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Abstract

In this paper, we deepen the analysis of continuous time Fictitious Play learning
algorithm to the consideration of various finite state Mean Field Game settings
(finite horizon, �-discounted), allowing in particular for the introduction of an
additional common noise. We first present a theoretical convergence analysis of the
continuous time Fictitious Play process and prove that the induced exploitability
decreases at a rate O( 1t ). Such analysis emphasizes the use of exploitability as
a relevant metric for evaluating the convergence towards a Nash equilibrium in
the context of Mean Field Games. These theoretical contributions are supported
by numerical experiments provided in either model-based or model-free settings.
We provide hereby for the first time converging learning dynamics for Mean Field
Games in the presence of common noise.

1 Introduction

Learning in games has a long history [103, 101] but learning in the midst of a large number of players
still remains intractable. Even the most recent successes of machine learning, including Reinforcement
Learning (RL) [112], remain limited to interactions with a handful of players (e.g. Go [106, 108, 107],
Chess [28], Checkers [102, 101], Hex [13], Starcraft II [114], poker games [24, 25, 91, 21] or Stratego
[87]). Whilst the general multi-agent learning case might seem out of reach, considering interactions
within a very large population of players may lead to tractable models. Inspired by the large economic
literature on games with a continuum of players [15], the notion of Mean Field Games (MFGs)
has been introduced in [84, 76] to model strategic interactions through the distribution of players’
states. In such framework, all players are identical, anonymous (i.e., they are not identifiable) and
have symmetric interests. In this asymptotic formulation, the learning problem can be reduced to
characterizing the optimal interactions between one representative player and the full population.

Most of the MFG literature assumes the representative player to be fully informed about the game
dynamics and the associated reward mechanisms. In such context, the Nash equilibrium for an
MFG is usually computed via the solution of a coupled system of dynamical equations. The
first equation models the forward dynamics of the population distribution, while the second is the
dynamic programming equation of the representative player. Such approaches typically rely on partial
differential equations and require deterministic numerical approximations [9] (e.g., finite differences
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methods [4, 3], semi-Lagrangian schemes [34, 35], or primal-dual methods [23, 22]). Despite the
success of these schemes, an important pitfall for applications is their lack of scalability. In order to
tackle this limitation, stochastic methods based on approximations by neural network have recently
been introduced in [39, 40, 59] using optimality conditions for general mean field games, in [98] for
MFGs which can be written as a control problem, and in [29, 86] for variational MFGs in connection
with generative adversarial networks. We now contribute and take a new step forward in this direction.

We investigate a generic and scalable simulation-based learning algorithm for the computation of
approximate Nash equilibria, building upon the Fictitious Play scheme [97, 60, 104]. We study the
convergence of Fictitious Play for MFGs, using tools from the continuous learning time analysis [71,
93, 73]. We derive a convergence of the Fictitious Play process at a rate O( 1t ) in finite horizon or over
�-discounted monotone MFGs (see Appx. E), thus extending previous convergence results restricted
to simpler games [71]. Besides, our approach covers games where the players share a common source
of risk, which are widely studied in the MFG literature and crucial for applications. To the best of
our knowledge, we derive for the first time convergence properties of a learning algorithm for these
so-called MFGs with common noise (where a common source of randomness affects all players [36]).
Furthermore, our analysis emphasizes the role of exploitability as a relevant metric for characterizing
the convergence towards a Nash equilibrium, whereas most approximation schemes in the MFG
literature quantify the rate of convergence of the population empirical distribution. The contribution
of this paper is thus threefold: (1) we provide several theoretical results concerning the convergence
of continuous time Fictitious Play in MFGs matching the O( 1t ) rate existing in zero-sum two-player
normal form game, (2) we generalize the notion of exploitability to MFGs and we show that it is
a meaningful metric to evaluate the quality of a learned control in MFGs, and (3) we empirically
illustrate the performance of the resulting algorithm on several MFG settings, including examples
with common noise.

