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Abstract

Perturbations targeting the graph structure have proven to be extremely effective
in reducing the performance of Graph Neural Networks (GNNs), and traditional
defenses such as adversarial training do not seem to be able to improve robustness.
This work is motivated by the observation that adversarially injected edges effec-
tively can be viewed as additional samples to a node’s neighborhood aggregation
function, which results in distorted aggregations accumulating over the layers.
Conventional GNN aggregation functions, such as a sum or mean, can be distorted
arbitrarily by a single outlier. We propose a robust aggregation function motivated
by the field of robust statistics. Our approach exhibits the largest possible break-
down point of 0.5, which means that the bias of the aggregation is bounded as
long as the fraction of adversarial edges of a node is less than 50%. Our novel
aggregation function, Soft Medoid, is a fully differentiable generalization of the
Medoid and therefore lends itself well for end-to-end deep learning. Equipping
a GNN with our aggregation improves the robustness with respect to structure
perturbations on Cora ML by a factor of 3 (and 5.5 on Citeseer) and by a factor of
8 for low-degree nodes.

1 Introduction

Learning on graph data has gained strong attention in recent years, specifically powered by the
success of graph neural networks [29, 34]. Like for classic neural networks, (non-)robustness to
adversarial perturbations has shown to be a critical issue for GNNs as well [18, 61]. In contrast to
other application domains of deep learning, adversaries on graphs are especially challenging because
not only the attributes might be perturbed, but also the discrete structure. Recently, many effective
attacks on graph neural networks have been proposed [5, 18, 50, 54, 59, 61], and there is strong
evidence that attacking the graph structure is more effective than attacking the attributes [52, 61].

While recent research suggests that effective defenses against attribute attacks can be found, e.g. robust
training [59], defenses against structure attacks remain an unsolved topic [18, 54, 60]. Moreover,
approaches such as [24, 52], solely focus on defending against specific attack characteristics. On
the contrary, Carlini and Wagner [10] show that heuristic defenses often can be bypassed. Thus, we
design our model without attack-specific assumptions.

Message passing is the core operation powering modern GNNs [27]. In the message passing steps,
a node’s embedding is updated by aggregating over its neighbors’ embeddings. In this regard,
adversarially inserted edges add additional data points to the aggregation and therefore perturb the
output of the message passing step. Standard aggregation functions like a sum can be arbitrarily
distorted by only a single outlier. Thus, we reason that on top of the usual (potentially non-robust)
neural network components, GNNs introduce additional (typically non-robust) aggregations. Note
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Figure 1: We show the output layer (l = 2) message passing step, i.e. the input of AGGREGATE(l),
for adversarially added edges of an exemplary node v. The adversarial edges are obtained with a
Nettack [61] evasion attack (at test time). For a two-dimensional visualization we used PCA on the
weighted node embeddings Aswh

(l�1)
w W(l) of all edges (s, w) 2 A, but solely plot v’s neighborhood.

We show the aggregation for 17, 29, and 50 perturbations in figure (a) to (c), respectively.

that many other countermeasures w.r.t. adversarial vulnerability are orthogonal to our approach and
can be applied additionally.

We propose a novel robust aggregation function for GNNs to address this drawback. This aggregation
function is novel in the context of deep learning. Our basic building block can be used within a
large number of architectures by replacing the aggregation function with our proposed one. Our
robust location estimator Soft Medoid is smooth and differentiable, which makes it well-suited for
being used within a neural network, and it has the best possible breakdown point of 0.5. With an
appropriate budget, the adversary can only perturb a subset of the aggregation inputs with the goal of
crossing the decision boundary. As long as the adversary only controls the minority of inputs, our
robust estimator comes with a bounded error regardless of the attack characteristics (i.e. no attack
can distort the aggregation result arbitrarily).

Empirically, our method improves the robustness of its base architecture w.r.t. structural perturbations
by up to 550% (relative), and outperforms previous state-of-the-art defenses. Moreover, we improve
the robustness of the especially challenging to defend low degree nodes by a factor of 8.

