
A Proof of Soft Medoid breakdown point

Due to the extent of the proofs, we structure this section into three subsections. We start with a
discussion of some preliminaries for the proofs. In § A.2, we build upon Lopuhaä and Rousseeuw
[39]’s work to prove Lemma 1. In § A.3, we prove Theorem 1.

A.1 Preliminaries

For this section, let X̃✏ be decomposable such that X̃✏ = X̃ (clean)
✏ [ X̃ (pert.)

✏ . Which is obtained from
X = {x1, . . . ,xn}, a collection of points in Rd, by replacing up to m points. The adversary can
replace m arbitrary points. For a concise notation we simply write that we replace the first m values,
but the points come with an arbitrary order beforehand.

Note that our analysis is easily extendable to two further possible definitions of X̃✏: (a) the adversary
adds a perturbation to the original values X̃✏ = {x1, . . . ,xm, x̃m+1, . . . , x̃n} = {x1+p1, . . . ,xm+
pm,xm+1, . . . ,xn} (b) the adversary adds m perturbed samples to the dataset of n clean samples.
In case (a), just some values during the derivation change, but the results are essentially the same. For
case (b), the number of samples is no longer n. Instead we have m+ n samples and need to adjust
the equations accordingly. In this case the estimator is not broken down if m < n.

Recall that the Soft Medoid is orthogonal equivariant due to the Euclidean distance, i.e. tSM(QX+
v) = Q tSM(X) + v, with the orthogonal matrix Q and the translation vector v 2 Rd. Lopuhaä and
Rousseeuw [39] proved for their Lemma 2.1 that a orthogonal equivariant location estimator t(X)
has the same breakdown point, regardless of how the clean data points were rotated and/or translated,
i.e. ✏⇤(t,AX+ v) = ✏⇤(t,X). For any nonsingular orthogonal matrix A and translation vector v.
This is a very powerful statement and allows us to simplify our setup significantly. We may transform
the clean datapoints such that tSM(X) = 0 and rotate them arbitrarily.

Croux et al. [16] derived a formula for the maxbias curve with Gaussian samples of an L1 estimator
and pointed out that the worst case perturbation is a point mass. To sketch why this must also hold
for the Soft Medoid, we analyze the ratio of the softmax output of a perturbed sample ŝi over the
softmax output of a clean sample ŝh:

ŝi
ŝh

=

exp

(
� 1

T

" ↵1z }| {X

q2X̃ (pert.)
✏

kx̃q � x̃ik+

↵2z }| {X

o2X̃ (clean)
✏

kxo � x̃ik
#)

exp

(
� 1

T

"
X

q2X̃ (pert.)
✏

kx̃q � xhk

| {z }
↵3

+
X

o2X̃ (clean)
✏

kxo � xhk

| {z }
↵4

#) (10)

We see that we have four competing terms:

• ↵1 reflects some notion of variance of the perturbed samples (sum of distances from x̃i to
all other X̃ (pert.)

✏ )
• ↵2 is the sum of distances from the perturbed sample x̃i to all clean samples
• ↵3 is the sum of distances from the clean sample xh to all perturbed samples
• ↵4 reflects some notion of variance of the clean samples (sum of distances from xh to all

other X̃ (clean)
✏ )

Note that if our goal was to maximize the influence of a perturbed samples, we would need to
minimize ↵1 and ↵2. Analogously, we need would need to maximize ↵3 and ↵4.

Hence, the bias benefits from a low variance of the perturbed samples ↵1 and high variance of the
clean samples ↵4. The variance of the clean samples is something we typically cannot influence. ↵1

clearly shows that the perturbed samples do not deviate in any way that does not help to maximize
ŝi/̂sh. We even obtain the smallest possible value ↵1 = 0, iff all perturbed samples coincide in one
point. Moreover, ↵2 and ↵3 have a somewhat opposing objective. We can minimize ↵2, by locating
the perturbed sample x̃i close to the clean samples. However, in this case, the clean estimate cannot
be perturbed much.

14



Based on all these considerations, it is clear that it does not make sense that we have e.g. two groups
of perturbed data points moving in opposite directions. For a worst case analysis regarding perturbing
the estimate towards infinity, we also must move all perturbed data points towards infinity. Hence,
we can simply model the worst-case perturbation as a point mass. Further, due to the orthogonal
equivariance, we may assume w.l.o.g, for example, that the perturbation is located on the first axis
since we can arbitrarily rotate the data beforehand. Additionally to the consideration of the location,
for a perturbation approaching infinity, we are going to see that the solution is not depending on the
absolute coordinates of the clean data points X
For solving several limits throughout our proofs, we make use of the following limit laws:

• Law of addition: limx!a [f(x) + g(x)] = limx!a f(x) + limx!a g(x)

• Law of multiplication: limx!a [f(x)g(x)] = (limx!a f(x)) (limx!a g(x))

• Law of division: limx!a
f(x)/g(x) = limx!a f(x)/limx!a g(x) (if limx!a g(x) 6= 0)

• Power law: limx!a [f(x)]
b = [limx!a f(x)]

b

• Composition law: limx!a f(g(x)) = f(limx!a g(x)) (if f(x) is continuous)

Further, note that a limit of a vector-valued function is evaluated element-wise. With limx!1 f(x)
we denote the limit towards positive infinity x ! +1.