2 Background on Finite Horizon Mean Field Games

A Mean Field Game (MFG) is a temporally extended decision making problem involving an infinite
number of identical and anonymous players. It can be solved by focusing on the optimal policy of
a representative player in response to the behavior of the entire population. Let X and A be finite
sets representing respectively the state and action spaces. The representative player starts the game
in state x 2 X according to an initial distribution µ0 over X . At each time step n 2 [0, . . . , N ], the
representative player being in state xn takes an action an according to a policy ⇡n(an|xn). As a
result, the player moves to state xn+1 according to the transition probability p(.|xn, an) and receives
a reward r(xn, an, µn), where µn represents the distribution over states of the entire population at
time n. For a given sequence of policies ⇡ = (⇡n)n and a given sequence of distributions µ = (µn)n,
the representative player will receive the cumulative sum of rewards defined as2:

J(µ0,⇡, µ) = E
"

NX

n=0

r(xn, an, µn) | x0 ⇠ µ0, xn+1 = p(.|xn, an), an ⇠ ⇡n(.|xn)

#
.

Q-functions and value functions: The Q-function is defined as the expected sum of rewards starting
from state x and doing action a at time n:

Q
⇡,µ
n (x, a) = E

"
NX

k=n

r(xk, ak, µk) | xn = x, an = a, xk+1 = p(.|xk, ak), ak ⇠ ⇡k(.|xk)

#
.

By construction, it satisfies the recursive equation:

Q
⇡,µ
N (x, a) = r(x, a, µN ), Q

⇡,µ
n�1(x, a) = r(x, a, µn�1)+

X

x02X
p(x0|x, a)Eb⇠⇡n(.|x0) [Q

⇡,µ
n (x0

, b)] .

The value function is the expected sum of rewards for the player that starts from state x and can
thus be defined as: V

⇡,µ
n (x) = Ea⇠⇡(.|x) [Q

⇡,µ
n (x, a)]. Note that the objective function J of a

representative player rewrites in particular as an average at time 0 of the value function V under the
initial distribution µ0: J(µ0,⇡, µ) = Ex⇠µ0(.) [V

⇡,µ
0 (x)] .

2All the theory can be easily extended in the case where the reward is also time dependent.
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Distribution induced by a policy: The state distribution induced by ⇡ = {⇡n}n is de-
fined recursively by the forward equation starting from µ

⇡
0 (x) = µ0(x) and µ

⇡
n+1(x

0) =P
x,a2X⇥A

⇡n(a|x)p(x0|x, a)µ⇡
n(x).

Best Response: A best response policy ⇡
BR is a policy that satisfies J(µ0,⇡

BR
, µ

⇡) =
max
⇡0

J(µ0,⇡
0
, µ

⇡). Intuitively, it is the optimal policy an agent could take if it was to deviate
from the crowd’s policy.

Exploitability: The exploitability �(⇡) of policy ⇡ quantifies the average gain for a representative
player to replace its policy by a best response, while the entire population plays with policy ⇡:
�(⇡) := max

⇡0
J(µ0,⇡

0
, µ

⇡)�J(µ0,⇡, µ
⇡). Note that, as it scales with rewards, the absolute value of

the exploitability is not meaningful. What matters is its relative value compared with a reference point,
such as the exploitability of the policy at initialization of the algorithm. In fact, the exploitability
is game dependent and hard to re-scale without introducing other issues (dependence on the initial
policy if we re-normalize with the initial exploitability for example).

Nash equilibrium: A Nash equilibrium is a policy satisfying �(⇡) = 0 while an approximate Nash
equilibrium has a small level of exploitability.

The exploitability is an already well known metrics within the computational game theory litera-
ture [117, 21, 83, 26], and one of the objectives of this paper is to emphasize its important role in the
context of MFGs. Classical ways of evaluating the performance of numerical methods in the MFG
literature typically relate to distances between distribution µ or value function V , as for example
in [9]. A close version of the exploitability has been used in this context (e.g., [68]), but being
computed over all possible starting states at any time. Such formulation gives too much importance to
each state, in particular those having a (possibly very) small probability of appearance. In comparison,
the exploitability provides a well balanced average metrics over the trajectories of the state process.

Monotone games: A game is said monotone if the reward has the following structure: r(x, a, µ) =
r̃(x, a) + r̄(x, µ) and 8µ, µ0

,
P

x2X (µ(x)� µ
0(x))(r̄(x, µ)� r̄(x, µ0))  0. This so-called Lasry-

Lions monotonicity condition is classical to ensure the uniqueness of the Nash equilibrium [84].