2 Robust aggregation functions for graph neural networks

Throughout this work, we use the formulation in Eq. 1 (omitting the bias) for the message passing
operation.

h(l)
v

= �(l)
⇣

AGGREGATE(l)
n⇣

Avu,h
(l�1)
u

W(l)
⌘
, 8u 2 N (v) [ v

o⌘
(1)

h(l)
v denotes the embedding of node v in the l-th layer; h(0)

v represents the (normalized) input features
of node v. Further, A is the (potentially normalized) message passing matrix, W(l) the parameter for
the trainable linear transformation and �(l)(z) the (non-linear) activation. N (v) is the set of neighbors
of node v. GCN [34] instantiates Eq. 1 as h(l)

v = ReLU(SUM{(Avuh
(l�1)
u W(l)), 8u 2 N (v)[v}),

where Ã = Â+IN , D̂ii =
P

j
Ãij and A = D̂1/2ÃD̂1/2 represents the normalization of the original

adjacency matrix Â. Common examples for AGGREGATE(l) are weighted mean1 [1, 26, 34, 49],
the max operation [29] or summation [55]. From a robust statistics point of view, a single perturbed
embedding in v’s neighborhood suffices to arbitrarily deviate the resulting embedding h(l)

v . We
hypothesize that the non-robustness of the aggregation function contributes to GNNs’ non-robustness.

To back this hypothesis, we analyze the distortion of the neighborhood aggregation based on an
exemplary message passing aggregation step in Fig. 1. The adversary inserts edges that result in a
concentrated set of outliers. Only about 25% of outliers in the aggregation suffice to move the output
outside of the convex hull of the clean data points. We see that a robust location estimator, such as
the proposed Soft Medoid in Eq. 7, is much less affected by the outliers. Thus, we propose to use a
robust aggregation function in the message passing operation Eq. 1.

1Technically we should call this operation weighted sum since the weights often do not sum up to 1. However,
mean seems to be the widely accepted term (e.g. see [55]).
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Robustness of a location estimator has multiple facets. The breakdown point ✏⇤(t,X) (see Eq. 4) [22]
measures the percentage of perturbed data points ✏ until the estimator t can be arbitrarily distorted. It
is well studied and has a probabilistic motivation for algebraically tailed distributions [39]. Comple-
mentary, the maxbias curve B(✏) (see Eq. 5) reports the maximum possible deviation of the location
estimate between the clean and perturbed data w.r.t. the ratio of perturbed data [16]. Naturally, we
desire a robust estimator to have a high breakdown point and low maxbias curve.

Measures such as the breakdown point are widely used as a proxy for the robustness of an estimator.
While they analyze unbounded attacks, adversarially added edges in graph neural networks are, of
course, not unbounded. However, for a strong/sufficient perturbation of the output, the attacker will
likely perturb a neighborhood with nodes that have very different attributes/embeddings. Note that
the magnitude of a structure perturbation is typically measured by the number of added or deleted
edges (i.e. neighbors in Eq. 1). We investigate unbounded perturbations as a worst-case analysis and
bounded attacks in our empirical evaluation. As we are going to see in Fig. 2, a robust estimator
typically comes with a lower error for bounded perturbations as well.

Many such robust location estimators are computationally expensive or hard to implement in a
vectorized fashion, and not continuously differentiable [19, 20, 23, 32, 39, 40, 46, 48]. In our
experimentation, we found the M(R)CD estimator [8] and a differentiable dimension-wise median
implementation (based on soft sorting [17]) computationally too demanding for the repeated message
passing operation. Moreover, estimators for high dimensions [21] did not filter many adversarially
added edges (perhaps the number of inputs to an aggregation in a GNN is too low).

We conclude that existing robust location estimators are ill-suited for use within a neural network,
as fast computation and differentiability are crucial. Therefore we propose a novel robust and fully
differentiable location estimator and base our aggregation function on the Medoid tMedoid(X) =
argminy2X

P
n

j=1 kxj � yk, a multivariate generalization of the Median. In contrast to the L1-
Estimator tL1(X) = argminy2Rd

P
n

j=1 kxj�yk, the Medoid constrains the domain of optimization
from y 2 Rd to the input data points (y 2 X ). Throughout the paper, we denote the data matrix as X
and its set representation with X interchangeably.

