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Abstract

Effective intersection control can play an important role in reducing traffic con-
gestion and associated vehicular emissions. This is vitally needed in developing
countries, where air pollution is reaching life threatening levels. This paper presents
EcoLight intersection control for developing regions, where budget is constrained
and network connectivity is very poor. EcoLight learns effective control offline
using state-of-the-art Deep Reinforcement Learning methods, but deploys highly
efficient runtime control algorithms on low cost embedded devices that work stand-
alone on road without server connectivity. EcoLight optimizes both average case
and worst case values of throughput, travel time and other metrics, as evaluated on
open-source datasets from New York and on a custom developing region dataset.

1 Introduction

Developing countries are overwhelmed with the problems of traffic congestion (TimesOfIndia [2018],
IndiaTimes [2018], FinancialExpress [2018]) and air pollution (DW [2019a], Amnesty [2019], DW
[2019b]). Intersection control to better manage traffic congestion and reduce vehicular emissions is
vitally needed, in addition to policies for curbing traffic (Ecotech [2016]). State-of-the-art intelligent
intersection control like Presslight (Wei et al. [2019a]) and CoLight (Wei et al. [2019b]) are showing
impressive results on lane-based orderly traffic of the developed countries. This paper explores
whether the benefits of these Convolutional Neural Network (CNN) based real time video analysis
from traffic cameras, and Deep Reinforcement Learning (DRL) based adaptive intersection control,
can be translated to the developing world, where the need for these technologies is paramount.

The challenges of directly importing the afore-mentioned technologies are three fold – (a) extreme
budget constraints, which allows for only very low cost, compute and RAM constrained, embedded
platforms to be deployed (b) poor network connectivity between the road and the servers, forcing
all analysis to happen in-situ on the road and (c) chaotic non-laned driving behavior in developing
regions, which makes accurate video analysis for exact counting and classification of vehicles harder.

This paper presents EcoLight, the first practical step towards intelligent intersection control in
developing countries. Through close collaboration with traffic authorities and cameras deployed in
real intersections, we explore how low computation intensive video processing and control algorithms
can be trained to run on low cost embedded devices without network connectivity. EcoLight exploits
state-of-the-art CNN and DRL methods on high-end GPUs in the pre-deployment stage – (a) CNN for
training more efficient traffic density estimation using background subtraction and optical flow, and
(b) DRL for learning efficient Look-Up Table (LUT) based or threshold based intersection control.
This enables EcoLight to perform at par with these compute intensive methods, at a mere fraction of
runtime overhead.
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Optimizing computational overhead while not losing accuracy has been challenging for EcoLight. We
reduce DRL states from over a thousand dimensions in state-of-the-art papers (Wei et al. [2019a,b]) to
one or two dimensions. We remove the DNN based RL computation at runtime using static LUTs. We
quantize the original continuous values of DRL states for finite sized LUTs. All these optimizations
needed to be carefully tuned for accuracy. We experiment with both open-source developed country
dataset and a custom developing region dataset, created by us from our deployed cameras. As a
result of careful tuning, EcoLight gives comparable benefits and sometimes even improves upon the
compute-intensive methods, on both performance metrics (throughput, average travel time etc. at the
intersection) and fairness metrics (worst case travel time, vehicles stuck etc. at the intersection).

An end-to-end EcoLight based system has also been demonstrated in this paper. This incorporates
video feeds from cameras at a real intersection and computer vision based traffic density estimation for
input to the control algorithms. Our results show great promise towards practical adaptive intersection
control at extreme budget and network constraints, a vital necessity for sustainability.

2 Problem Definition
To start-with, we define the problem of traffic signal control as a Markov Process. Each intersection
in the system is controlled by an agent running independently, and without any communication with
the others. In this setting, each agent observes part of the total system, and decides for its own
intersection whether to keep the same phase or switch to the next, so as to minimize the average traffic
density on the approaches around the intersection. Specifically, the problem can be characterized by
the following major components < S,O,A,P, r, π, γ > as described in detail below.

•With system state space S and observation spaceO, we assume that there are N intersections in the
system and each agent can observe part of the system state s ε S as its observation o ε O. We define
oti for agent i at time t, which consists of traffic density in one or two dimensions as described later.

