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A Learning Formulations

Here we give a clarification on the learning formulation used in this work. During the training we consider the
expected loss of a randomized predictor:

Epx0,yqEZ
�
F pθq

�
� �Epx0,yqEZ

�
log ppy|XL; θq

�
, (15)

where px0, yq � data. However at the test time we evaluate the expected predictor EZrppy|XL; θqs, consider-
ing Z as latent variables, which can be interpreted as an ensemble of binary networks (see Fig. B.1 c-f). The loss
of this marginal predictor would be rather given by:

�Epx0,yq
�

logEZ
�
ppy|XL; θq

��
. (16)

This setup is similar to dropout [27] with latent multiplicative Bernoulli noises. The expected loss (15) upper
bounds the marginal loss (16) (by Jensen’s inequality), so that minimizing it also minimizes (16). However,
unlike with dropout, the following observation holds for SBN models.

Proposition A.1. In the family of models (1) with free scale and bias in all coordinates of ak there is always an
effectively deterministic model (with no injected noises) that achieves the same or better expected loss (15).

This means that the model will tend to be deterministic and fit the classification boundary but not the data
ambiguity (see Fig. B.1 b,c). Being aware of this, we note that it is nevertheless a common way to train
classification models (e.g., dropout). Furthermore, the upper bound may be tightened by considering a multi-
sample bound [29, 23] or variational bounds (applied for shallow models in [34, 9]). These extensions are left
for future work as they require the ability to estimate gradients of the expected loss (15) in the first place. We can
nevertheless see from the example in Fig. B.1 that the SBN family can be expressive when trained appropriately.

B Proofs

This section contains proofs, technical details and extended discussion that did not fit in the main paper.

B.1 Training with Expected Loss tends to Deterministic Models

Proposition A.1. In the family of models (1) with free scale and bias in all coordinates of ak there is always an
effectively deterministic model (with no injected noises) that achieves the same or better expected loss (15).

Raiko et al. [23] give a related theorem, but do not show the preferred deterministic strategy to be realizable in
the model family.

Proof. Let θ be parameters of the model optimizing (15). Let then z� be a maximizer of
Epx0,y�q�data

�
fpxLpzq, y; θq

�
. Consider the case of a linear layer apxq � WTx � b with the output
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(a) (b) (c) (d) (e) (f)
Figure B.1: Example problem to classify points in 2D with overlapping distributions. (a) Data
points. (b) Classification model trained with the expected loss (15): the optimal solution tends to
deterministic prediction. (c) Same model trained with a 10-sample bound [23], closer to the marginal
likelihood (16). The model fits the uncertainty of the data. (d-f) Examples of the ensemble members
obtained by fixing a particular realization of the noise variables Z in all layer for the model in (c).

sgnpWTx � b � Zq. Chose as new parameters W 1 � sW , b1 � spb � z�q for s Ñ 8. Since Z has a
finite variance, this ensures that sgnpW 1TX�b1�Zq � sgnpWTX�b�z��Z{sq Ñ sgnpWTX�b�z�q.
The network with new weights is deterministic as it efficiently scales all noises to zero and it achieves same or
better expected loss. The same argument applies whenever a has a free scale and bias degrees of freedom.

Let us remark that the conditions are not met in the following cases:

• The pre-activation does not have some degree of freedom, e.g., there is no bias term. This case is
obvious.

• Pre-activations of different outputs do not have independent degrees of freedom per output. e.g., in a
convolutional network we can suppress all the noises by scaling them down, however since the noises
of all pre-activations are independent (not spatially identical), we cannot represent the bias from z�

with the convolution bias which is spatially homogenous.
• The network uses parameter sharing in some other way, e.g., a Siamese network for matching.

These exceptions actually imply that training with expected loss a convolutional network in Section 3 tends to be
deterministic but will not collapse to a fully deterministic state as it is suboptimal.

B.2 PSA Derivation and Properties

Proposition 1. Let Jki pxq be functions that depend only on x1...k and are odd in xki : Jki px
kq � �Jki px

k
Óiq for

all i. Then°
x ppxq

°
i

Jk
i pxqfpx

Lq

ppxki |x
k�1q

�
°
x ppxq

°
j

Jk�1
j pxqfpxLq

ppxk�1
j |xkq

, where Jk�1
j �

°
i J

k
i pxq∆

k�1
i,j pxq (13)

and the approximation made is the linearization (11). Functions Jk�1
j are odd in xk�1

j for all j.

Proof. Starting from LHS of (13) we take the sum in xki explicitly. The factors involving xki (after cancellation
of the denominator with the respective term in ppxq) are

ppxk�1|xkqJki px
kq, (17)

where we omit the dependance of Jki on x1...k�1, not relevant for the sum in xki . Using the oddness of Jki , the
sum of (17) in xki can be written as

ppxk�1|xkqJki px
kq � ppxk�1|xkÓiqJ

k
i px

k
Óiq �

�
ppxk�1|xkq � ppxk�1|xkÓiq

�
Jki px

kq. (18)

Though this expression formally depends on xki , it is by design invariant to xki . Thus xki has been derandomized.
We multiply (18) with 1 �

°
xki
ppxki |x

k�1q to obtain°
xki
ppxki |x

k�1q
�
ppxk�1|xkq � ppxk�1|xkÓiq

�
Jki px

kq, (19)

which allows to put this expression back as a part of the joint sum in x in (13). We thus obtain in (13):°
i,x ppx

1...kqppxk�2...L|xk�1q
�
ppxk�1|xkq � ppxk�1|xkÓiq

�
Jki pxqfpx

Lq. (20)