We propose a differentiable generalization of the Medoid replacing argmin with a softmax to form a
weighted average. That is,

tMedoid(X) = argmin
y2X

Xn

j=1
kxj � yk ⇡

Xn

i=1
ŝixi = ŝ>X =: tSM(X) . (2)

The weights 0  ŝi  1,
P

i
ŝi = 1 are obtained via softmax of the data points’ distances:

ŝi =
exp

⇣
� 1

T

P
n

j=1 kxj � xik
⌘

P
n

q=1 exp
⇣
� 1

T

P
n

j=1 kxj � xqk
⌘ , (3)

where T is a temperature parameter controlling the steepness of the argmin approximation. In this
approximation, a point that has small distances to all other data points (i.e., a central data point) will
have a large weight ŝi, whereas remote points will have weights close to zero. For T ! 0 we recover
the exact Medoid and for T ! 1 the sample mean. Further, the range of the Soft Medoid is no
longer limited to the data points themselves; it is now limited to the real numbers enclosed by the
convex hull of the data points, i.e. tSM(X) 2 H(X). Furthermore, due to the Euclidean distance,
the (Soft) Medoid is orthogonal equivariant tSM(QX+ v) = Q tSM(X) + v, with the orthogonal
matrix Q and the translation vector v 2 Rd.

3 Robustness analysis

The (non-robust) sample mean and maximally robust Medoid are special cases of our smooth
generalization of the Medoid (see Eq. 2), depending on the choice of the softmax temperature T .
Naturally, this raises the question to what extent the Soft Medoid shares the robustness properties
with the Medoid (or the non-robustness properties of the sample mean). In this section we show
the non-obvious fact that regardless of the choice of T 2 [0,1) the Soft Medoid has an asymptotic
breakdown point of ✏⇤(tSM,X) = 0.5. As a corollary, the Soft Medoid comes with a guarantee on
the embedding space. We conclude with a discussion of the influence of the temperature T . w.r.t. the
maxbias curve.
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The (finite-sample) breakdown point states the minimal fraction ✏ = m/n with m perturbed examples,
so that the result of the location estimator t(X) can be arbitrarily placed [22]:

✏⇤(t,X) = min
1mn

(
m

n
: sup

X̃✏

kt(X)� t(X̃✏)k = 1
)

(4)

For this purpose, X̃✏ denotes the perturbed data. To obtain X̃✏ (equivalently X̃✏) we may select and
change up to m (or an ✏ fraction of) data points of xi 2 X and leave the rest as they are. Lopuhaä
and Rousseeuw [39] show that for affine/orthogonal equivariant estimators such as the L1-Estimator,
the best possible breakdown point is ✏⇤(tL1 ,X) = 0.5. The sample mean, on the other side of
the spectrum, has an asymptotic breakdown point of ✏⇤(tµ,X) = 0. A single perturbed sample is
sufficient to introduce arbitrary deviations from the sample mean‘s true location estimate tµ(X).

Theorem 1 Let X = {x1, . . . ,xn} be a collection of points in Rd
with finite coordinates and

temperature T 2 [0,1). Then the Soft Medoid location estimator (Eq. 2) has the finite sample

breakdown point of ✏⇤(tSM,X) = 1/nb(n+1)/2c (asymptotically limn!1 ✏⇤(tSM,X) = 0.5).

Our analysis addresses the somewhat general question: How well do we need to approximate the
Medoid or L1-Estimator to maintain its robustness guarantees? Despite many approximate algorithms
exits [9, 12, 13, 15, 25, 30, 33, 44, 45], we are the first to address this problem:

Lemma 1 Let X = {x1, . . . ,xn} be a collection of points in Rd
, which are (w.l.o.g.) centered such

that t̂(X) = 0. Then, the (orthogonal equivariant) approximate Medoid or L1-Estimator t̂ has a

breakdown point of ✏⇤(t̂,X) = 1/nb(n+1)/2c, if the following condition holds: limp!1 t̂(X̃✏)/p = 0.

Where X̃✏ = {x̃1, . . . , x̃m, xm+1, . . . ,xn} is obtained from X by replacing m = b(n�1)/2c arbitrary
samples with a point mass on the first axis: x̃i = [p 0 · · · 0]>, 8i 2 {1, . . . ,m}.

Sample mean
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Soft Medoid (T = 10)
Soft Medoid (T = 50)
Soft Medoid (T = 100)
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Figure 2: Empirical bias B(✏), for 50 samples
from a centered (tSM(X) = 0) bivariate normal
distribution. (a) shows the bias for a perturbation
with norm 1000, and (b) 10.

As a direct consequence of Lemma 1, it is not
decisive how closely we approximate the true
Medoid. The condition rather imposes an upper
bound on the growth of the location estimator
over the magnitude of the perturbation p. In ad-
dition to the formal proof in § A, we now present
an illustrative proof sketch for a simplified sce-
nario, which highlights why the Soft Medoid has
such a strong guarantee regardless of T 2 [0,1)
and omits the detour via Lemma 1.

