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Abstract

This supplementary material demonstrates the link between NeRV and Class-
NeRV in its unsupervised case (Section 1), illustrates individual effect of each
sub-term of ClassNeRV stress with an ablation study (Section 2) and presents
the full confusion matrix of the 10-NN classifier on the Isolet dataset (Section 3).
It also provides the parameters of the DR techniques (Section 4), additional
experiments to support our claim while accounting for randomness of stochastic
methods (Section 5), quantitative comparison with unsupervised DR methods for
the digits dataset (Section 6) and additional supervised indicators (Section 7).

1 Equivalence of unsupervised ClassNeRV and NeRV

ClassNeRV with parameters τ∈ = τ /∈ = τ∗ (i.e. ε = 0) where τ∗ ∈ [0, 1], is unsupervised
and corresponds to NeRV with trade-off parameter τ∗. Indeed, ClassNeRV stress is given by
(Equation 3):
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Hence, for τ∈ = τ /∈ = τ∗, it may be factored by τ∗ and (1− τ∗), so that the sums of within class
and between class terms collapse, to form sums over all pairs. This leads to:
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Knowing that
∑

j 6=i βij =
∑

j 6=i bij = 1 (due to the normalization in Equation 1),
∑
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j 6=i bij cancel each other out, so that bij − βij and βij − bij terms may be removed from the above

equation, giving:
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As a result, the Bregman divergence becomes a Kullback-Leibler divergence and ClassNeRV stress
equals the stress of NeRV (Equation 2), with trade-off τ∗.

2 Ablation study

To get a finer assessment of the individual impacts of each sub-term of ClassNeRV stress (Equation 3),
we perform an ablation study. We rewrite the ClassNeRV stress with weights w = (w1, w2, w3, w4):
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The case of w = (1, 1, 1, 1) being equivalent to ClassNeRV with τ∈ = τ /∈ = 0.5. The ablation
study consists in successively removing each term of the ClassNeRV stress, zeroing the weights w1,
w2, w3 and w4 one at a time, the others being equal to 1.
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Figure 1: Ablation study for the globe dataset.
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Figure 2: Ablation study for the digits dataset.

When removing the term DB(β
∈
i , b
∈
i ) which penalizes within-class missed neighbours (w =

(0, 1, 1, 1)), the orange class of the globe is torn (Figure 1a).

The removal of DB(b
∈
i , β

∈
i ) penalizing within-class false neighbours (w = (1, 0, 1, 1)), induces the

collapse of the two-hemispheres (Figure 1b).

Ablation of DB(β
/∈
i , b

/∈
i ) which prevents between-class missed neighbours (w = (1, 1, 0, 1)), leads to

separating the two hemisphere along the the equator (Figure 1c).
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Removal of DB(b
/∈
i , β

/∈
i ), that avoid between-class false neighbours (w = (1, 1, 1, 0)) leads to the

collapse of the two hemisphere onto each other (Figure 1d).

Figure 2 shows the equivalent study for the digits dataset with true labels. The effect is especially
clear for Figure 2d, for which several classes strongly overlap.

3 Confusion matrix

We present here the full confusion matrix of a leave one out 10-NN classifier on the Isolet 5 dataset,
for which several classes have been filtered out in the paper. Classes are reordered so as to get a near
block diagonal structure. We may notice some light confusion between letters J and K, and between
letters Q and U, that was not visible on the filtered confusion matrix. Conversely, we may see some
classes involved in very few or no cases of confusion, with for example letter Y involved in 0% of
confusion (considering both its associated row and column).

The leave one-out-classifier k-NN classifier, also used for k-NN accuracy, attributes to each point i
the majority label (winner takes all strategy) of its k-nearest neighbours (among all points except i)
and the equality case is decided randomly.
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Figure 3: Full confusion matrix for the Isolet dataset
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4 Technique parameters

Table 1: Default parameterization and implementations library of the DR techniques used in all
experiments of the main paper.