•With set of actions A, at time t, an agent i would choose an action ati from its candidate action set
Ai as a decision for the next ∆t period of time. Here, each agent would choose either 0 or 1 as its
action ati, indicating that from time t to t+ ∆t, this intersection would be in same phase or under
transition to the next phase.

• With transition probability P , given the system state sti and actions ati of agent i at time t, the
system arrives at the next state st+1

i according to the state transition probability P (st+1
i |sti, ati).

•With reward r, each agent i obtains an immediate reward rti from the environment at time t. In this
paper, we want to minimize the travel time for all vehicles in the system, which is hard to optimize
directly. Therefore, we define the reward for intersection i as rti = −

∑
a d

t
i,a where dti,a is the stop

density on the approach a of intersection i at time t.

•With Policy π and discount factor γ, as the independent actions have long-term effects on the system,
we want to minimize the expected stop density of each intersection in each episode. Specifically, at
time t, each agent chooses an action following a certain policy O x A → π, aiming to maximize its
total rewardGti =

∑T
t=τ γ

t−τrti , where T is total time steps of an episode and γ ε [0, 1] differentiates
the rewards in terms of temporal proximity.

In this paper, we use the action-value function Qi(θn) for each agent i at the nth iteration (parameter-
ized by θ) to approximate total reward Gti with neural networks by minimizing the loss:

L(θn) = E[(rti + γmax
a′

Q(ot′i , a
t′
i ; θn−1)−Q(oti, a

t
i; θn))2] (1)

where ot′i denotes the next observation for oti. These earlier snapshots of parameters are periodically
updated with the most recent network weights and help increase the learning stability by de-correlating
predicted and target q-values.

3 Doing Away with Large States: Small State DRL for Intersection Control

Deep Reinforcement Learning (DRL) based intersection control algorithms like Presslight (Wei
et al. [2019a]), CoLight (Wei et al. [2019b]) are giving excellent performance in recent literature.
Unfortunately the DRL state size for these state-of-the-art algorithms are 80 for Presslight and 1600-
12480 for CoLight. Further Presslight needs coordination among different intersections, though it
learns individual RL agents for each intersection. CoLight learns a centralized RL agent. Coordinated
or centralized control requires network connectivity, which is not ubiquitous in developing regions.
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For deployment on low cost embedded devices (with limited RAM and compute power) and per
intersection control without coordination, we start with exploring small state DRLs. Let x1 denote
the traffic density on the road approach with green signal and x2 denote total traffic density on all
other road approaches with red signal. We explore two small state DRLs - (a) 2-dimensional state
< x1, x2 > (b) 1-dimensional state < x3 >, where x3 = x1/(x1 + x2).

Table 1: Performance of 2-dimensional and 1-dimensional state RL
1x1 (3-approach) 16x1 (4-approach) 16x3 (4-approach)

DNN 123 veh/min @ Delhi 114 veh/min @ NY 47 veh/min @ NY

Model StateSz Param nOut Travl Total nOut Travl Total nOut Travl Total

Presslight 80 2082 1246 254 252 4866 220 362 1355 560 930
CoLight 12480 6018 1248 222 251 4986 260 375 2589 319 311
2dimRL 2 162 1282 238 243 5010 252 376 2574 328 322
1dimRL 1 52 1260 254 250 3607 187 604 1148 375 1093

Using (a) 1-hour long publicly available New York (USA) dataset1 and (b) 1-hour New Delhi (India)
dataset collected and processed by us, we simulate the traffic-flows in the CityFlow traffic simulator
(Zhang et al. [2019]). Table 1 show the metric values that need to be maximized (nOut or number
of vehicles cleared by the controller) and minimized (Travel and Total times). Total combines the
time spent by the vehicles which clear the intersection and also those stuck at the intersection, while
Travel time comprises only cleared vehicles’ time spent in the network.

We evaluate two road networks in the New York dataset – (a) 16x3 network, where 16 roads parallel
to each other intersect with 3 roads perpendicular to them giving 48 intersections, each having
4 approaches, and (b) 16x1 network with one perpendicular road to 16 parallel roads, giving 16
intersections, each with 4 approaches. The Delhi dataset is for one intersection (1x1), with 3 approach.