A.2 Proof of Lemma 1

Proof Lemma 1: Let X = {x1, . . . ,xn} be the n clean data points. An adversary may replace an ✏-
fraction (✏ = m/n) and we denote the resulting set as X̃✏ = X̃ (clean)

✏ [X̃ (pert.)
✏ . X̃ (pert.)

✏ = {x̃1, . . . , x̃m}
are the m replaced points and X̃ (clean)

✏ ⇢ X the n�m remaining original data points. To ensure that
✏ < 0.5, we may replace up to m = bn�1/2c data points. Note that until Eq. 13, this proof is closely
aligned to the ideas of Lopuhaä and Rousseeuw [39].

We define M = maxxi2X kxik and the ball B(0, 2M) with its center in the origin and radius 2M .
Moreover, we define the buffer b = infv2B(0,2M)  kt(X̃✏)� vk. b denotes the minimum distance
between t(X̃✏) and B(0, 2M) and from its definition kt(X̃✏)k  b+2M follows. As a consequence
for all m perturbed data points x̃q 2 X̃ (pert.)

✏ we have

kx̃q � t(X̃✏)k � kx̃qk � kt(X̃✏)k � kx̃qk � (b+ 2M) (11)

Suppose that t(X̃✏) and B(0, 2M) are far from each other, i.e. b > 2Mm. This definition seems to
be arbitrary right now, but we are going to encounter exactly this term in Eq. 13 and this assumption
will lead to a contradiction if the condition of Lemma 1 is satisfied. It is important to introduce this
assumption right now, that we have for xo 2 X̃ (clean)

✏ :

kxc � t(X̃✏)k � M + b � kxok+ b (12)

We now add Eq. 11 and Eq. 12 for all q and o:

X

x̃j2X̃✏

kx̃j � t(X̃✏)k �

0

B@
X

x̃q2X̃ (pert.)
✏

kx̃qk � (b+ 2M)

1

CA+

0

@
X

xo2X̃ (clean)
✏

kxok+ b

1

A

�

0

B@
X

x̃q2X̃ (pert.)
✏

kx̃qk

1

CA�mb� 2Mm+

0

@
X

xo2X̃ (clean)
✏

kxok

1

A+ (n�m)b

�

0

@
X

x̃i2X̃✏

kx̃k

1

A+ b� 2Mm| {z }
>0

(assumption)

>
X

x̃i2X̃✏

kx̃k

(13)

15



Note that n � 2m = n � 2bn�1/2c � 1. More precisely, if n is odd then n � 2m = 1, and if n is
even then n� 2m = 2.

Consequently, if we can show that
X

x̃i2X̃✏

kx̃i � t(X̃✏)k 
X

x̃i2X̃✏

kx̃k , (14)

or equivalently
P

x̃i2X̃✏
kx̃� t(X̃✏)kP

x̃i2X̃✏
kx̃k  1 , (15)

we have a contradiction and, hence, b > 2Mm cannot be true. Similarly to [39], this leads us
to the worst case guarantee of supX̃✏

kt(X̃✏) � t(X)k  2M(m + 1) = 2bn+1/2cM  (n +
1)maxxi2X kxik. Please acknowledge that this rather loose guarantee holds for asymptotically
✏ = 0.5. This is the very worst case for which we can obtain a guarantee at all.

In the last step towards Lemma 1 (Eq. 16 and Eq. 17), we analyze the case of a point mass perturbation
on the first axis such that X̃✏ = {x̃1, . . . , x̃m, xm+1, . . . ,xn} be the perturbed collection of points,
with m = b(n�1)/2c perturbed points x̃i = [p 0 · · · 0]>, 8i 2 {1, . . . ,m}.

The nature of the breakdown point definition (see Eq. 4 in main part) requires us to show that the
location estimate can approach infinity, once it has broken down. Hence, the factors need to grow
indefinitely, which they only can if the perturbation p approaches infinity. We are now going to
analyze the resulting left side of Eq. 15:

lim
p!1

P
x̃i2X̃✏

kx̃� t(X̃✏)kP
x̃i2X̃✏

kx̃k

= lim
p!1

P
x̃q2X̃ (pert.)

✏
kx̃q � t(X̃✏)k+

P
xo2X̃ (clean)

✏
kxo � t(X̃✏)k

P
x̃q2X̃ (pert.)

✏
kx̃qk+

P
xo2X̃ (clean)

✏
kxok

= lim
p!1

1
p

1
p

P
x̃q2X̃ (pert.)

✏
kx̃q � t(X̃✏)k+

P
xo2X̃ (clean)

✏
kxo � t(X̃✏)k

P
x̃q2X̃ (pert.)

✏
kx̃qk+

P
xo2X̃ (clean)

✏
kxok

= lim
p!1

P
x̃q2X̃ (pert.)

✏
k x̃q�t(X̃✏)

p
k+

P
xo2X̃ (clean)

✏
kxo�t(X̃✏)

p
k

P
x̃q2X̃ (pert.)

✏
k x̃q

p
k+

P
xo2X̃ (clean)

✏
kxo

p
k

=

P
x̃q2X̃ (pert.)

✏
limp!1 k x̃q�t(X̃✏)

p
k+

P
xo2X̃ (clean)

✏
limp!1 kxo�t(X̃✏)

p
k

P
x̃q2X̃ (pert.)