Learning in finite horizon problems: When the distribution µ of the population is given, the
representative player faces a classical finite horizon Markov Decision problem. Several ap-
proaches can be used to solve this control problem such as model-based algorithms (e.g. back-
ward induction: Algorithm 4 in Appx. D, with update rule 8a, x 2 A ⇥ X Q

µ
n�1(x, a) =

r(x, a, µn�1) +
P

x02X p(x0|x, a)max
b

Q
µ
n(x

0
, b)) or model-free algorithms (e.g. Q-learning: Algo-

rithm 2 in Appx. D with update rule Q
k+1
n (xk

n, a
k
n) = (1� ↵)Qk+1

n (xk
n, a

k
n) + ↵[r(xk

n, a
k
n, µk�1) +

maxb Qk
n+1(x

k
n+1, b)]).

Computing the population distribution: Once a candidate policy is identified, one needs to be able
to compute (or estimate) the induced distribution of the population at each time step. It can either be
computed exactly using a model-based method such as Algorithm 5 in Appx. D, or alternatively be
estimated with a model-free method like Algorithm 3 in Appx. D.

Fictitious Play for MFGs: Consider available (1) a computation scheme for the population distribu-
tion given a policy, and (2) an approximation algorithm for an optimal policy of the representative
player in response to a population distribution. Then, discrete time Fictitious Play presented in
Algorithm 1 provides a robust approximation scheme for Nash equilibrium by computing iteratively
the best response against the distribution induced by the average of the past best responses. We will
analyse this discrete time process in continuous time in section 3. To differentiate the discrete time
from the continuous time, we denote the discrete time with j and the continuous time with t. At a
given step j of Fictitious Play, we have that:

8n, µ̄j
n =

j � 1

j
µ̄
j�1
n +

1

j
µ
⇡j

n

The policy generating this average distribution is:

8n, ⇡̄j
n(a|x) =

Pj
i=0 µ

⇡i

n (x)⇡i
n(a|x)Pj

i=0 µ
⇡i

n (x)
.
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Algorithm 1: Fictitious Play in Mean Field Games
input :Start with an initial policy ⇡0, an initial distribution µ0 and define ⇡̄0 = ⇡0

1 for j = 1, . . . , J: do
2 find ⇡

j a best response against µ̄j (either with Q-learning or with backward induction);
3 compute ⇡̄

j the average of (⇡0
, . . . ,⇡

j);
4 compute µ

⇡j

(either with a model-free or model-based method);
5 compute µ̄

j the average of (µ0
, . . . , µ

⇡j

)
6 return ⇡̄

J , µ̄J

3 Continuous Time Fictitious Play in Mean Field Games

In this section, we study a continuous time version of Algorithm 1. The continuous time Fictitious
Play process is defined following the lines of [71, 93]. First, we start for t < 1 with a fixed policy
⇡̄
t<1 = {⇡̄t<1

n }n = {⇡t<1
n }n with induced distribution µ̄

t<1 = µ
t<1 = µ

⇡t<1

= {µ⇡t<1

n }n (this
arbitrary policy for t 2 [0, 1] is necessary for the process to be defined at the starting point). Then,
the Fictitious Play process is defined for all t � 1 and n 2 [1, . . . , N ] as:

d

dt
µ̄
t
n(x) =

1

t

�
µ

BR,t
n (x)� µ̄

t
n(x)

�
or in integral form: µ̄

t
n(x) =

1

t

tZ

s=0

µ
BR,s
n (x)ds ,

where µ
BR,t
n denotes the distribution induced by a best response policy {⇡BR,t

n }n against µ̄t
n(x).

Hence, the distribution µ
t
n(x) identifies to the population distribution induced by the averaged policy

{⇡t
n}n defined as follows (proof in A):

8n, µ̄t
n(x)

d

dt
⇡̄
t
n(a|x) =

1

t
µ

BR,t
n (x)[⇡BR,t

n (a|x)� ⇡̄
t
n(a|x)]

or in integral form: 8n, ⇡̄t
n(a|x)

tZ

s=0

µ
BR,s
n (x)ds =

tZ

s=0

µ
BR,s
n (x)⇡BR,s

n (a|x)ds,

with ⇡
BR,s
n being chosen arbitrarily for t  1. We are now in position to provide the main result of

the paper quantifying the convergence rate of the continuous Fictitious Play process.

Theorem 1. If the MFG satisfies the monotony assumption, we can show that the exploitability is a
strong Lyapunov function of the system, 8t � 1: d

dt�(⇡̄
t)  � 1

t�(⇡̄
t). Hence �(⇡̄t) = O( 1t ).