As seen from the table, the 1-dimensional state DRL does poorly on Throughput and TotalTime
metrics, especially on 16x3 network. However, the 2-dimensional state DRL shows impressive metric
values, matching the performance of CoLight and improving upon Presslight, at a mere fraction
of state size and parameters. This shows that the state-of-the-art DRL algorithms have a lot of
redundancy, that can be optimized, and also less DNN parameters for the small state DRLs can be
trained better with limited data. This result shows the promise of small state DRLs. We take this as
the starting point to build our efficient intersection control in the next two sections.

4 Doing Away with Runtime DRL: Lookup Table based Intersection Control
In Section 3, we use a DRL architecture with fully connected layers, comprising two hidden layers of
size H each. We use M dimensional states to represent an intersection and further show in Section 3,
that M = 2 gives comparable results to state of the art intersection control algorithms Presslight and
CoLight (Wei et al. [2019a,b]). We consider N phases, each phase denoting a certain configuration of
green and red signals for the different approaches at the intersection. At every decision making point,
our DRL can make one of two choices, to stay in the current phase or switch to the next phase. So our
DRL has an M x H x H x P architecture, with M = 2, H = 10 and P = 2. We use stop density as
the DRL reward, which is easily computable as discussed later in section 6. Though our optimizations
and method should improve the performance irrespective of underlying Loss Function and Optimizer
choice, still we used them same as the baselines, MeanSquareError (Verma [2019]) and RMSprop
(Bushaev [2018]), to rule out their effect from the performance comparison/improvement.

In this section, we seek to do away with running the DRL at runtime at the deployment site. The
first reason is efficiency: on low cost embedded systems, compute power is limited. The inputs
for the control algorithms anyway needs to be computed on the embedded devices, using computer
vision algorithms on the real time video data from all approaches. Using these inputs, if the control
algorithm can be made more efficient than running a neural network for DRL, it becomes more
practical to meet the low computational budget. The second reason to do away with runtime DRL, is
the lack of confidence on the DRL black box. Based on anecdotal evidence through discussions with
our deployment partners, adaptive intersection control that can be visualized and verified by human
experts before deployment, is much more preferred than algorithms which are free to choose actions
at runtime without any human supervision/comprehension, as a runtime DRL would do.

1https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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We therefore seek to use static Lookup Tables (LUT) at deployment, where each cell in the table will
represent a state in our DRL. The value contained in that cell will represent a boolean action: stay in
the current phase vs. switch to the next phase, referred to as keep-change actions henceforth. The
actions are learnt using offline DRL training. This training can be compute heavy and high latency,
as it is run on powerful GPU servers before deployment for real time intersection control. During
training, computer vision based processed video datasets are collected from the road, and fed in traffic
simulator to create all possible DRL states (cells in the LUT). Actions corresponding to each state are
then learnt by training the DRL algorithm.

Figure 1: DRL training and LUT structure

The first graph in Figure 1 shows how metrics Total time and Travel time improve over many epochs
of offline DRL training. The other three images show how many times different DRL states are seen
by the DRL training algorithm as training progresses. The lighter the color, the more a DRL state is
seen. These three images also describe the LUT structure, where the two axes represent quantized
values of x1 and x2 for the 2-dimensional state DRL. Instead of "how many times a DRL state is
seen" presented in these images, the LUT contains a boolean action value in each cell, learnt by DRL
training. Verified by developing country traffic control experts for sanity and safety checks, the LUT
is eventually deployed on road. At runtime, the current state is computed using computer vision
methods on incoming video, and the action corresponding to that state in the stored LUT is taken by
the traffic signal controller.

While storing DRL decisions for different states in LUT is efficient and verifiable, we need to ensure
that the learnt decisions are good for subsequent use at runtime. It is important to choose good DRL
models to populate the static LUT, as unlike running DRL at runtime, the LUT will not be able to
dynamically update these decisions.