✏
limp!1 k x̃q

p
k+

P
xo2X̃ (clean)

✏
limp!1 kxo

p
k

=

P

x̃q2X̃ (pert.)
✏

limp!1

s⇣
p�t(X̃✏)1

p

⌘2
+

dP
c=2

⇣
t(X̃✏)c

p

⌘2
+

P

xo2X̃ (clean)
✏

limp!1

s
dP

c=1

⇣
xo,c�t(X̃✏)c

p

⌘2

P

x̃q2X̃ (pert.)
✏

1

=

P

x̃q2X̃ (pert.)
✏

s⇣
1� limp!1

t(X̃✏)1
p

⌘2
+

dP
c=2

⇣
limp!1

t(X̃✏)c
p

⌘2
+

P

xo2X̃ (clean)
✏

s
dP

c=1

⇣
limp!1

t(X̃✏)c
p

⌘2

|X̃ (pert.)
✏ |

(16)

Since t(X̃✏) is a vector-valued function, we denote its c-th component with t(X̃✏) and, similarly, xo,c

stands for the c-th component of vector xo. Strictly speaking, the condition of Lemma 1 is not the
only way to satisfy that Eq. 16 is  1. In the following, we focus on the most relevant case, though.

16



If limp!1 t(X̃✏)/p = 0, Eq. 16 is  1:

lim
p!1

P

x̃i2X̃✏

kx̃� t(X̃✏)k
P

x̃i2X̃✏

kx̃k =

P

x̃q2X̃ (pert.)
✏

s

(1� 0)2 +
dP

c=2
(0)2 +

P

xo2X̃ (clean)
✏

s
dP

c=1
(0)2

|X̃ (pert.)
✏ |

=
|X̃ (pert.)

✏ |
|X̃ (pert.)

✏ |
 1

(17)
Hence, the proof and Lemma 1 follows. ⇤

A.3 Breakdown point of the Soft Medoid

Proof Theorem 1: Following up on Lemma 1, we need to show that limp!1 tSM(X̃✏)/p =
limp!1 1/p ŝ>X̃✏ = 0. We can expand the limit of the vector-matrix multiplication 1/p ŝ>X̃✏

for its c-th component as (the result is going to be a vector):
 

lim
p!1

ŝ>X̃✏

p

!

c

= lim
p!1

nX

i=1

ŝix̃i,c

p
=

nX

i=1

✓
lim
p!1

ŝi

◆✓
lim
p!1

1

p
x̃i,c

◆
(18)

From Eq. 18 it is clear that we can take the element-wise limit of limp!1 ŝ> and limp!1 1/p X̃✏,
before the vector-matrix multiplication. The result is simply a sum of products of one element from
the vector s and one of the matrix 1/p X̃✏. Hence, we are going to analyze limp!1 1/p ŝ>X̃✏ =
�
limp!1 ŝ>

� ⇣
limp!1 1/p X̃✏

⌘
.

First, we analyze limp!1 X̃✏/p, i.e. the data matrix X̃✏ multiplied by the scalar factor of 1/p:

lim
p!1

X̃✏

p
= lim

p!1

1

p

2

66666664

p 0 · · · 0
...

...
...

p 0 · · · 0
xm+1,1 xm+1,2 · · · xm+1,d

...
...

...
xn,1 xn,2 · · · xn,d

3

77777775

=

2

66666664

1 0 · · · 0
...

...
...

1 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0

3

77777775

(19)

Second, since all weights in Eq. 19 are zero, but for the first component of the perturbed samples, we
solely need to show that the softmax of the perturbed samples is 0, i.e. ŝq = 0 for any q 2 X̃ (pert.)

✏ . It
is possible to show this directly. However, we go a different path to keep this proof brief. That is,
analogously to the proof sketch of § 3, the fraction of the softmax output of a perturbed sample ŝq
over the softmax output of a clean sample ŝc = 0 (for c 2 X̃ (clean)

✏ ) for p ! 1:

lim
p!1

ŝq
ŝo

= lim
p!1

exp
n
� 1

T

P
x̃j2X̃✏

kx̃j � x̃qk
o

exp
n
� 1

T

P
x̃j2X̃✏

kx̃j � xok
o

= lim
p!1

1

exp
n
� 1

T

P
xi2X̃ (clean)

✏
kxi � xok

o

| {z }
�

exp
n
� 1

T

P
x̃i2X̃ (clean)

✏
kxj � x̃qk

o

exp
n
� 1

T

P
x̃i2X̃ (pert.)

✏
kx̃j � xok

o

= � lim
p!1

exp
n
� 1

T

P
x̃i2X̃ (clean)

✏
kxj � x̃qk

o

exp
n
� 1

T

P
x̃i2X̃ (pert.)

✏
kx̃j � xok

o

= � exp

8
<

:� 1

T

2

4
X

x̃i2X̃ (clean)
✏

lim
p!1

kxj � x̃qk �
X

x̃i2X̃ (pert.)
✏

lim
p!1

kx̃j � xok

3

5

9
=

;

(20)

17



lim
p!1

ŝq
ŝo

= � exp

(
� 1

T

P
x̃i2X̃ (clean)

✏
limp!1 kxj�x̃q

p
k �

P
x̃i2X̃ (pert.)