The proof of the theorem is postponed to Appendix A. Furthermore, a similar property for �

discounted MFGs is provided in Appendix C. We chose to present an analysis in continuous time
because it provides convenient mathematical tools allowing to exhibit state of the art convergence
rate. In discrete time, similarly to normal form games [78, 45], we conjecture that the convergence
rate for monotone MFGs is O(t�

1
2 ).

4 Experiments on Fictitious Play in the Finite Horizon Case

In this section, we illustrate the theoretical convergence of continuous time Fictitious Play by looking
at the discrete time implementation of the process. We focus on classical linear quadratic games
which have been extensively studied [20, 64, 49] and for which a closed form solution is available. We
then turn to a more difficult numerical setting for experiments3. We chose either a full model-based
implementation or a full model-free approach of Alg. 1. The model-based uses Backward Induction
(Alg. 4) and an exact calculation of the population distribution (Alg. 3). The model-free approach
uses Q-learning (Alg. 2) and a sampling-based estimate of the distribution (Alg. 5).

3In all experiments, we represent µ̄, but applying ⇡̄ to µ0 would give the same result as µ̄ = µ⇡̄ .
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4.1 Linear Quadratic Mean Field Game

Environment: We consider a Markov Decision Process a finite action space A = {�M, . . . ,M}
together with a one dimensional finite state space domain X = {�L, . . . , L}, which can be viewed
as a truncated and discretized version of R. The dynamics of a typical player picking action an at
time n are governed by the following equation:

xn+1 = xn + (K(mn � xn) + an)�n + �✏n

p
�n ,

allowing the representative player to either stay still or move to the left or to the right. In order
to make the model more complex, an additional discrete noise ✏n can also push the player to the
left or to the right with a small probability: ✏n ⇠ N (0, 1), which is in practice discretized over
{�3�, . . . , 3�}. The resulting state xn+1 is rounded to the closest discrete state.

At each time step, the player can move up to M nodes and it receives the reward:

r(xn, an, µn) = [�1

2
|an|2 + qan(mn � xn)�



2
(mn � xn)

2]�n

where mn =
P

x2X xµn(x) is the first moment of the state distribution µn. �n is the time lapse
between two successive steps, while q and  are given non-negative constants. The first term quantifies
the action cost, while the two last ones encourage the player to remain close to the average state of
the population at any time. Hereby, the optimal policy pushes each player in the direction of the
population average state. We set the terminal reward to r(xN , aN , µN ) = � cterm

2 (mN � xN )2.

(a) Exact Solution (b) Model-based (c) Model-free (d) Exploitability

Figure 1: Evolution of the distribution in the linear quadratic MFG with finite horizon.

Experimental setup: We consider a Linear Quadratic MFG with 100 states and an horizon N = 30,
which provides a closed-form solution for the continuous state and action version of the game (see
Appx. C) and bounds the number of actions M = 37 required in the implementation. In practice,
the variance � of the idiosyncratic noise ✏n is adapted to the number of states. Here, we set � = 3,
�n = 0.1, K = 1, q = 0.01,  = 0.5 and cterm = 1. In all the experiments, we set the learning rate
↵ of Q-learning to 0.1 and the "-greedy exploration parameter to 0.2.

Numerical results: Figure 1 illustrates the convergence of Fictitious Play model-based and model-
free algorithm in such context. The initial distribution, which is set to two separated bell-shaped
distributions, are both driven towards m and converge to a unique bell-shaped distribution as expected.
The parameter � of the idiosyncratic noise influences the variance of the final normal distribution.
We can observe that both Backward Induction and Q-learning provide policies that approximate
this behaviour, and that the exploitability decreases with a rate close to O(1/t) in the case of the
model-based approach, while the model-free decreases more slowly.

4.2 The Beach Bar Process

2

1

Bar

|X |-2

...

|X |-1

Figure 2: The beach bar process.

As a second illustration, we now consider the beach bar process,
a more involved monotone second order MFG with discrete
state and action spaces, that does not offer a closed-form so-
lution but can be analyzed intuitively. This example is a sim-
plified version of the well known Santa Fe bar problem, which
has received a strong interest in the MARL community, see
e.g. [14, 55].