Proof Sketch Due to the orthogonal equivari-
ance we may choose tSM(X) = 0, without
loss of generality. Let X̃✏ be decomposable
such that X̃✏ = X̃ (clean)

✏ [ X̃ (pert.)
✏ . Clearly

the worst-case perturbation is obtained when
X̃ (pert.)

✏ concentrates on a point mass [16]. Due to orthogonal equivariance we can, thus, pick
x̃i = [p 0 · · · 0]>, 8x̃i 2 X̃ (pert.)

✏ w.l.o.g. In the following, we analyze the special case where
all clean data points are located in the origin xi = 0, 8xi 2 X̃ (clean)

✏ .

We now have to find the minimal fraction of outliers ✏ for which limp!1 ktSM(X̃✏)k < 1 does not
hold anymore. Here, both terms in the equation of the Soft Medoid tSM(X̃✏) = ŝ>X̃✏ depend on p
and limp!1 tSM(X̃✏) = limp!1 ŝ>X̃✏ leads to the undefined case of 0 ·1. However, because of
limx!1 xe�x/a = 0 for a 2 [0,1), it turns out that we just have to analyze ŝ for p ! 1. That is,
if ŝ(pert.) ! 0 the perturbed data have zero weight in the aggregation. We now relate the weight of
any perturbed data point s(pert.) to the weight of any clean data point ŝ(clean):

ŝ(pert.)

ŝ(clean) =
exp

n
� 1

T

P
x̃j2X̃✏

kx̃j � x̃(pert.)k
o

exp
n
� 1

T

P
x̃j2X̃✏

kx̃j � x̃(clean)k
o = exp

(
� 1

T

" 
X

x̃j2X̃ (clean)
✏

p

!
�
 

X

x̃j2X̃ (pert.)
✏

p

!#

| {z }⇣
|X̃ (clean)

✏ |�|X̃ (pert.)
✏ |

⌘
·p

)
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If we have more clean points than perturbed points (|X̃ (clean)
✏ | > |X̃ (pert.)

✏ |), then limp!1 ŝ(pert.)/̂s(clean) =
exp(�1) = 0. Note that ŝ(pert.)/̂s(clean) = 0 can only be true if ŝ(pert.) = 0. Hence, the norm of the Soft
Medoid is finite when the perturbation p approaches infinity iff ✏ < 0.5. ⇤
For a corollary of Theorem 1, we formally introduce the (asymptotic) maxbias curve

B⇤(✏, t,DX ) = sup
H

kt(DX )� t ((1� ✏)DX + ✏H) k , (5)

with the data distribution DX and arbitrary distribution H representing the perturbation. The maxbias
curve models the maximum deviation between clean and perturbed estimate over different percentages
of perturbations ✏. From Theorem 1 and the monotonicity of the maxbias curve, Corollary 1 follows.

Corollary 1 Let X = {x1, . . . ,xn} be a collection of points in Rd
with finite coordinates and the

constant temperature T 2 [0,1). Then the Soft Medoid location estimator (Eq. 2) has a finite

maxbias curve B⇤(✏, tSM,DX ) < 1 for ✏ < ✏⇤(tSM,X).

There exists a finite upper bound on the maxbias, i.e. the maximum deviation ktSM(X)� tSM(X̃✏)k <
1 between the estimate on the clean data X and perturbed data X̃✏ is limited. Consequently, using
the Soft-Medoid translates to robustness guarantees on the embedding space of each layer. However,
deriving this upper bound analytically is out of scope for this work.

In Fig. 2, we give empirical results for a fixed point mass perturbation on the first axis over increasing
values of ✏. Fig. 2 (a) shows that for high temperatures and distant perturbations our Soft Medoid
achieves an even lower bias than the Medoid because it essentially averages the clean points. (b)
shows that this comes with the risk of a higher bias for small perturbations and high ✏. However,
in case the perturbation is close to the data points, the bias cannot be very high. In conclusion, in
the context of a GNN and for an appropriate choice of T as well as bounded perturbations, the Soft
Medoid can help mitigate the effects of adversarially injected edges as long as ✏ is sufficiently small.

4 Instantiating the Soft Medoid for graph neural networks

Before we can show the effectiveness of our method, we need to discuss how we can use the proposed
Soft Medoid in GNNs. Effectively, we have to extend Eq. 2 to the weighted case due to the weights
in the respective message passing matrix A:

t̃WSM(X,a) = c (s � a)>X (6) si =
exp

⇣
� 1

T

P
n

j=1 ajkxj � xik
⌘

P
n

q=1 exp
⇣
� 1

T

P
n

j=1 ajkxj � xqk
⌘ (7)

where a is a non-negative weight vector (e.g. the weights in a row of A) and c = (
Pn

j=1 aj)/(Pn
j=1 sjaj).