✏
limp!1 k x̃j�xo

p
k

limp!1
1
p

)

= � exp

(
� 1

T

P
x̃i2X̃ (clean)

✏
1�

P
x̃i2X̃ (pert.)

✏
1

1
1

)

= � exp

8
>>><

>>>:
� 1

T

>0z }| {
|X̃ (clean)

✏
|� |X̃ (pert.)

✏
|

1
1

9
>>>=

>>>;

= � exp {�1}
= 0

(21)

Due to the range of the softmax ŝi 2 [0, 1], 8i 2 {1, . . . , n}, a division by 1 in ŝq/̂so is not possible.
It follows that ŝq/̂so = 0 iff the numerator ŝq = 0. Consequently, ŝq = 0, 8q 2 X̃ (pert.)

✏ holds. This
means that the weights for the perturbed samples approaches zero if p ! 1.

In conclusion, the location estimate cannot approach infinity as long as the clean data points are finite
and |X̃ (clean)

✏ | > |X̃ (pert.)
✏ |, independent of the choice of T 2 [0,1). ⇤

A.4 Robustness of the Weighted Soft Medoid

While the Weighted Soft Medoid’s breakdown point holds for any positive weight vector, we present
here quickly the results for the case of rational weights. In the context of a computer program, this
is true anyways for numbers represented with finite precision. We only need to find the greatest
common divisor of the weight vector gcd(a) = gcd([a1 . . . an]).

Proof weighted version of Theorem 1: We can transform X̃✏ = {x̃1, . . . , x̃m,xm+1, . . . ,xn} with
the according weight vector a = [a1 . . . an] to its unweighted equivalent by this simple procedure:
(1) we calculate aj/gcd(a) = wj , j8{1, . . . , n} and (2) we duplicate x̃j exactly wj times and collect
the results in the multiset X̃✏. Thereafter, we simply apply the unweighted Soft Medoid on the
multiset X̃✏. It is apparent, that as long as

mX

q=1

aq <
nX

o=m+1

ao (22)

holds, there are less perturbed examples than clean examples in X̃✏ and, hence, the estimator cannot
be broken down. ⇤
Note that the normalization etc. in Eq. 6 (§ 4) does not affect the breakdown point of the estimator.
In Eq. 21, we show that the softmax weights for the perturbed samples approaches zero if p ! 1.
These zero weights are still zero after the normalization; hence, the normalization does not influence
the breakdown point.

18



B Detailed experimental results

In this section, we present further and more detailed experimental results. We start with the dataset
statistics in § B.1. Thereafter, in § B.2, we describe the setup regarding randomized smoothing in
more detail. § B.4 summarizes the complete results of our experiments. In § B.5, we discuss the
trade-off between robustness w.r.t. structural and attribute robustness. We conclude this section with
further plots of the certification ratio over different radii.

B.1 Dataset statistics

For our experiments we use the largest connected component of the very common datasets summarized
in Table 3. In these citation graphs, the nodes of the graph represent publications and the edges
citations. The node features are the one-hot encoding of the bag of words of the respective abstract.
The classes of the semi-supervised prediction task represent different categories of the publications.

Table 3: Statistics of the largest connected component of the used datasets.
#Nodes n #Edges e #Features d

Cora ML [4] 2,810 15,962 2,879
Citeseer [41] 2,110 7,336 3,703
PubMed [47] 19,717 88,648 500

B.2 Randomized Smoothing

In randomized smoothing, a deterministic or random base classifier f : X ! Y , that is a function
from Rd to the classes in Y , is extended to a smoothed classifier such that:

g(x) = argmax
c2Y

P(f(�(x)) = c) (23)

Where �(x) denotes some randomization around x. In the general case, there is not much hope to
obtain the ensemble in closed form solution. Hence, in a Monte Carlo sampling setting, f(�(x)) is
invoked multiple times. Then, the classification of the smooth ensemble is obtained via a majority
vote among the different random inputs and the relative frequencies reflect class probabilities. Cohen
et al. [14] showed that for Gaussian noise one can obtain the certifiable L2-ball radius depending on
the difference between the most likely pA and second most likely class pB . A certification of a radius
r according to the L2-ball means that with high probability (1� ↵smoothing) the most likely class of
the smooth classifier does not change if the perturbation of the input � is less or equal to the certified
radius: k�k  r. To certify a large radius, we need (a) large difference pA � pB , (b) a strong noise
(e.g. high variance), and/or (c) many Monte Carlos samples of f(�(x)).

However, this definition of a certifiable radius does not reflect if the prediction was correct in the
first place. Similarly to Cohen et al. [14], it makes sense to introduce a metric that combines
correct prediction and certifiable robustness. This is why we report this conjunction throughout our
experiments (see § 5.1).

For the graph structure, we do have to deal with discrete values. Thus, applying Gaussian noise, as
in [14], is not a good choice. Bojchevski et al. [7] extended the framework of randomized smoothing
to discrete variables in such a way that it is suitable for GNNs—considering the sparsity. For this
purpose, they use a independent Bernoulli random variables that depend on the original data as
randomization scheme �(x) and distinguish between a probability for deleting a binary feature or
edge p�, as well as for adding a binary feature or edge p+. Lastly, we can obtain certificates at
different radii for deletion rd and addition ra on the L0-ball. Note that for real-world graphs we have
much fewer edges than the nodes squared, which results in a sparse adjacency matrix A (most of the
values are zero). If we used the same probability for adding and deleting edges, we would just delete
a few edges but add comparatively many edges.