Environment: The beach bar process (Figure 2) is a Markov
Decision Process with |X | states disposed on a one dimensional

5



torus (X = {0, . . . , |X |� 1}), which represents a beach. A bar is located in one of the states. As the
weather is very hot, players want to be as close as possible to the bar, while keeping away from too
crowded areas. Their dynamics is governed by the following equation:

xn+1 = xn + b(xn, an) + ✏n

where b is the drift, allowing the representative player to either stay still or move one node to the left
or to the right. The additional noise ✏n can push the player one node away to the left or to the right
with a small probability:

b(xn, an) =

(
1 if an = right
0 if an = still
�1 if an = left

✏n =

8
<

:

1 with probability 1�p
2

0 with probability p

�1 with probability 1�p
2

Therefore, the player can go up to two nodes right or left and it receives, at each time step, the reward:

r(xn, an, µn) = r̃(xn)�
|an|
|X | � log(µn(xn)) ,

where r̃(xn) denotes the distance to the bar, whereas the last term represents the aversion of the
player for crowded areas in the spirit of [11].

Numerical results: We conduct an experiment with 100 states and an horizon N = 15. Starting
from a uniform distribution, we can observe in Figure 3 that both backward induction and Q-learning
algorithms converge quickly to a peaky distribution where the representative player intends to be as
close as possible to the bar while moving away if the bar is already too crowded. The exploitability
offers a nice way to measure how close we are from the Nash equilibrium and shows as expected
that the model-based algorithm (backward induction) converges at a rate O(1/t) and faster than the
model-free algorithm (Q-learning).

(a) Model-based (b) Model-free (c) Exploitability

Figure 3: Beach bar process in finite horizon: (a, b) evolution of the distribution, (c) exploitability.

5 Finite Horizon Mean Field Games with Common Noise

We now turn to the consideration of so-called MFG with common noise, that is including an additional
discrete and common source of randomness in the dynamics. Players still sequentially take actions
(a 2 A) in a state space X , but the dynamics and the reward are affected by a common noise sequence
{⇠n}0nN . We denote ⌅n = {⇠k}0k<n = ⌅n�1.⇠n�1 where |⌅n| represents the total length of
the sequence. The extra common source of randomness ⇠ affects both the reward r(x, a, µ, ⇠) and
the probability transition function p(x0|x, a, ⇠). We consider policies ⇡n(a|x,⌅) and population
distribution µn(x|⌅) which are both noise-dependent, and will simply be denoted ⇡n,⌅(a|x) and
µn|⌅(x). The Q function is defined as:

Q
⇡,µ
N (x, a|⌅N ) = r(x, a, µN |⌅N

, ⇠N ), Q
⇡,µ
n�1(x, a|⌅n�1) =

X

⇠

P (⇠n�1 = ⇠|⌅n�1)
h

r(x, a, µn�1,⌅n�1 , ⇠) +
X

x02X
p(x0|x, a, ⇠)Eb⇠⇡n(.|x0,⌅n�1.⇠) [Q

⇡,µ
n (x0

, b|⌅n�1.⇠)]
i
,

while the value function is simply V
⇡,µ
n (x,⌅n) = Ea⇠⇡n,⌅n (.|x) [Q

⇡,µ
n (x, a|⌅n)]. Similarly,

the distribution over states is conditioned on the sequence of noises and satisfies the balance
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equation: µ
⇡
0 (x,⌅0) = µ0(x) (with ⌅0 being the empty sequence {}) and µ

⇡
n+1(x

0|⌅.⇠) =P
x2X

p
⇡n,⌅.⇠(x0|x, ⇠)µ⇡

n(x|⌅). The expected return for a representative player starting at µ0 is:

J(µ0,⇡, µ) =
X

x2X
µ0(x)V

⇡,µ
0 (x,⌅0) =

NX

n=0

X

⌅,⇠,|⌅|=n

P (⌅.⇠)
X

x2X
[µn(x,⌅)r(x, a, µn,⌅, ⇠)]

with P (⌅0) = 1 and P (⌅.⇠) = P (⇠|⌅)P (⌅). Finally the exploitability is again defined as:

�(⇡) = max
⇡0

J(µ0,⇡
0
, µ

⇡)� J(µ0,⇡, µ
⇡).