Since the Soft Medoid interpolates between the Medoid and mean, we indeed have to adapt the
location estimator at two places: The generalized definition of s handles the weighted Medoid, while
s � a resembles the weighted mean (note that for T ! 1 all elements of s are equal, thus, using only

Table 1: Average duration (time cost in ms) of one
training epoch (over 200 epochs, preprocessing counts
once). For the other defenses we used DeepRobust’s
implementation. We report “-” for an OOM. We used
one 2.20 GHz core and one GeForce GTX 1080 Ti (11
Gb). For hyperparameters see § 5.

Cora ML [46] Citeseer [47] PubMed [46]
GDC Prepr. X X X
SM GCN 41.2 210.9 36.6 154.1 86.0 497.8
SVD GCN 119.4 120.8 66.3 67.3 - -
Jaccard GCN 19.1 147.8 11.2 118.0 84.9 585.4
RGCN 8.7 7.5 6.3 9.3 135.5 136.6
Vanilla GCN 5.1 7.1 4.7 7.8 6.0 66.1
Vanilla GAT 15.2 65.6 11.8 53.3 46.4 270.8

s would result in an unweighted mean; s�a
makes it a weighted mean). The multiplica-
tion with c simply ensures a proper normal-
ization of t̃WSM like in a standard GNN.

Theorem 1 holds for the weighted case ac-
cordingly: Given a weight vector a with
positive weights, the estimate t̃WSM can-
not be arbitrarily perturbed if

P
a(pert.) <P

a(clean) is satisfied (see § A.4).

In Eq. 1 we plug in the newly derived
Weighted Soft Medoid t̃WSM(X,a) for the
AGGREGATION. Thus, for node v in
layer l, X represents the stacked embed-
dings {h(l�1)

u W(l), 8u 2 N (v) [ v}, and
a the weight vector consists of {Avu, 8u 2 N (v) [ v}. Hence, we can think about the terms before
X in Eq. 6 as an input-dependent reweighting of the message passing matrix.
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A sparse matrix implementation of the Weighted Soft Medoid has a time complexity of
O(n

P
n

v=1 (deg(v) + 1)2), with number of nodes n. Due to the power law distribution of many
graphs, we will also have a few nodes with a very large degree. To circumvent this issue and to
enable a fully vectorized implementation we propose to calculate the Weighted Soft Medoid for
the embeddings of the k neighbors with largest weight. This yields a time and space complexity of
O(nk2) and for k ⌧ n leads to a total worst-case complexity of O(n). The time cost of the Soft
Medoid (SM GCN) is comparable to the defenses SVD GCN and Jaccard GCN (see Table 1).

5 Experimental evaluation

In § 5.2, we discuss the influence of the temperature T . While our main focus is on evaluating
certifiable robustness, we also analyze the empirical robustness via attacks (§ 5.3). In § 5.4 we present
the main results and comparison to other defenses. We mainly highlight results on Cora ML and
attacks jointly adding and deleting edges (for other datasets/attacks see § B). The source code is
available at https://www.daml.in.tum.de/reliable_gnn_via_robust_aggregation.

5.1 Setup

Architectures. We compare our approach against the current state of the art defenses against structure
attacks [24, 52, 58]. SVD GCN [24] performs a low-rank approximation of the adjacency matrix
with a truncated SVD (the result is not sparse in general, we use rank 50), Jaccard GCN [52] use the
Jaccard similarity on the attributes to filter dissimilar edges (we use a similarity threshold of 0.01),
and the RGCN [58] models the graph convolution via a Gaussian distribution for absorbing the effects
of adversarial changes. Further, we compare the robustness to the general-purpose GNNs Graph
Attention Network (GAT) [49], Graph Diffusion Convolution (GDC) with a GCN architecture [36],
and GCN [34]. As baselines of robust location estimators, we equip a GCN and a GDC with the
dimension-wise Median and the Medoid. Note that because of their non-differentiability, only the
gradient for the selected/central item is non-zero—similarly to, e.g., max-pooling on images.

