolation
model. Specifically, we combine the state-of-the-art image/video deblurring methods Gao et al.[7]
and EDVR [32] with the state-of-the-art multi-frame interpolation methods QVI [34] and Super
SloMo [12]. We follow the implementation of their official released code in all the experiments.

The other is the joint model of TNTT and BIN proposed by Jin et al. [13] and Shen et al. [27],
respectively. These methods jointly conduct deblurring and upsampling of frame rate. Since these
two methods are devised for specific exposure setting, we make some workarounds to carry out
a more fair and reasonable comparison. Since the original TNTT [13] model need to iteratively
interpolate the middle frame to fill the vacant indexes, we devise a specific interpolation sequence
for each exposure setting, namely TNTT*. In addition, since BIN [27] is devised to up-convert the
frame rate by 2 times, which shares the similiar function with our key-states restoration module, we
compare their initial results with our first stage outputs. For multi-frame interpolation results, we
iteratively interpolate the outputs of BIN and obtain the “8x frame rate” results. For this comparison,
we prepare the dataset “5-3” and “7-1” as two different exposure setting of 30 fps video. We re-train
and test the BIN model using the mixed datasets “5-3” and “7-1”. Yet, our model is only trained on
the mix datasets of “5-5”, “7-3” and “9-1”. Here, we also test our well-trained model on the “5-3”
and “7-1” settings, experiments in Table 3 shows the great generalization ability of our proposed
framework.

Blurry video interpolation. As shown in Table 1, Table 2 and Table 3, both our deblurring and
overall interpolation perform favorably against former methods. In addition, several important
observations can be made from these results. Firstly, in the deblurring phase, former video deblurring
methods encounter great difficulties in maintaining a promising performance in our datasets with
different exposure settings. For example, the original TNTT which is trained on “GoPro-9-1” performs
inferior in generalizing to other test sets. Moreover, even trained on our mixed datasets, the EDVR
deteriorates significantly from dataset “5-5” to datasets “7-3” and “9-1”. For the final interpolation
results, we can see that cascade models are sub-optimal for the overall performance. Although
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Table 1: Quantitative comparison on the GoPro datasets [19].

Method

Deblurring Interpolation

GoPro-5-5 GoPro-7-3 GoPro-9-1 GoPro-5-5 GoPro-7-3 GoPro-9-1

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

EDVR + SloMo 31.97 0.9448 29.60 0.9399 28.69 0.9225 27.74 0.9010 27.09 0.9013 26.71 0.8906
EDVR + QVI 28.57 0.9152 27.42 0.9132 27.21 0.9007
Gao [7] + SloMo 32.58 0.9647 32.64 0.9674 31.51 0.9586 28.22 0.9086 28.31 0.9101 27.97 0.9050
Gao [7] + QVI 29.13 0.9255 29.2 0.9263 28.5 0.9113

TNTT [13] 26.78 0.8934 28.4 0.9185 30.15 0.9383 25.29 0.8335 27.94 0.9052 30.29 0.9398

TNTT* 32.49 0.9660 31.45 0.9580 30.92 0.9526 28.39 0.8660 30.92 0.9486 30.82 0.9479

Ours 34.00 0.9758 32.63 0.9674 31.72 0.9597 32.47 0.9658 31.95 0.9628 30.95 0.9536

Table 2: Quantitative comparison on the Adobe240 datasets [30].

Method

Deblurring Interpolation

Adobe240-5-5 Adobe240-7-3 Adobe240-9-1 Adobe240-5-5 Adobe240-7-3 Adobe240-9-1

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

EDVR + SloMo 31.97 0.9478 29.96 0.9254 28.49 0.9051 28.82 0.9204 27.85 0.9043 27.02 0.8885
EDVR + QVI 29.5 0.9291 28.36 0.9111 27.42 0.8937
Gao [7] + SloMo 29.39 0.9297 28.98 0.9246 28.45 0.9182 27.51 0.9057 27.35 0.9038 27.15 0.9008
Gao [7] + QVI 27.95 0.9142 27.77 0.9118 27.53 0.9080