As measure of DRL model goodness, we define two metrics:
(a) FairShare: We hypothesize that a good RL tries to achieve FairShare of traffic densities among
approaches i.e. fit the traffic among at the intersection such that each approach maintains equal/similar
density of traffic. To quantify this FairShare property of a given DRL model, we project all instances
of observed states (factored by the distance) onto the equal density segments of LUT (corresponding
to the diagonal starting at 0,0) in Figure 1. We sum this vector of the projections to get a single scalar,
which will be high for models with most states with equal density (like Epoch 90-99 in Figure 1), and
low otherwise. This scalar quantifies how balanced traffic is among the approaches for a particular
DRL model.

(b) DecisionConsistency: If a model predicts to hold/keep the signal for a state, we hypothesize
that a good or stable model should continue to predict the same for all states having higher traffic
in the green approach (or low traffic in the red approaches). We name this model property of
sticking to the same decision under similar traffic scenarios as DecisionConsistency. To quantify
DecisionConsistency, for each green density level (x1) we take the ratio of two numbers, the large
range of red density (x2) over which the keep decision is maintained vs the range followed with
opposite decision. The sum of all such ratios gives rise to a scalar which will be larger for models
with better DecisionConsistency.
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In addition to hypothesizing what properties good DRL models might have, and defining scalar
metrics to quantify those goodness properties, we also need mechanisms to use these goodness
metrics. We do this in the following two ways:

(a) DRL training using model goodness metrics: We use the FairShare and DecisionConsistency
scalars during the DRL training process to identify and favour better RL models. We maintain a
threshold θ for these scalars, as training progresses. At each epoch we hold a model if its goodness
metric is below θ, lower θ by a factor, and start the training for a fresh model in that epoch. We
approve the best model so far (new or on hold), if its goodness metric exceeds θ, or after fixed number
(η=5) of retries in that epoch, and move on with the metric value of this model as new θ.

Figure 2: Goodness metrics based DRL training

(b) DRL selection using model goodness metrics: Figure 3 shows the correlation between Total
Time performance metric and DRL model’s goodness metric values. We discard models with
goodness metric values lower than the average of all the models, to remove outliers (see Perspective
1 of Figure 3). In order to select the good models among the remaining ones, we pick the best
model (again based on the goodness metric values) among a set of (ψ=20) models, and restart the
process from the model next to the selected one (see Perspective 2 of Figure 3). This final set of high
performing models can be effectively used to generate the LUT to be deployed at the intersection.

Figure 3: Goodness metrics based DRL selection

We need to evaluate this LUT based signal control, compared to the 2dimRL that we designed in
Section 3, and also the state-of-art DRL methods Presslight (Wei et al. [2019a]) and CoLight (Wei
et al. [2019b]). Static LUTs lose performance due to quantization of the traffic density values, while
runtime DRL can use continuous values of traffic density. But the quantization is unavoidable, as the
table needs to be of finite dimensions. Whether our training and training+selection with goodness
metrics can overcome the quantization related performance loss, needs to be quantified.

Table 2 shows the average case performance metric values (a) nOut (number of vehicles cleared by
the intersection), (b) Travel (time spent by cleared vehicles) and (c) Total (time spent by all vehicles).
The T in model names denotes Goodness based Training only experiments, whereas TS includes
Goodness based Selection as well. We continue the training for 200 epochs, allowing all methods
to converge and then average the next 50 epochs for performance metrics calculation for T, and the
selected few out of these for TS. As can be seen from the table, performance loss compared to 2dimRL
due to quantization, is gracefully recovered by both our goodness metrics. DecisionConsistency
performs significantly better than FairShare for all datasets.

We further show the value of worst case or fairness metrics for 16x3 benchmark dataset in Table 3.
Our fairness metrics are: (a) WrstTime (maximum time spent in the network by any stuck vehicle),
(b) WrstWait (maximum wait time at any intersection by any vehicle), (c) MaxWait (maximum of
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Table 2: Performance of Goodness EcoLight for average case metrics
1x1 16x1 16x3

Model nOut Travel Total nOut Travel Total nOut Travel Total

PressLight 1246 254.4 252.0 4866 219.6 362.8 1355 560.3 930.3
CoLight 1248 222.3 250.9 4986 259.5 374.8 2589 318.9 311.3
2dimRL 1282 237.9 243.4 5010 252.4 376.3 2574 328.1 322.6