Datasets. We evaluate these models on Cora ML [47], Citeseer [41], and PubMed [47] for semi-
supervised node classification. § B.1 gives a summary of the size of the respective largest connected
component, which we are using. None of the referenced attacks/defenses [5, 18, 24, 42, 50, 52, 54,
59, 61] uses a larger dataset. Note that our approach scales (runtime/space) with O(n) while SVD
GCN has space complexity of O(n2).

Hyperparameters. We use two-layer GNNs with default parameters, as suggested by the respective
authors for all the models. We use the personalized PageRank version of GDC. For a fair comparison,
we set the number of hidden units for all architectures to 64, the learning rate to 0.01, weight decay to
5e�4, and train for 3000 epochs with a patience of 300. For the architectures incorporating our Soft
Medoid, we perform a grid search over different temperatures T (for the range of the temperatures
T see Fig. 3). In case we are using GDC, we also test different values for the teleport probability
↵ 2 [0.05, 0.4]. In the experiments on Cora ML and Citeseer we use ↵ = 0.15 as well as k = 64. We
use ↵ = 0.15 as well as k = 32 in the PubMed experiments. For each approach and dataset, we rerun
the experiment with three different seeds, use each 20 labels per class for training and validation, and
report the one-sigma error of the mean.

Robustness certificates. To measure certifiable robustness, we use Randomized Smoothing [14,
37, 38] for GNNs [7]. Randomized smoothing is a probabilistic, black-box robustness certification
technique that is applicable to any model. Following Bojchevski et al. [7] we create an ensemble of
models g(x) (aka the smooth classifier) that consists of the trained base classifier f(x) with random
inputs. We randomly perturbed the input via independent random flips of elements in the binary
feature matrix and/or adjacency matrix. For adding an element we use the probability pa and for
removing an element we use pd.

We treat the prediction of a smooth classifier as certifiably correct if it is both correct and certifiably
robust; i.e. the prediction does not change w.r.t. any of the considered perturbations/attacks. We refer
to the ratio of certifiably correct predictions as the certification ratio R(ra, rd) at addition radius ra
and deletion radius rd. For example, R(ra = 2, rd = 0) denotes the ratio of nodes that are robust
(and correct) under insertion of any two edges. Higher is better. We compare the robustness for three
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different cases: (a) addition or deletion of edges, (b) only deletion, (c) only addition. For further
details on randomized smoothing, we refer to § B.2.

Comparing all these certification ratios R(ra, rd) at different radii is somewhat cumbersome and
subjective. Therefore, we propose the accumulated certifications

AC = �R(0, 0) +
X

ra,rd

R(ra, rd) (8)

as a single measure that captures overall robustness. We decide to subtract R(0, 0), because it reflects
the accuracy of the smooth classifier. This metric is related to the area underneath the bivariate
certification ratio R(ra, rd). Note that a more robust model has higher accumulated certifications.

To capture what certifiable radii one obtains for correct predictions, in Table 2, we additionally report
the average certifiable radii r̄a (and r̄d):

r̄a :=
1

|C|
X

i2C

rmax
a

(i) . (9)

Here, C denotes the set of all correctly predicted nodes and rmax
a

(i) the maximum addition radius so
that node i can still be certified w.r.t. the smooth classifier g(xi); analogously for rd. The higher the
better.

5.2 The temperature hyperparameter
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Figure 3: Influence of the tempera-
ture T on the accumulated certifica-
tions (solid) and accuracy of the base
classifier (dashed).

Following up on the concluding statement of § 3, the temper-
ature T is a central hyperparameter for a GNN equipped with
a Soft Medoid. Our best-performing setup is a GDC equipped
with a Soft Medoid (see § 5.4). Consequently, we use this
model for the analysis of the influence of T .

Fig. 3 illustrates this relationship for a wide range of T . De-
creasing the temperature comes with increased robustness but
at the cost of the accuracy. However, we cannot increase
the robustness indefinitely and observe a maximum around
T = 0.2. We hypothesize that this is because for too low
values of T the Soft Medoid ignores all but one input and
for high temperatures T we approach the non-robust sample
mean. In reference to § 3, for the right temperature w.r.t. the
magnitude of perturbations, we essentially average over the clean data points. Depending on the
requirements for the robustness accuracy trade-off, we conclude that the sweet spot is likely to be in
the interval of T 2 [0.2, 1]. With that in mind, we decide to report the reasonable trade-offs of T = 1,
T = 0.5, and our most robust model (T = 0.2), for the experiments.

5.3 Empirical robustness
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Figure 4: Accuracy for evasion (transfer) attacks on Cora ML.