Cohen et al. [14] argue that only a base classifier that is robust against the small perturbations �(x)
can result in a certifiably robust smooth classifier. This is why we expect a base classifier that can
be certified at a high radius to be more robust. For the smoothing we use the addition probability
p+ = 0.001 and deletion probability p� = 0.4, as suggested by [7]. To obtain the certificates, we
use a significance level of ↵smoothing = 0.05 and perform 10,000 forward passes.

19



B.3 Empirical robustness

Table 4: Targeted attack in the same setup as the
evasion Nettack attack [61]. We report the average
margin and the failure rate of the attack (higher is
better).

Nettack

Margin Fail. r.

C
or

a
M

L
[4

]

Vanilla GCN -0.41 ± 0.05 0.18 ± 0.06
Vanilla GDC -0.48 ± 0.12 0.15 ± 0.10
SVD GCN 0.21 ± 0.06 0.64 ± 0.05

Jaccard GCN -0.46 ± 0.13 0.26 ± 0.07
RGCN 0.00 ± 0.01 0.35 ± 0.01
SM GDC (T = 1.0) 0.09 ± 0.03 0.54 ± 0.02
SM GDC (T = 0.5) 0.11 ± 0.07 0.53 ± 0.08
SM GDC (T = 0.2) 0.24 ± 0.06 0.62 ± 0.04

C
ite

se
er

[4
1]

Vanilla GCN -0.56 ± 0.04 0.03 ± 0.00
Vanilla GDC -0.51 ± 0.02 0.05 ± 0.02
SVD GCN -0.00 ± 0.11 0.51 ± 0.09
Jaccard GCN -0.43 ± 0.07 0.17 ± 0.07
RGCN -0.05 ± 0.03 0.41 ± 0.02
SM GDC (T = 1.0) -0.08 ± 0.04 0.36 ± 0.04
SM GDC (T = 0.5) 0.10 ± 0.07 0.51 ± 0.07
SM GDC (T = 0.2) 0.31 ± 0.04 0.65 ± 0.05

For the empirical robustness (see § 5.3), we use
a surrogate GCN to perform the respective at-
tack and adapt the adjacency matrix. We train
the other models on the clean graph and only use
the perturbed adjacency matrix for the predic-
tion (evasion attack). Using the surrogate GCN
comes with the main benefit that we do not eval-
uate how well a model might “obfuscate” the
gradient towards the adjacency matrix. More-
over, every model has to face exactly the same
changed edges.

In Fig. 7 we present the results on Citeseer in ad-
dition to Fig. 4 of the main part. We see that our
Soft Medoid outperforms the other approaches
significantly for strong perturbations. In Table 4
we present the results on Nettack, where we out-
perform the other approaches as well. SVD
GCN is the only exception and performs on
par with our Soft Medoid GDC. Note that SVD
GCN is specifically designed for Nettack. Last,
Table 5 complements Fig. 4 and Fig. 7 with se-
lected numerical results including the standard error of the mean. Furthermore, the last two columns
contain the results on the poisoning attack Metattack [59]. In conclusion, we see that our Soft Medoid
GDC performs decently over a wide range of attacks. Having the results on certifiable robustness in
mind (see § 5.4), this comes at no surprise since certifiable robustness is an attack-agnostic measure
of robustness.

0.0 0.1 0.2

Frac. of changed edges

0.60

0.65

0.70

A
cc

ur
ac

y

(a) Dice

0.0 0.1 0.2

Frac. of changed edges

0.55

0.60

0.65

0.70

(b) FGSM

0.0 0.1 0.2

Frac. of changed edges

0.50

0.55

0.60

0.65

0.70

(c) PGD

Soft Medoid
GDC (T = 1.0)
Soft Medoid
GDC (T = 0.5)
Soft Medoid
GDC (T = 0.2)
Vanilla GCN
Vanilla GDC
SVD GCN
Jaccard GCN
RGCN

Figure 7: Accuracy for evasion (transfer) attacks on Citeseer.

Table 5: Perturbed accuracy for the global attacks on Cora ML and Citeseer. Here ✏ denotes the
fraction of edges perturbed (relative to the clean graph).

Attack Dice FGSM PGD Metattack
Frac. pert. edges ✏ 0.10 0.25 0.10 0.25 0.10 0.25 0.10 0.25

C
or

a
M

L
[4

]

Vanilla GCN 0.812 ± 0.003 0.785 ± 0.004 0.732 ± 0.005 0.655 ± 0.003 0.724 ± 0.006 0.619 ± 0.006 0.555 ± 0.022 0.383 ± 0.012
Vanilla GDC 0.811 ± 0.003 0.789 ± 0.001 0.733 ± 0.004 0.657 ± 0.003 0.725 ± 0.004 0.624 ± 0.007 0.547 ± 0.021 0.342 ± 0.012
SVD GCN 0.749 ± 0.008 0.710 ± 0.008 0.750 ± 0.007 0.677 ± 0.005 0.736 ± 0.009 0.641 ± 0.007 0.699 ± 0.021 0.496 ± 0.011