Method Initialization Neighbourhood size Implementation

PCA N.A. N.A. scikit-learn (0.22.1)

Isomap N.A. 5 scikit-learn (0.22.1)

UMAP Spectral 15 umap-learn (version 0.3.10)

tSNE PCA/random 30 scikit-learn (0.22.1)

NeRV PCA 32/30 author implementation

NCA LDA N.A. scikit-learn (0.22.1)

S-Isomap N.A. 5 author implementation

Classimap DD-HDS 5 author implementation

S-UMAP Spectral 15 umap-learn (version 0.3.10)

ClassNeRV PCA 32/30 author implementation

5 Evaluation indicators with varying random states

Some of the dimensionality reduction techniques to which ClassNeRV is compared are stochas-
tic, so their results may vary due to randomization in the optimization of the stress function (e.g.
stochastic gradient methods), or in the initialization of the embedding. The former case happens
for tSNE, UMAP, S-UMAP and Classimap. The latter case happens for tSNE, for which the
initialization may be either PCA or random. Conversely, PCA, Isomap and S-Isomap are designed
to systematically find the global minimum of their stress functions by Singular Value Decomposition,
while the implementations used for NCA, NeRV and ClassNeRV use deterministic initialization
and optimization methods.

To assess the robustness of the quantitative analysis in section 4 of the main paper, we present the
minimum, median and maximum value of the indicators over 30 runs (random initialization) of each
technique. Here, indicators are presented individually (e.g T vs κ) rather than by pairs (e.g. T vs C).
This less compact view gives more space to see the variations for each neighborhood size κ. It also
eases the comparison of a pair of methods for a given indicator and a given κ scale.

The variability shown by Figures 4, 5, 6 and 7 does not hinder the repeatability of the results already
observed in the main paper.

Table 2: ClassNeRV vs State-of-the-Art techniques (SofA) on Globe and Isolet datasets
Unsupervised DR Supervised DR

Neighbors preservation ClassNeRV ≈ best SofA (Fig. 4) ClassNeRV > SofA (Fig. 6)
Classes preservation ClassNeRV > SofA (Fig. 5) ClassNeRV ≈ best SofA (Fig. 7)

These supplemental results on the Globe and Isolet datasets support our main claim (see Table 2):

• ClassNeRV is as good as the best unsupervised DR for neighbors preservation (Fig. 4);
• ClassNeRV dominates unsupervised DR for classes preservation indicators (Fig. 5);
• ClassNeRV dominates supervised DR for neighbors preservation indicators (Fig. 6);
• ClassNeRV is as good as the best supervised DR for classes preservation (Fig. 7).

4



5.1 ClassNeRV is as good as best Unsupervised DR for Neighbors Preservation
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(c) Trustworthiness for the Isolet dataset
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Figure 4: ClassNeRV is as good as the best unsupervised DR techniques regarding neighbors
preservation on both Globe (top) and Isolet (bottom). Quality indicators (higher values indicating
better mapping) are plotted against their scale parameter κ (from to to N/2 with N the number of
data points). The neighbourhood size parameters of UMAP (15), tSNE (30) and NeRV/ClassNeRV
(32 for Globe and 30 for Isolet) are marked by vertical dashed lines and give the scale at which
optimal neighbor preservation is expected. Shaded areas present the range of variation between the
minimum and maximum value of indicators for the 30 runs of a method, while black lines show the
median values.
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5.2 ClassNeRV dominates Unsupervised DR for Class Preservation
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(a) Between-class Trustworthiness for the Globe dataset
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(b) Within-class Continuity for the Globe dataset
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(c) Between-class Trustworthiness for the Isolet dataset
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(d) Within-class Continuity for the Isolet dataset