FairShare(T) 1287 251.3 243.4 4976 244.0 377.0 2561 331.2 330.1
Decision(T) 1292 224.6 239.7 5081 251.3 359.1 2586 327.6 318.6
FairShare(TS) 1285 251.6 243.7 5137 239.9 343.8 2583 327.3 318.1
Decision(TS) 1298 186.4 234.5 5186 277.4 357.8 2586 325.5 316.2

Table 3: Performance of Goodness EcoLight for worst case (fairness) metrics for 16x3
Model WrstTime WrstWait MaxWait Stuck75 Stuck50 Stuck25 Stuck0

Presslight 3516.4 2481.5 255.6 99.2 338.5 843.9 1405.9
Colight 834.4 900.8 45.9 0.0 0.4 2.7 234.7
2dimRL 985.3 1396.5 47.6 0.9 2.4 6.0 250.1

FairShare(T) 1207.1 1524.2 48.7 2.1 6.2 14.1 261.3
Decision(T) 924.7 1352.2 47.7 0.0 0.0 1.4 238.3
FairShare(TS) 929.0 1320.0 48.5 0.0 0.0 0.5 241.0
Decision(TS) 675.2 1007.0 46.8 0.0 0.0 0.0 237.6

average wait times at any intersection) and (d) StuckX (vehicles stuck in network at X% time from
simulation end). Fairness loss due to quantization is not only gracefully recovered by our goodness
metrics, but we significantly outperform all baselines as well.

Using a finite sized LUT with (a) quantized traffic density values as rows and columns, and (b)
cells containing binary decisions learnt using DRL model training, and model selection based on
some goodness metrics, gives us performance and fairness comparable to the state-of-the-art DRL
algorithms. This is extremely encouraging in terms of practical deployment in developing countries.

5 Doing Away With Look-up Tables: Threshold based Intersection Control
Based on anecdotal discussions with intersection control companies, while most intersections in
developing regions will be able to support LUTs, some intersections might be budget constrained
to such an extent that the controller’s RAM will not be enough to even store LUTs. In this section,
we therefore consider how to design such a stateless controller, with better performance and fairness
metrics compared to other widely deployed stateless controllers. We start by examining the 1dim RL
tried in Section 3, and gradually build performant and fair stateless control.

1-dimensional state RL did poorly on the Throughput and TotalTime metrics in Table 1, especially for
the 16x3 road network. Wondering what is being learnt by the RL for the case of 1-dimensional state,
we checked the model behaviour for the whole range of this state variable < x3 = x1/(x1 + x2) >
from 0.0 to 1.0. We calculate the expected value of signal change for all 16 intersections (of 16x1 NY
road network) for continuous 50 rounds after training for 500 rounds.

Figure 4: Density vs action
Figure 4 plots the expected signal change along y-axis, with relative density along x-axis. The signal
change expectation is high when relative density is low (top left) and vice-versa (red line given for
reference for exact negative correlation between signal change expectation and relative density).
The blue curve shows a near-linear response following the red line, but is still non-linear. Thus
1-dimensional state with ratio x1/(x1 + x2) is not enough to capture the necessary non-linearity and
overall traffic concentration - empty vs. moderate vs. saturation. It only captures relative density
among approaches, while absolute values retained in 2-dimensional state RL are clearly important.
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We explore the options of both 1-dimensional relative density < x1/(x1 + x2) > and 2-dimensional
absolute densities < x1, x2 > in the simple algorithm below. The algorithm does not use any LUT to
store the signal switching decisions learnt by RL for all possible states. It only uses few empirically
learned thresholds. This is to support embedded hardware, that cannot use LUTs due to RAM
constraints and would need the control algorithm to be completely stateless, possibly using only a
few thresholding parameters.