Jaccard GCN 0.801 ± 0.002 0.777 ± 0.004 0.733 ± 0.002 0.662 ± 0.001 0.722 ± 0.003 0.626 ± 0.005 0.584 ± 0.023 0.415 ± 0.007
RGCN 0.782 ± 0.000 0.752 ± 0.002 0.721 ± 0.002 0.647 ± 0.004 0.712 ± 0.006 0.613 ± 0.006 0.591 ± 0.028 0.359 ± 0.012
SM GDC (T = 1.0) 0.818 ± 0.005 0.801 ± 0.003 0.743 ± 0.001 0.679 ± 0.003 0.739 ± 0.002 0.656 ± 0.002 0.608 ± 0.028 0.433 ± 0.013
SM GDC (T = 0.5) 0.813 ± 0.003 0.796 ± 0.004 0.751 ± 0.001 0.693 ± 0.002 0.750 ± 0.003 0.680 ± 0.003 0.626 ± 0.024 0.459 ± 0.024
SM GDC (T = 0.2) 0.787 ± 0.002 0.777 ± 0.004 0.749 ± 0.000 0.702 ± 0.001 0.755 ± 0.002 0.719 ± 0.002 0.641 ± 0.026 0.474 ± 0.029

C
ite

se
er

[4
1]

Vanilla GCN 0.696 ± 0.016 0.678 ± 0.014 0.642 ± 0.014 0.570 ± 0.022 0.636 ± 0.009 0.556 ± 0.013 0.587 ± 0.021 0.439 ± 0.035
Vanilla GDC 0.686 ± 0.010 0.666 ± 0.009 0.635 ± 0.011 0.563 ± 0.022 0.622 ± 0.012 0.548 ± 0.017 0.598 ± 0.017 0.450 ± 0.024
SVD GCN 0.622 ± 0.016 0.582 ± 0.021 0.625 ± 0.016 0.566 ± 0.022 0.604 ± 0.015 0.545 ± 0.024 0.631 ± 0.019 0.531 ± 0.044

Jaccard GCN 0.700 ± 0.017 0.683 ± 0.015 0.659 ± 0.013 0.601 ± 0.016 0.654 ± 0.014 0.584 ± 0.012 0.620 ± 0.019 0.503 ± 0.035
RGCN 0.700 ± 0.013 0.675 ± 0.009 0.593 ± 0.030 0.536 ± 0.029 0.597 ± 0.028 0.530 ± 0.030 0.615 ± 0.014 0.500 ± 0.041
SM GDC (T = 1.0) 0.699 ± 0.012 0.686 ± 0.012 0.664 ± 0.009 0.606 ± 0.012 0.660 ± 0.005 0.603 ± 0.006 0.617 ± 0.004 0.502 ± 0.033
SM GDC (T = 0.5) 0.704 ± 0.011 0.694 ± 0.012 0.674 ± 0.009 0.631 ± 0.012 0.672 ± 0.009 0.636 ± 0.007 0.612 ± 0.006 0.506 ± 0.028
SM GDC (T = 0.2) 0.687 ± 0.017 0.679 ± 0.017 0.682 ± 0.013 0.649 ± 0.012 0.678 ± 0.015 0.656 ± 0.015 0.613 ± 0.004 0.512 ± 0.013

20



Table 6: Summary of accumulated certifications and accuracy for the different architectures on Cora
ML and Citeseer. We also report the accuracy of the base and smooth classifier (binary attr.).

Attr. Edges Accuracy (base) Accuracy (smooth)

A.&d. A.&d. Add Del.
C

or
a

M
L

[4
]

Vanilla GCN 5.73 ± 0.23 1.84 ± 0.01 0.21 ± 0.00 4.42 ± 0.01 0.823 ± 0.006 0.816 ± 0.006
Vanilla GDC 5.80 ± 0.06 1.98 ± 0.04 0.20 ± 0.00 4.33 ± 0.02 0.825 ± 0.007 0.824 ± 0.007
Vanilla APPNP 5.57 ± 0.04 3.37 ± 0.02 0.39 ± 0.01 4.61 ± 0.00 0.836 ± 0.008 0.837 ± 0.008

Vanilla GAT 5.83 ± 0.09 1.26 ± 0.09 0.07 ± 0.01 4.03 ± 0.07 0.804 ± 0.002 0.807 ± 0.004
SVD GCN 5.51 ± 0.14 0.84 ± 0.09 0.08 ± 0.02 2.39 ± 0.04 0.772 ± 0.008 0.772 ± 0.007
Jaccard GCN 5.59 ± 0.15 0.86 ± 0.10 0.01 ± 0.01 4.39 ± 0.00 0.777 ± 0.003 0.778 ± 0.003
RGCN 4.64 ± 0.07 1.46 ± 0.03 0.12 ± 0.01 3.99 ± 0.08 0.796 ± 0.007 0.802 ± 0.005
SM GCN (T = 50) 5.68 ± 0.05 1.86 ± 0.03 0.21 ± 0.00 4.44 ± 0.02 0.823 ± 0.003 0.825 ± 0.003
Dimmedian GDC 4.66 ± 0.05 2.38 ± 0.05 0.32 ± 0.01 4.61 ± 0.03 0.804 ± 0.002 0.805 ± 0.001
Medoid GDC 1.98 ± 0.07 4.05 ± 0.15 0.51 ± 0.02 4.62 ± 0.06 0.742 ± 0.008 0.756 ± 0.011
SM GDC (T = 1.0) 5.07 ± 0.46 4.31 ± 0.68 0.52 ± 0.09 4.71 ± 0.08 0.819 ± 0.008 0.822 ± 0.007
SM GDC (T = 0.5) 4.15 ± 0.67 5.07 ± 0.74 0.60 ± 0.08 4.80 ± 0.07 0.796 ± 0.010 0.803 ± 0.008
SM GDC (T = 0.2) 2.90 ± 0.95 5.60 ± 0.31 0.66 ± 0.04 4.91 ± 0.04 0.768 ± 0.033 0.775 ± 0.034
SM GDC† (T = 10) 7.15 ± 0.01 1.12 ± 0.06 0.10 ± 0.00 1.63 ± 0.01 0.811 ± 0.003 0.814 ± 0.002