Continuous time Fictitious Play for MFGs with common noise: The Fictitious play process on
MFGs with common noise is as follows. For t < 1, we start with an arbitrary policy ⇡̄

t<1 (by
convention we will take ⇡̄

t = ⇡
BR,t for t < 1) whose distribution is µ̄

t<1 = µ
⇡t<1

(with the
convention that µ̄t = µ

BR,t). Then, for all t and ⌅:

µ̄
t
n(x|⌅) =

1

t

tZ

s=0

µ
BR,s
n (x|⌅)ds,

where µBR,t is the distribution of a best response policy ⇡
BR,t against µ̄t when t � 1. The distribution

µ
t is the distribution of a policy ⇡̄

t, which is defined as follows for t � 1:

8n,⌅, ⇡̄
t
n(a|x,⌅)

tZ

s=0

µ
BR,s
n (x|⌅)ds =

tZ

s=0

µ
BR,s
n (x|⌅)⇡BR,s

n (a|x,⌅)ds.

Theorem 2. Under the monotony assumption, the exploitability is a strong Lyapunov function of the
system for t � 1: d

dt�(⇡̄
t)  � 1

t�(⇡̄
t). Therefore, �(⇡̄t) = O( 1t ).

6 Experiments with Common Noise

6.1 Linear Quadratic Mean Field Game

Environment: We use a similar environment as the one described in the Linear Quadratic MFG. On
top of the idiosyncratic noise ✏n, we add a common noise ⇠n, which is assumed to be stationary and
i.i.d. We now consider the following dynamics:

xn+1 = xn + (K(mn � xn) + an)�n + �(⇢⇠n +
p

1� ⇢2✏n)
p

�n .

The reward remains unchanged, except that the first moment of the state distribution µ̄n now depends
on the sequence of common noises ⌅n: mn = E[xn|⌅n]. We set ⇢ = 0.5.

(a) Exact Solution (b) Model-based (c) Model-free (d) Exploitability

Figure 4: Linear Quadratic with Common Noise.

Numerical results: On Figure 4, the two separated bell-shaped distributions reassemble and follow
the sequence of common noises. Namely, the mean of the distribution moves with the successive
common noises, which are represented by the red line below the distribution’s evolution. This
evolution can be interpreted as a school of fish which undergoes a water flow (i.e. the sequence of
common noises). Both model-based and model-free approaches approximate the exact solution. The
exploitability of model-based still decreases at a rate O(1/t), while the one of model-free decreases
more slowly.
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6.2 The Beach Bar Process

Environment: We consider a setting where the bar can close at only one given time step. This gives
two possible realizations of the common noise: (1) the bar stays open or (2) it closes at this time step.
Here, the dynamics remain unchanged but the reward now depends on the common noise: ropen is
the same reward as before, whereas rclosed(xn, an, µn) = � |an|

|X | � log(µn(xn)).

(a) Model-based, the bar stays
open (b) Model-based, the bar closes (c) Exploitability

(d) Model-free, the bar stays open (e) Model-free, the bar closes

Figure 5: First Common Noise setting, the bar has a probability 0.5 of closing at time step 15.

Numerical results: We set the time step of closure at N
2 where N = 30 is the horizon of the game

and the number of states |X | to 100. We choose the probability of closure to be 0.5. Figure 5 shows
that the players anticipate the possibility that the bar may close: the density of people next to the
bar decreases before the time step of the common noise. After the common noise, the distribution
becomes uniform if the bar has closed or people go back next to the bar if the bar stays open. Once
again, the exploitability indicates that the model-based and model-free approaches both converge to
the Nash equilibrium and that the model-based converges faster.

7 Experiment at Scale

(a) Start (b) Middle (c) End (d) Exploitability

Figure 6: 2D crowd modeling example.

We finally present a crowd modeling experiment, motivated by swarm robotics (see e.g. [88, 113, 48]),
where a distribution of players is encouraged to move in a maze towards the center of a 100⇥ 100
grid. The reward at a state (i, j) is described as r(s = (i, j), a, µ) = 10 ⇤ (1 � k(i,j)�(50,50)k1

100 ) �
1
2 log(µ(x)), where the last term captures the aversion for crowded areas. The initial distribution is
chosen proportional to (1� k(i,j)�(5,5)k2p

2⇥952
)10 while being null on the maze obstacles (the yellow strait

lines). The evolution of the distribution as well as the exploitability are represented in Figure 6 (a
video is available in supplementary material).
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8 Related Work

Theoretical results in MFGs: Theoretical results in terms of uniqueness, existence and stability of
Nash equilibrium in such games are numerous, see [30, 19, 36]. A key motivation is that the optimal
control derived in an MFG provides an approximate Nash equilibrium in a game with a large but
finite number of players. In general, most games are considered in a continuous setting while Gomes
et al. [62] proved existence results for finite state and action spaces MFGs and [99] considered finite
state discounted cost MFGs. An important and challenging extension is the case of players sharing a
common source of risk (such as several companies in the same economy market), giving rise to the
so-called MFG with common noise, see [37] or [36, Volume II]. These games are usually solved by
numerical methods for partial differential equations [9] or probabilistic methods [12, 40, 59].