GetNextAction (cur_phase, phase_time, density_list):
action← 0
total_density ← sum(density_list)
if total_density > 0 and phase_time ≥ CONFIG[MinGreen] then
relative_density ← density_list[cur_phase]/total_density
if relative_density < CONFIG[α] then

if CONFIG[Mode] is Random then
ratio← random(0.0, 1.0)

else
cycleT ime← CONFIG[CycleT ime]
if CONFIG[Mode] is T imed(2dim) then
cycleT ime← cycleT ime× total_density × 2/CONFIG[MaxDensity]
cycleT ime←MAX(CONFIG[MinGreen], cycleT ime)

end if
ratio← phase_time/cycleT ime

end if
if ratio > relative_density then
action← 1

end if
end if

end if
return action

The intuition behind the algorithm is (a) to take the CycleTime (i.e. the cumulative duration of
all phases), and divide it among phases in proportion to their relative densities and (b) to increase
CycleTime based on increasing absolute densities. At each decision making point, the agent allows
the green signal to continue until the relative density for that approach has not fallen below a threshold
α. Below α, signal can be switched. When CycleTime is defined (we call this variant Timed), the
agent uses it in proportion to the relative density (Timed (1dim)), with optionally increasing the given
CycleTime in response to absolute densities (Timed (2dim)). When CycleTime is undefined (we call
this variant Random), it would switch randomly, but still proportional to the relative density.

Table 4: Algorithm Hyper Parameters
Param Description

α Hold green above this threshold
MinGreen Minimum green per phase
CycleTime Total green time over phases

MaxDensity Maximum density at intersection
Mode Random / Timed(1dim or 2dim)

Table 5: Empirically Learnt Values
Algorithm Properties

FixedTiming 20s Min/Max Green
MaxPressure 5s Min Green

SOTL 2/4 veh, 5s Min Green
Random α=0.17, 5s Min Green
Timed α=0.17, 150s Cycle

We compare the performance of our stateless algorithms against below baselines. These baselines
also do not use any state, but work with few parameters as listed in Table 5. State-of-the-art research
based RL methods like Presslight and CoLight are still in literature and not adopted in the real world.
So these simpler baselines are the widely deployed intersection control algorithms across the world.
Developing countries, typically, still use Fixed Timing signals.

(a) Fixed Timing: Signal switches in cyclic order to the next approach after fixed time intervals.
(b) Max Pressure: Pressure is calculated by the difference of vehicles on the incoming and outgoing
lanes for the possible movements in each phase (Varaiya [2013]). Signal is switched to the phase
with maximum pressure. If current phase pressure is not the maximum, we switch to the next phase.
(c) Self-Organizing Traffic Light (SOTL): This is a vehicle actuated mechanism (Cools et al.
[2006]). There is a minimum phase duration. Once the minimum phase duration is over, the switch
signal is generated if the traffic in green approach is less than a threshold and traffic in any other
approach is more than another threshold.
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Table 6: Performance of EcoLight Thresholding Algorithms for average case metrics
1x1 16x1 16x3

Algo nOut Travel Total nOut Travel Total nOut Travel Total

FixedTiming 1249 260.6 252.0 3743 193.0 583.5 1489 723.2 985.7
MaxPressure 1160 280.8 272.8 4106 214.4 504.2 1840 649.7 768.8
SOTL 1305 246.7 239.0 4640 264.7 436.3 2462 485.9 465.1

Random 1361 231.6 224.8 5076 354.9 427.8 2540 378.5 364.9
Timed(1dim) 1358 231.7 255.4 5104 355.3 428.9 2516 380.6 368.3
Timed(2dim) 1358 231.7 255.4 5268 346.6 406.3 2553 375.2 361.7

Table 6 shows the average case metric values (a) nOut (number of vehicles cleared by the intersection),
(b) Travel (time spent by cleared vehicles) and (c) Total (time spent by all vehicles). Our algorithms
Random, Timed (1dim) and Timed (2dim), clear many more vehicles at lower Travel and Total times
than the baselines, for all benchmark datasets. The Travel times for 16x1 network is higher (italicized
in Table 6) for our algorithms, though other metrics improved. This is due to the fact that it is a linear
network of 16 intersections and the traffic pattern is such that a good part of the traffic enters around
one end and exits around the other (and vice-versa), making the vehicles cross many intersections in
a sequence. Supported by increased nOut, our algorithms make more vehicles to exit the network.
The extra vehicles which exit are mostly the ones with larger travel times, thus pushing the average
travel time for all cleared vehicles higher. Similar behaviour is observed for the baselines as well,
where SOTL Travel time (with more nOut) is higher than other baselines (with less nOut).