C
ite

se
er

[4
1]

Vanilla GCN 4.43 ± 0.21 1.24 ± 0.10 0.11 ± 0.01 3.88 ± 0.17 0.712 ± 0.008 0.712 ± 0.009
Vanilla GDC 5.21 ± 0.22 1.13 ± 0.10 0.09 ± 0.01 3.85 ± 0.13 0.703 ± 0.007 0.701 ± 0.007
Vanilla APPNP 5.08 ± 0.04 2.21 ± 0.06 0.23 ± 0.01 4.16 ± 0.04 0.724 ± 0.005 0.723 ± 0.004
Vanilla GAT 3.60 ± 0.34 0.66 ± 0.13 0.02 ± 0.01 3.24 ± 0.48 0.652 ± 0.034 0.634 ± 0.044
SVD GCN 3.46 ± 0.13 0.52 ± 0.11 0.00 ± 0.00 2.12 ± 0.07 0.638 ± 0.015 0.634 ± 0.016
Jaccard GCN 3.09 ± 0.19 1.42 ± 0.10 0.04 ± 0.04 3.96 ± 0.14 0.711 ± 0.013 0.712 ± 0.012
RGCN 4.27 ± 0.18 1.12 ± 0.05 0.09 ± 0.01 3.89 ± 0.11 0.719 ± 0.012 0.718 ± 0.009
SM GCN (T = 50) 4.40 ± 0.26 1.25 ± 0.10 0.11 ± 0.01 3.90 ± 0.17 0.711 ± 0.012 0.710 ± 0.013
Dimmedian GDC 4.28 ± 0.14 1.42 ± 0.05 0.15 ± 0.01 3.92 ± 0.08 0.725 ± 0.012 0.725 ± 0.011

Medoid GDC 1.69 ± 0.13 2.41 ± 0.04 0.24 ± 0.01 3.97 ± 0.06 0.673 ± 0.012 0.689 ± 0.007
SM GDC (T = 1.0) 4.93 ± 0.24 2.67 ± 0.07 0.32 ± 0.02 4.12 ± 0.09 0.711 ± 0.010 0.712 ± 0.010
SM GDC (T = 0.5) 4.55 ± 0.16 3.62 ± 0.19 0.48 ± 0.03 4.22 ± 0.12 0.709 ± 0.010 0.716 ± 0.010
SM GDC (T = 0.2) 3.52 ± 0.17 4.69 ± 0.20 0.60 ± 0.02 4.44 ± 0.13 0.705 ± 0.017 0.714 ± 0.014
SM GDC† (T = 10) 5.62 ± 0.15 0.17 ± 0.02 0.02 ± 0.00 0.82 ± 0.12 0.663 ± 0.014 0.654 ± 0.014

Pu
bM

ed
[4

7] Vanilla GCN 4.40 ± 0.20 3.23 ± 0.17 0.22 ± 0.02 4.19 ± 0.06 0.760 ± 0.026 0.744 ± 0.031
Vanilla GDC 4.32 ± 0.11 3.10 ± 0.04 0.24 ± 0.01 4.05 ± 0.15 0.764 ± 0.034 0.749 ± 0.039
SM GDC (T = 1.0) 3.30 ± 0.41 5.13 ± 0.66 0.47 ± 0.04 4.24 ± 0.16 0.761 ± 0.023 0.756 ± 0.027

SM GDC (T = 0.5) 3.10 ± 0.60 5.43 ± 0.26 0.56 ± 0.03 4.35 ± 0.16 0.751 ± 0.015 0.752 ± 0.019
SM GDC (T = 0.2) 2.44 ± 0.40 6.07 ± 0.19 0.66 ± 0.02 4.46 ± 0.15 0.729 ± 0.014 0.732 ± 0.016

B.4 Certified robustness

Table 6 presents the complete results on CoraML, Citeseer as well as PubMed of our experiments
with three-sigma error of the mean. On all three datasets Cora ML, Citeseer, and PubMed, our Soft
Medoid GDC improves the robustness significantly. One of our Soft Medoid GDC models is in every
structure robustness benchmark the most robust model. Moreover, we see that the the accuracy of the
base classifier and the smooth classifier barely differ. We refer to § B.5 for our Soft Medoid† GDC
(T = 10) model, which improves the attribute robustness.

On Pubmed, due to the runtime, we do not report the results of the other defenses, select some
important baselines. In their original papers, RGCN [58] is the only other defense [24, 52, 58] that
reports results on a bigger data set, such as PubMed.