The advantage of analyzing certifiable robustness is that it does not rely on specific attack approaches
and the respective characteristic. However, the certificates we obtain are strictly speaking for the
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resulting smooth classifier. As Cohen et al. [14] point out, only a base classifier that is robust w.r.t.
these small perturbations can result in a robust smooth classifier. Still, for completeness, we report
in Fig. 4 the (empirical) robustness of the base classifier, i.e. we measure how the accuracy drops
when attacking the adjacency matrix. In such a scenario one has to refer to a specific attack approach.
As shown, our approach outperforms all baselines with a significant margin for strong perturbations.
That is, the accuracy stays high despite many perturbed edges. We report the perturbed accuracy
for Dice [50], a FGSM-like [28] attack that greedily flips the element in A which contributes most
to the test loss and Projected Gradient Descent (PGD) for L0 perturbations [54]. For Nettack [61],
Metattack [59], and the results on Citeseer see § B.3.

5.4 Certified robustness

In Table 2, we summarize the certified robustness of the experiments on Cora ML and selected
experiments on Citeseer. For a complete comparison, we also report the accuracy of the base
classifier. In § B.4, we report results on all three datasets with error estimates. Our Soft Medoid
GDC architecture comes with a relative increase on the accumulated certifications of more than 200%
w.r.t. adversarially added edges (most challenging case) for a wide range of baselines, alternative
architectures, and defenses [24, 52, 58]. In the same scenario, on Citeseer we outperform the other
baselines by a factor of 5.5. Moreover, our Soft Medoid GDC outperforms the “hard” Medoid as
well as dimension-wise Median. As expected, increased robustness comes with the price of a slightly
lower accuracy (compared to the best performing model which is substantially less robust).

Table 2: Accumulated certifications (first to third data col-
umn) and average certifiable radii (fourth and fifth data col-
umn) for the different architectures (top two highlighted).
In the last column we list the clean accuracy of the base
classifier (binary node attributes).

Accum. certificates Ave. cert. rad. Acc.

A.&d. Add Del. Add Del.

C
or

a
M

L
[4

]

Vanilla GCN 1.84 0.21 4.42 0.25 5.37 0.823
Vanilla GDC 1.98 0.20 4.33 0.25 5.25 0.835
Vanilla APPNP 3.37 0.39 4.61 0.47 5.53 0.841

Vanilla GAT 1.26 0.07 4.03 0.09 5.02 0.806
SVD GCN 0.84 0.08 2.39 0.11 3.14 0.772
Jaccard GCN 0.86 0.01 4.39 0.02 5.43 0.775
RGCN 1.46 0.12 3.99 0.15 5.03 0.793
SM GCN (T = 50) 1.86 0.21 4.44 0.25 5.41 0.823
Dimmedian GDC 2.38 0.32 4.61 0.41 5.71 0.801
Medoid GDC 4.05 0.51 4.62 0.73 6.28 0.724
SM GDC (T = 1.0) 4.31 0.52 4.71 0.66 5.70 0.823
SM GDC (T = 0.5) 5.07 0.60 4.80 0.79 5.98 0.795
SM GDC (T = 0.2) 5.60 0.66 4.91 0.89 6.31 0.770

C
ite

se
er

[4
1]

Vanilla GCN 1.24 0.11 3.88 0.16 5.48 0.710
SVD GCN 0.52 0.00 2.12 0.00 3.25 0.639
Jaccard GCN 1.42 0.04 3.96 0.06 5.57 0.711
RGCN 1.12 0.09 3.89 0.12 5.44 0.719

SM GDC (T = 1.0) 2.67 0.32 4.12 0.45 5.77 0.711
SM GDC (T = 0.5) 3.62 0.48 4.22 0.69 5.94 0.709
SM GDC (T = 0.2) 4.69 0.60 4.44 0.89 6.32 0.702

Graph diffusion. Node degrees in real-
world graphs typically follow a power-
law distribution. Consequently, we must
be able to deal with a large fraction of
low degree nodes. To obtain more ro-
bust GNNs, methods that are increasing
the degree of the nodes are an important
ingredient for the success of our model.
The GDC architecture [36] is one of the
natural choices for smoothing the adja-
cency matrix because its low-pass filter-
ing of the adjacency matrix leads to an
increased number of non-zero weights.