TNTT [13] 28.75 0.9277 30.85 0.9381 29.01 0.9222 26.76 0.8831 29.10 0.9207 28.23 0.9148

TNTT* 32.55 0.9574 31.76 0.9529 30.91 0.9438 28.94 0.8836 31.43 0.9477 30.48 0.9418

Ours 34.63 0.9701 33.06 0.9617 32.21 0.9562 31.79 0.9565 31.52 0.9529 30.66 0.9458

the deblurring module achieve a high score in PSNR, there is about 3 dB loss in the following
interpolation stage. This may be mainly caused by the long temporal scope between two consecutive
input frames. Similar conclusion is also obtained in work of [13, 27]. On the contrary, the joint
models usually can achieve a more accurate interpolation results. However, we observe that the
interpolation performance of TNTT/TNTT* deteriorates heavily in the exposure setting “5-5” (from
32.49 to 28.39 for GoPro dataset). This is mainly because of the iterative synthesis of the middle
frame may lead to sub-optimal results in the inter-frame interpolation. Same conclusion can be
obtained from Table 3, the BIN model performs inferior when they attempt to further interpolate the
middle frame between former outputs.

To intuitively visualize the comparison, we show two typical examples in Fig. 3. The first row shows
that former methods fail in generating a visually clear intermediate frame. This is either because they
fail in restoring a sharp frame in deblurring phase, e.g. EDVR [32] and TNTT [13], or the frame
becomes blurry when interpolated from adjacent frames, e.g. Gao [7]+QVI [34], or BIN [27]. In the
second row, we use Sobel operator [28] to extract the contour of interpolated results and overlap it
with the contour of ground truth. Red line represents ground-truth contour and blue one means the
synthesized outputs. The pinker and clearer overlapped image means a more accurate interpolation
result. As we can see, our interpolated frame shows a best overlapped result with ground-truth image.

Moreover, we shot 10 real 30 FPS videos using a telephone camera, and generate the interpolated
high-frame-rate video results with our method, as well as TNTT and BIN. Since there is no objective
criterion to compare the generation quality, a user study is conducted for a fair comparison. According
to more than 1k response collected from Amazon Mechanical Turk, there are 78.4% of people think
our results are better than TNTT’s, and 87.6% of people prefer ours over BIN’s results. The real
world video interpolation results are provided in our supplementary video.

Uncertain time interval interpolation (sharp frames). To futher validate the effectiveness of
our proposed uncertain time interval interpolation algorithm. We compare different interpolation
strategies when calculating the essential flow S1t. To construct the videos with different time interval
ratios, we sample the original high-frame-rate GoPro dataset with a different sample interval, e.g.
to sequentially sample one frame with intervals of 6 frames and 2 frames to achieve the dataset
of λ = 7/3. We compare our uncertain time interval algorithm (Model UTI) and refined version
(Model UTI-refine) with original QVI [34] model, which is derived under λ = 1. We also provide
a model GT as the optical flow calculated with ground-truth λ. Table 4 shows that our UTI and
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Blurry frame EDVR+S.S. EDVR+QVI Gao [7]+S.S. Gao [7]+QVI TNTT TNTT* BIN Ours

Figure 3: Visual comparisons on the GoPro dataset. Each row is an example of the interpolated
results from the given blurry frames. S.S. is short for Super slomo [12]. The first row shows the
original outputs. The second row is the overlap results of the interpolated frame and the ground truth.
We extract the contour of each image for a better visual comparison. The red line denotes the contour
of ground truth, and the blue line is the outputs of algorithms. The pinker and clearer overlapped
image indicates the more accurate interpolation result.

Table 3: Quantitative comparison with BIN [27] on both GoPro and Adobe240 datasets.

Method
GoPro-5-3 GoPro-7-1 Adobe240-5-3 Adobe240-7-1

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

2x frame rate BIN 33.4 0.9649 32.91 0.9675 31.35 0.9427 29.91 0.9274
Ours 33.98 0.9771 32.96 0.9707 33.18 0.9636 32.65 0.9606

8x frame rate BIN 30.81 0.9553 29.14 0.9358 30.48 0.9402 29.33 9.9244
Ours 33.21 0.9733 32.3 0.9667 32.33 0.9611 31.85 0.9569

UTI-refine performs favorably to QVI model except the situation when λ = 5/5, which is owning to
the optical flow estimation error in S23. However, we can see the performance of QVI deteriorates
more severe than ours when the value of λ deviates from 1. Also, the results show that our refine
network significantly improves the performance.