B.5 Structural vs. attribute robustness

It is noticeable in Table 6 that increased robustness against structure attacks comes with a decreased
robustness on attribute attacks (GCN as the baseline). This finding seems to be very consistent
regardless of the chosen approach. For example, GAT outperforms APPNP on attribute attacks but
lags behind APPNP on structure attacks.

For an increased robustness against attribute attacks, we came up with an alternative normalization

t†WSM(X,a, T ) =

 
nX

i=1

Av,i

!
sTX (24)

of our Soft Medoid estimator and different choice of temperature T = 10. Note that the Soft Medoid
does not have the GCN as a special case Eq. 6 (§ 4). This configuration comes with the highest
attribute robustness of all tested architectures (about 15% to 30% higher accumulated certifications
w.r.t. attribute attacks than a GCN). For a comparison of the precise results see SM† GDC (T = 10)
in Table 6.

21



B.6 Detailed comparison of certification ratios

Soft Medoid GDC (T = 1.0)
Soft Medoid GDC (T = 0.2)

Soft Medoid GCN (T = 50)
Vanilla GCN

Vanilla GDC
SVD GCN

Jaccard GCN
RGCN

0 2 4 6 8

Delete radius rd

0.0

0.2

0.4

0.6

0.8

1.0

C
er

tifi
ed

ra
tio

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Add radius ra

0.0

0.2

0.4

0.6

0.8

1.0

(b)

0 2 4 6 8

Delete radius rd

0.0

0.2

0.4

0.6

0.8

1.0

C
er

tifi
ed

ra
tio

(c)

0.0 0.5 1.0 1.5 2.0

Add radius ra

0.0

0.2

0.4

0.6

0.8

1.0

(d)

Figure 8: (a) and (b) show the certification ratio over different radii for deletion rd and addition
ra, for a combined noise of p� = 0.4 and p+ = 0.001. (c) shows the case of only deleting edges
(p� = 0.4, p+ = 0) and (d) only adding edges (p� = 0, p+ = 0.001). For each plot we set the
contrary radius to zero (e.g. in (a) ra = 0). We compare our Soft Medoid GDC against a GCN and
the other defenses [24, 52, 58]. All plots are for Cora ML.

Soft Medoid GDC (T = 1.0)
Soft Medoid GDC (T = 0.2)

Soft Medoid GCN (T = 50)
Vanilla GCN

Vanilla GDC
SVD GCN

Jaccard GCN
RGCN

(0.
99

9,
2.0

]

(2.
0,

3.0
]

(3.
0,

4.0
]

(4.
0,

5.0
]

(5.
0,

6.0
]

(6.
0,

8.0
]

(8.
0,

12
.0]

(12
.0,

24
6.0

]

Degree

0

2

4

6

A
cc

um
ul

at
ed

ce
rti

fic
at

io
ns

(a)

(0.
99

9,
2.0

]

(2.
0,

3.0
]

(3.
0,

4.0
]

(4.
0,

5.0
]

(5.
0,

6.0
]

(6.
0,

8.0
]

(8.
0,

12
.0]

(12
.0,

24
6.0

]

Degree

3

4

5

(b)

(0.
99

9,
2.0

]

(2.
0,

3.0
]

(3.
0,

4.0
]

(4.
0,

5.0
]

(5.
0,

6.0
]

(6.
0,

8.0
]

(8.
0,

12
.0]

(12
.0,

24
6.0

]

Degree

0.0

0.2

0.4

0.6

0.8

(c)

Figure 9: (a) shows the accumulated certifications over the degree (equal frequency binning), for a
combined noise of p� = 0.4 and p+ = 0.001. (b) shows the case of only deleting edges (p� = 0.4,
p+ = 0) and (c) only adding edges (p� = 0, p+ = 0.001). We compare our Soft Medoid GDC
against a GCN and the other defenses [24, 52, 58]. All plots are for Cora ML.

22



We complement the certification rates with the accumulated certifications for different node degrees
in Fig. 9 (compare to Fig. 5). Especially in the case of only adding edges we see the strength of
our approach. For all the other approaches [24, 34, 36, 52, 58] we can basically certify 0 % of the
low-degree nodes (degree  2 before adding self-loops). In contrast with the Soft Medoid GDC, we
are able to certify around 50% of the low-degree nodes!

In Fig. 8 we plot the certification ratios similarly to Fig. 6. We can see that the Soft Medoid GDC
outperforms the other approaches by a large margin. Especially figures (b) and (d) highlight the
unparalleled difficulty of adversarially added edges. Also in the other cases Fig. 8(c) only deleting
and (d) only adding edges, the Soft Medoid GDC clearly outperforms the other architectures. The
margin is especially large in the challenging case (d) of solely adding edges.

23


	Introduction
	Robust aggregation functions for graph neural networks
	Robustness analysis
	Instantiating the Soft Medoid for graph neural networks
	Experimental evaluation
	Setup
	The temperature hyperparameter
	Empirical robustness
	Certified robustness

	Related work
	Conclusion
	Proof of Soft Medoid breakdown point
	Preliminaries
	Proof of Lemma 1
	Breakdown point of the Soft Medoid
	Robustness of the Weighted Soft Medoid

	Detailed experimental results
	Dataset statistics
	Randomized Smoothing
	Empirical robustness
	Certified robustness
	Structural vs. attribute robustness
	Detailed comparison of certification ratios