Figure 5: ClassNeRV dominates unsupervised DR techniques regarding classes preservation on
both Globe (top) and Isolet (bottom). Quality indicators (higher values indicating better mapping)
are plotted against their scale parameter κ (from to to N/2 with N the number of data points). The
neighbourhood size parameters of UMAP (15), tSNE (30) and NeRV/ClassNeRV (32 for Globe
and 30 for Isolet) are marked by vertical dashed lines and give the scale at which optimal neighbor
preservation is expected. Shaded areas present the range of variation between the minimum and
maximum value of indicators for the 30 runs of a method, while black lines show the median values.
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5.3 ClassNeRV dominates Supervised DR for Neighbors Preservation
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Figure 6: ClassNeRV dominates supervised DR techniques regarding neighbors preservation on
both Globe (top) and Isolet (bottom). Quality indicators (higher values indicating better mapping)
are plotted against their scale parameter κ (from to to N/2 with N the number of data points). The
neighbourhood size parameters of S-UMAP (15) and ClassNeRV (32 for Globe and 30 for Isolet)
are marked by vertical dashed lines and give the scale at which optimal neighbor preservation is
expected. Shaded areas present the range of variation between the minimum and maximum value of
indicators for the 30 runs of a method, while black lines show the median values.
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5.4 ClassNeRV is as good as best Supervised DR for Class Preservation
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(b) Within-class Continuity for the Globe dataset
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(c) Between-class Trustworthiness for the Isolet dataset
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Figure 7: ClassNeRV is as good as the best supervised DR techniques regarding classes preservation
on both Globe (top) and Isolet (bottom). Quality indicators (higher values indicating better mapping)
are plotted against their scale parameter κ (from to to N/2 with N the number of data points). The
neighbourhood size parameters of S-UMAP (15) and ClassNeRV (32 for Globe and 30 for Isolet)
are marked by vertical dashed lines and give the scale at which optimal neighbor preservation is
expected. Shaded areas present the range of variation between the minimum and maximum value of
indicators for the 30 runs of a method, while black lines show the median values.
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6 ClassNeRV vs unsupervised methods for the digits dataset

The results of ClassNeRV against unsupervised methods for the digits are coherent with those ob-
tained with other datasets. The structure preservation is comparable, with some additional distortions
at high scales κ, while the class-preservation is improved over unsupervised methods.
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Figure 8: ClassNeRV compared with unsupervised techniques for the digits dataset

7 Additional supervised indicator

The k-NN gain [1] is defined for a number of neighbours k as:

G(k) =
1

N

∑
i

|ni(k) ∩ S∈i |
|ni(k)|

− |νi(k) ∩ S
∈
i |

|νi(k)|
, (1)

where ni(k) and νi(k) are respectively the sets of the k-nearest neighbours of i in the embedding
and data space, and | · | denotes the cardinal of a set. Hence, it is a measure of the average difference
between the embedding and data space of the proportion of k-nearest neighbours of each point i that
are within-class neighbours. A positive value suggests that the performances of a k-NN classifier
should be higher in the map than in the data space. As such, the k-NN gain is an indicator based on
classification accuracy taking into account the effective separation of classes in the data space.

Figure 9 presents that score for several values of k for several datasets. ClassNeRV leads to higher
values than unsupervised DR for that indicator, except for a few values of k in the case of digits with
random labels. Note that in that case the range of value is very small (from −2% to +5%).

Compared with supervised DR, ClassNeRV has lower gain than all methods excepts Classimap
and S-Isomap for the globe dataset, and NCA for Isolet and digits with true labels. Yet, for the
specific case of digits with random labels, where the classes are unrelated to the structure, the gain of
ClassNeRV is close to 0, as opposed to other supervised methods. This confirms that ClassNeRV
does not over-separate the random classes, contrary to other supervised methods.

References
[1] C. de Bodt, D. Mulders, D. L. Sánchez, M. Verleysen, and J. A. Lee, “Class-aware t-SNE:

cat-SNE.,” in ESANN, 2019.
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ClassNeRV vs unsupervised techniques ClassNeRV vs supervised techniques
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Figure 9: k-NN gain for all possible values of k for the 4 datasets and all unsupervised and supervised
DR techniques.
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