Table 7: Performance of EcoLight Thresholding Algo for worst case (fairness) metrics for 16x3
Algo WrstTime WrstWait MaxWait Stuck75 Stuck50 Stuck25 Stuck0

FixedTiming 3443 2671 255.6 82 348 741 1203
MaxPressure 3100 2347 261.6 11 154 449 942
SOTL 1229 2188 79.8 0 0 11 362

Random 841 526 56.1 0 0 0 284
Timed(1dim) 839 524 56.5 0 0 0 308
Timed(2dim) 719 516 54.2 0 0 0 271

We further show the value of worst case or fairness metrics for 16x3 benchmark dataset in Table 7.
For our Random variant, we take average of 5 rounds of simulation. For all others, the results are
consistent for every round. Our algorithms significantly outperform the baselines for all fairness
metrics for 16x3 network, and also for other benchmarks (omitted here for space constraints).

Based on these results, in situations where running RL based control or maintaining LUTs are not
feasible due to RAM constraints, our stateless algorithms can be deployed, vastly improving both
performance and fairness metrics, compared to the currently deployed intersection control baselines.

Table 8 shows performance of EcoLight Algorithms on two addition datasets collected at different
times on the same intersection in New Delhi (India).

Table 8: Performance on other 1x1 datasets
2 3

Algo nOut Travel Total nOut Travel Total

PressLight 225 30.0 29.4 529 163.1 177.6
Colight 221 31.2 49.1 514 163.2 181.7
2dimRL 225 30.4 29.9 540 182.3 178.6

FairShare(T) 225 31.3 30.9 517 194.5 189.5
Decision(T) 225 30.3 29.8 538 185.2 180.2
FairShare(TS) 225 32.2 31.7 538 181.7 178.4
Decision(TS) 225 30.4 29.9 564 172.8 167.8

Timed(2dim) 225 31.9 31.3 566 168.9 162.5
Timed(1dim) 225 31.9 31.3 563 174.8 166.9
Random 225 31.9 31.3 562 172.8 166.3

SOTL 223 50.7 53.8 539 196.0 186.7
MaxPressure 224 48.4 47.3 487 205.5 202.0
FixedTiming 224 70.9 69.0 512 198.4 188.8
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6 Input to Control Algorithms: Computer Vision for End-To-End System
All intersection control algorithms designed in this paper – (a) 2dim and 1dim state DRLs (Section 3),
(b) LUTs built from offline DRL training using quantized states (Section 4) and (c) stateless threshold
based algorithms (Section 5), use traffic density as input. More specifically, the algorithms need
density of standing traffic (also called stop density), discarding vehicles which have started moving.

Given the hardware constraints, we need to make sure that this input is available to our control
algorithms at an acceptable latency, with limited computation and no communication to a back-
end server. As efficient computer vision candidates, we use background subtraction and opti-
cal flow. A background filter is subtracted from each frame, to compute the foreground, and
foreground/background indicates traffic density. The filter is periodically updated, the period
τ denoting the learning rate. Such updates ensure that changing lighting conditions over the day,
shadows etc. are correctly incorporated in the background filter. Just like learning LUTs using
computation heavy DRL training, here also τ is learnt using compute intensive offline analysis,
namely CNNs for vehicle detection (Chauhan et al. [2019]). The CNN outputs vehicle bounding
boxes on training videos. τ is empirically set, so that density estimates from background subtraction
match the CNN bounding box detection based density estimation.

Background subtraction based density estimates comprise both standing and moving traffic, whereas
the control algorithms need to discard density contributed by the moving vehicles. So we additionally
use optical flow algorithm, to detect moving pixels between frames, and compute standing traffic
density from the stationary parts of the frames.