4.4 Ablation study

To see the effectiveness of our designed modules, we perform the following extensive experiments.

For the key-state restoration phase, we compare the model using different structure/input frames with
the proposed model.

As we can see in Table 5, compared to the first-order residual, the model with second-order residual
can increase the PSNR by around 1.5 dB. Also, the model simply cascades another stage-I’s architec-
ture, i.e. without B1, B2 as input, performs inferior to our proposed structure, suggesting the original
blurry information is essential for the second-order residual learning. Both the ablation experiments
show that our second-order residual is effective in refining the output of the first stage.

For the interpolation phase, we already analyzed the contribution of uncertain time interval inter-
polation in Table 4. Here, we evaluate the contribution of the flow refinement module. We fix the
key-state restoration network and compare the interpolation outputs of the model with refinement

Table 4: Comparison of different interpolation strategies for uncertain time interval videos.

Model
λ = 5/5 λ = 7/3 λ = 9/1

PSNR SSIM PSNR SSIM PSNR SSIM

QVI (λ = 1) 34.68 0.9820 32.35 0.9647 29.17 0.9239

UTI 33.22 0.9691 32.65 0.9646 29.75 0.9426

UTI-refine 34.37 0.9801 33.56 0.9739 30.57 0.9513

GT 34.68 0.9820 34.15 0.9787 31.34 0.9621
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Table 5: Ablation study for key-state restoration and flow refinement.

Model
GoPro-5-5 GoPro-7-3 GoPro-9-1

PSNR SSIM PSNR SSIM PSNR SSIM

Deblurring

FR 32.39 0.9653 31.15 0.9547 30.38 0.9460
cascade stage-I 32.49 0.9644 31.41 0.9555 30.76 0.9484
Input 2 frames 33.07 0.9700 31.83 0.9620 30.74 0.9514

Proposed 34.00 0.9758 32.63 0.9674 31.72 0.9597

Interpolation w/o Refine 31.82 0.9586 31.34 0.9554 30.3 0.9434
Refine 32.47 0.9658 31.95 0.9628 30.95 0.9536

(Model refine) and the model without refinement (Model w/o refine). As shown in Table 5, the model
with refinement outperforms the model without refinement by around 0.6 dB. This improvement
indicates that the Ŝ23 becomes more accurate after refinement.

5 Conclusion

In this work, we propose a method to tackle the video frame interpolation problem without knowing
temporal priors. Taken the relationship of exposure time and shutter period into consideration, we
derive a general quadratic interpolation strategy without temporal prior. We also devise a key-states
restoration network to extract the temporal unambiguous sharp content from blurry frames. Our
proposed method is practical to synthesize a high-frame-rate sharp video from low-frame-rate blurry
videos with different exposure settings. However, there is still limitation in our work, e.g., our
uncertain time interval motion trajectory can only be derived when the acceleration remain constant.
Though this assumption can approximate most situations in a short exposure time interval (around
1/20 s), the more challenging movement like variable acceleration motion is existing in the real
scenario. We hope to relax this assumption and to have a more accurate trajectory estimation in our
future works.

Broader Impact

Video frame interpolation (VFI), which aims to overcome the temporal limitation of camera sensors,
is a popular and important technology in a wide range of video processing tasks. For example, it
could produce slow-motion videos without professional high-speed cameras, and it could perform
the frame rate up-conversion (or video restoration) for archival footage. However, existing VFI
researches can mainly apply to videos with pre-defined temporal priors, such as sharp video frames
or blurry videos with known exposure settings. It may largely limit their performance in complicated
real-world situations. To our best knowledge, the video frame interpolation framework we introduced
in this paper made the first attempt to overcome these limitations.

Our proposed technique may potentially benefit a series of real-world applications and users. On
the one hand, it could be more practical and convenient for users who want to convert their own
videos to slow-motion, since they are not required to figure out the video sources, i.e. the complicated
parameters of camera sensors. On the other hand, it could reduce the workload of VFI-related
applications, i.e. it would not need to retrain new models for different exposure settings.

Since the video frame interpolation aims at video restoration and up-conversion (i.e. the output video
shares the same content as the given video), our method may not cause negative ethical impact, if we
do not discuss the content of the input video.
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