To illustrate why the GDC architecture is
well-suited for being equipped with the
Soft Medoid, we plot the accumulated
certifications over the degree in Fig. 5.
We see that with increasing degree the
Soft Medoid GCN can demonstrate its
strengths. We hypothesize, given just
a few data points (i.e. neighbors), it is
challenging for a robust estimator to dif-

ferentiate between clean samples and outliers. Moreover, just a few adversarially added edges suffice
to exceed the breakdown point. Note, however, that GDC alone does not improve the robustness by
much (see Fig. 6 and Fig. 5).

In conclusion of this discussion, the Soft Medoid and GDC synergize well and help to tackle the
challenging problem of robustifying low degree nodes. In comparison to a GCN, with our approach,
we can improve the robustness by up to eight times for low-degree nodes.

Edge deletion. For the case of edge deletion, a vanilla GCN performs already decently. This
observation matches our experiments, where we found that with an identical budget it is more
powerful to inject a few outliers than removing the same amount of “good” edges (in the sense of
perturbing the message passing aggregation).

Attributes. We observed that increased robustness against structure attacks comes with a decreased
robustness on attribute attacks (GCN as baseline). Since we do not focus attribute robustness, we
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fications (see Eq. 8) over the
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Figure 6: (a) and (b) show the certification ratio over different
radii for deletion rd and addition ra. We compare our the Soft
Medoid GDC against a GCN and the other defenses [24, 52, 58].

refer to § B.5 for further insights and, at the same time, we present a parametrization of our approach
which comes with improved attribute robustness.

Defenses. Complementary to Table 2, in Fig. 6, we contrast the certification ratio for the Soft
Medoid GDC to the state-of-the-art defenses [24, 52, 58] over different radii rd and ra. Our model
outperforms all of the tested state-of-the-art defenses by a large margin. All defenses [24, 52, 58]
do not achieve high certification ratios. Thus, defenses designed for specific attacks cannot serve as
general defenses against adversarial attacks. This highlights the need for certifiably robust models, as
in general, we can make no a priori assumptions about adversarial attacks in the real world.

6 Related work

GNNs are an important class of deep neural networks, both from a scientific and application standpoint.
Following the recent, trendsetting work in [29, 34], a vast number of approaches were proposed [1, 26,
35, 36, 49, 55]. A magnitude of adversarial attacks have been introduced [5, 18, 24, 42, 52, 54, 59, 61],
pointing out their sensitivity regarding such attacks. Many of the proposed attacks directly propose
an appropriate defense. We can classify the approaches into the categories of preprocessing [24, 52],
robust training [54, 59], and modifications of the architecture [56, 58]. Perhaps the most similar
approach, due to their statistical motivation, is RGCN [58].

An alternative direction to heuristic defenses is certification against small perturbations of the
input [31, 51]. Some of these ideas were transferred to GNNs, recently [6, 60]. These certifications
usually impose many restrictions regarding architectures or perturbations. In [7], randomized
smoothing [14, 37, 38] was extended to GNNs for an empirical certification of arbitrary architectures.

Note that our reasoning about robust location estimators is orthogonal to the work of Xu et al. [55].
Their aim is to design aggregation functions that maximize the expressive power of a GNN. On the
other hand, our goal is to design robust aggregation functions. Since the 1960s, the robust statistics
community has been systematically studying such estimators in the presence of outliers [32, 48], and
in recent years, research has also been drawn towards robust estimation in high dimensions [20].

7 Conclusion

We propose a robust aggregation function, Soft Medoid, for the internal use within GNNs. We show
that the Soft Medoid—a fully differentiable generalization of the Medoid—comes with the best
possible breakdown point of 0.5 and an upper bound of the error/bias of the internal aggregations.
We outperform all baseline and the other defenses [24, 52, 58] w.r.t. robustness against structural
perturbations by a relative margin of up to 450% and for low-degree edges even 700%.
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Broader Impact

This work is one step on the path towards the adversarial robustness of GNNs. Consequently, all
potential applications of GNNs could benefit. These applications are computer vision, knowledge
graphs, recommender systems, physics engines, and many more [53, 57]. Robust machine learning
models certainly come with less opportunity of (fraudulent) manipulation. Robust models will enable
the application of artificial intelligence (AI) for new use cases (e.g. safety-critical systems)—with
all the related pros and cons. Perhaps, at some point, the discussion of risks and opportunities
for AI [3, 11] and robust machine learning will converge. Focusing on the negative aspects of
contemporary applications, robust GNNs might cause, e.g., an increased automation bias [43], or
fewer loopholes e.g. in the surveillance implemented in authoritarian systems [2].
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