Figure 5: Developing Region Traffic Density Estimation
Figure 5 on the left shows a high traffic density frame, from one approach of a developing region
intersection we are working at. The graph on the right shows for this location: (a) background
subtraction based density (Queue Density in blue curve) and (b) optical flow based density (Dynamic
Density in orange curve), over a span of over 15 minutes. Queue density starts to rise when signal
turns red (indicated by vertical red lines), and starts to fall when signal turns green (indicated by
vertical green lines). Dynamic density is zero when red signal is on (between red and green vertical
lines) and rises when signal turns green and vehicles start moving. The difference between these
two curves gives the density of standing vehicles, the input required by our control algorithms. The
density estimation code runs at 5 FPS on low cost embedded platform (1.8 GHz Intel(R) Atom(TM)
CPU D525 with 4 logical cores and 8GB RAM) budgeted by our deployment partners. With signal
keep-change decisions taken every 5-10 seconds using LUT or threshold based control algorithms,
this FPS is good enough to get inputs for all approaches.

7 Conclusion
This paper presents EcoLight, an end-to-end intersection control system, including computer vision
inputs and signal control decisions. EcoLight is practically deployable at low cost and without
network connectivity in developing countries, and optimizes both performance (throughout and
travel time) and fairness (worst case waiting time) metrics for the intersection. EcoLight exploits
state-of-the-art powerful machine learning methods like Deep Reinforcement Learning (DRL) and
Convolutional Neural Network (CNN) run on powerful GPU servers, to learn efficient runtime control
deployable on low cost constrained embedded devices. Our deployment partners, who are traffic
control authorities in a developing country, are enthusiastic with these promising results. We are
exploring how to use federated learning to populate LUTs at different intersections with distinct traffic
flow patterns, and also analyze the possible gain in reducing congestion and vehicular emissions with
EcoLight deployment at key intersections.
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Broader Impact

Traffic intersection management has changed significantly over time, starting from in-person control,
to timed-policy control, actuated control, network-switch control and currently to AI based control.
With the wake of AI, utilizing deep learning and RL, we see greater power to control the traffic
automatically without human intervention. But what if resource constraints make state-of-the-art
DRL methods impossible to deploy in the developing world? The heuristics we learn in this paper
using offline AI/ML algorithms, greatly improve metric values over traditional control methods
currently deployed in the real world.

We also demonstrate an end-to-end working system, that needed significant engineering and logistic
efforts. But this boosted the confidence of our deployment partners, that we are more serious about
this work than writing a couple of research papers. This paper, therefore, is an application of computer
science methodologies, to the real world problem of traffic intersection control. Its potential impact
on environment and sustainability overrides its academic contributions, which might feel like lacking
novel contributions. However, exploiting the advances of CNN to learn better thresholds for low
overhead computer vision methods, or DRL to populate LUTs to just look up at runtime, might be
considered as novel and important optimizations towards building a practical, deployable system.

We are working closely with the traffic control authorities, in collaboration with whom the intersection
camera in this paper was deployed and data collected. Thus the extreme budget constraints, network
unavailability issues etc. are real, as conveyed by anecdotal discussions with these deployment
partners. More importantly, developing region datasets are not easy to come by. So to aid better
collaborative research and more testing of these control ideas, labeled datasets on traffic flow and
code will be released on paper acceptance. Video data will be shared individually, based on requests
and discussions, to ensure privacy of people and cars captured in the camera view.

In terms of safety concerns, if the traffic control system fails, it will have chaotic situation on the
road, which may lead to human and mechanical injuries. So safety constraints, orthogonal to the
control decisions, will be part of the deployed system. We also believe that our method will not be
less stable than other state-of-the-art researches in the area and are constantly verifying our control
decisions with the human experts (our deployment partners).

In terms of data bias, we of course could collect and use data from only one intersection for developing
region. Even that was non-trivial, unless we showed some benefits in terms of travel time etc. (as we
do in this paper). The promising results in this paper is a good first step in gaining our deployment
partners’ confidence, so that more data from different intersections, with possibly different traffic
patterns, can be gathered in future (as much as research budget permits). This would remove bias, if
any. We nonetheless use all open-source data that state-of-the-art DRL papers Wei et al. [2019a,b]
experiment with, and match their performance. So our data/experiments are at least less biased than
the state-of-the-art literature, which completely ignored developing region constraints.
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