Learning in games and MFGs: The scaling limitations of traditional multi-agent learning methods
with respect to the number of players remain quite hard to overcome as the complexity of independent
learning methods [56, 96, 95, 109, 92, 58, 57] scales at least linearly with the number of players and
some methods may scale exponentially (e.g. Nash Q-learning [74] or correlated Q-learning [66]).
By approximating the discrete population by a continuous one, the MFG scheme made learning
approaches more suitable and attracted a surge of interest. Model-based methods have been first
considered (e.g. [116] studied a MF oscillator game, [31] initiated the study of Fictitious Play in
MFGs). Recently, several works have focused on model-free methods such as Q-learning [68] but
the convergence results rely on very strong hypotheses. Note that, although our method can make
use of Q-learning to learn a best response, it does not rely on it. Also, our method can make use of
both model-based and model-free algorithms. Finally, our method relies only on the Lasry-Lions
monotonicity condition, which is much less restrictive than a potential or variational structure.

Fictitious Play (FP), which is also a classical method to learn in N -player games [97, 93, 71, 73, 72,
96], combined with a model-free algorithm has been considered in [90] but with several inaccuracies,
as already pointed out in [111], which focuses on policy gradient methods. However, they study a
restricted stationary setting as opposed to the finite time horizon covered by our contribution and
their convergence results hold under hardly verifiable assumptions.

Convergence of approximate FP has been proved in [54] (based on the FP analysis of [69]) but without
common noise and their analysis is for discrete time FP and only for first-order MFGs (without noise
in the dynamics). Our analysis, done in continuous time, is more transparent and works for MFGs
with both idiosyncratic and common sources of randomness in the dynamics. Furthermore, their
numerical example was stationary whereas we were also able to learn the solution of time-dependent
MFGs, which covers a larger scope of meaningful applications. Finally, our analysis provides a rate
of convergence (O( 1t )) while previous FP work in MFG do not.

9 Conclusion

In this paper we have shown that Fictitious Play can serve as a basis for building practical algorithms
to solve a wide variety of MFGs including finite horizon and �-discounted MFGs as well as games
perturbed by a common noise. We proved that, in all these settings, the resulting exploitability
decreases at a rate of O( 1t ) and that this metrics can be used to monitor the quality of the control
throughout the learning. To illustrate our findings and the versatility of the method, we instantiated
the Fictitious Play scheme using Backward Induction and Q-Learning to learn intermediate best
responses. Application of these instances on different MFGs have shown that the proposed algorithms
consistently learned a near-optimal control and led to the desired behaviour for the population of
players. This scheme has the potential to scale up dramatically by using advanced reinforcement
learning algorithms combined with neural networks for the computation of the best response.

9



Broader Impact

Applications of MFGs: The MFG model has inspired numerous applications [67] and we hope
our work can help practitioners to solve MFGs problems at scale. A popular application focuses
on population dynamics modeling [1, 33] including crowd motion modeling [7, 27, 46, 16, 8, 43],
opinion dynamics and consensus formation [110, 18, 94], autonomous vehicles [75, 105] or sanitary
vaccination [77, 51]. But MFGs have also naturally found applications in banking, finance and
economics including banking systemic risk [38, 52], high frequency trading [82, 32], income and
wealth distribution [6], economic contract design [53], economics in general [6, 2, 41, 61, 47]
or price formation [84, 82, 63]. Energy management or production applications are studied in
[10, 44, 50, 17, 79, 85, 67, 5, 42, 65], whereas security and communication applications appear in
[89, 100, 70, 115, 80, 81].

Exploitability as a metric: One of the leading factor of progress for numerical or learning methods
is the clear understanding of which metrics should be optimized. In reinforcement learning, the mean
human normalized score is a standard metric of success. In supervised learning, the top 1 accuracy
has been the foremost metric of success. We hope the exploitability can achieve such a role on the
numerical aspects of MFGs.
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