Recalling that ppxk�1|xkq �
±
j ppx

k�1
j |xkq, the product linearization (11) gives

ppxk�1|xkq�ppxk�1|xkÓiq �
°
j
ppxk�1|xkq

ppxk�1
j |xkq

∆k�1
i,j pxq, (21)

where the division is used to represent the factor that needs to be excluded. Substituting this into (20) we get
the resulting expression in (13). Finally, ∆k�1

i,j pxq is odd in xk�1
j and Jkpxq does not depend on xk�1

j , and
therefore Jk�1

j is odd in xk�1
j .
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Case l�L We now prove the expression (14) claimed as the derandomization result for the last layer
when propagating JL. Let us consider gradient in parameters of the last layer, gL. In this case, the gradient
expression (9) becomes °

x1...L�1

ppxq
°
i

°
xL

dLi pxq

ppxL|xL�1q
fpxLq. (22)

Then derandomization over xL takes a particular simple form, which can be described by the following standalone
lemma.

Lemma B.1. Let Xi be independent B-valued Bernoulli with probability ppxi; θq for i � 1 . . . n and f : Bn Ñ
R. Let x be a joint sample and xÓi denote the joint state with xi flipped. Then°

i
B
Bθ
ppxi; θq

�
fpxq � fpxÓiq

�
(23)

is an unbiased estimate of B
Bθ

°
x ppx; θqfpxq.

Analogous results exist in the literature, e.g. [5] considers general discrete and continuous distributions.

Proof. We differentiate the product of probabilities in the expectation:
B
Bθ

°
x

±
i

ppxi; θqfpxq �
°
x

°
i

ppxq
ppxiq

B
Bθ
ppxi; θqfpxq. (24)

We then compute the sum over xi for each summand i explicitly, obtaining°
i

°
x i

ppx iq
B
Bθ

�
ppxi; θqfpxq � p1 � ppxi; θqqfpxÓiq

	
,

where x i denotes excluding the component i. Since the expression in the brackets is invariant of xi, we
multiply by the factor 1 �

°
xi
ppxiq and get°

x ppxq
°
i

�
fpxq � fpxÓiq

�
B
Bθ
ppxiq. (25)

Thus (23) is a single sample unbiased estimate of (25).

Proposition 3. Algorithm 1 is an unbiased gradient estimator for networks with only one unit in layers 1 . . . L�1
and any number of units in layer L.

Proof. The product linearization is not used anywhere in the method when we have a single binary unit in each
hidden layer with l   L, nor it is used in the last layer. We therefore make no approximations and the 1-sample
estimate is unbiased.

B.3 Last Layer Enhancement

In Algorithm 1 Line 10 we definedE so that the gradient in θL�1 is the common stochastic estimate Bfpx
L;θL�1q

BθL�1 .
We now propose an improvement to this estimate. Intuitively, we want to utilize the values fpxLÓi; θ

L�1q for all
i that we compute anyway.

Estimating
°
x ppxq

B
Bθ
fpxL; θq means to estimate the expected value of the function gpxLq � B

Bθ
fpxL; θq,

without further derivatives involved. We have the following lemma that applies derandomization over units in
the last layer.

Lemma B.2. Let Xi be independent B-valued Bernoulli with probability ppxiq for i � 1 . . . n and g : Bn Ñ R.
Let x be a joint sample. Then

gpxq � γ
°
i

�
gpxÓiq � gpxq

�
p1 � ppxiqq (26)

is an unbiased estimate of EX rgpXqs.

Proof. We expand for some fixed i:

EX rgs �
°
x ppxqgpxq �

°
x i

ppx iq
°
xi
ppxiqgpxq (27)

�
°
x i

ppx iq
�
ppxiqgpxq � pp�xiqgpxÓiq

	
. (28)

Observe that the bracket does not depend on xi. We can therefore rewrite the expression as°
x ppxq

�
ppxiqgpxq � pp�xiqgpxÓiq

	
(29)

�
°
x ppxq

�
p1 � pp�xiqqgpxq � pp�xiqgpxÓiq

	
(30)

�
°
x ppxq

�
gpxq �

�
gpxÓiq � gpxqqpp�xiq

�
. (31)
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This shows that ¸
x

ppxq
�
gpxÓiq � gpxqqpp�xiq � 0. (32)

So it serves as a variance reduction baseline. Moreover, if we have access to the two values gpxÓiq and gpxq, it
is the perfect baseline, as adding it results in the complete sum in xi. Taking the average over i, i.e. choosing
γ � 1

n
gives an estimate with a decreased variance, however it is not straightforward which value of γ gives the

best variance reduction as estimates (32) for all i are not independent.

Setting γ � 1
n

is a natural choice that guarantees a reduction in variance. This improvement can be implemented
as a simple replacement of the last line of the algorithm to:

πLi � 1 � detachppxLi � 1q{2 � xLi FZpa
L
i qq (33a)

E � fpxL; θq �
°
i

pfpxL; θq�fpxLÓi; θqqpq
L
i �

πL
i
n
q. (33b)

B.4 Straight-Through

Proposition 4. Assume that pre-activations akpxk�1; θq are multilinear functions in the binary inputs xk�1,
and the objective f is differentiable. Then, approximating FZ and f linearly around their arguments for the
sampled base state x in Algorithm 1, we obtain the straight-through estimator in Algorithm 2.

Proof. Consider the last layer. The linear approximation to f at xL allows to express

fpxLÓiq � fpxLq � BfpxLq

BxLi
p�2xLi q; (34)

dfi � fpxLq � fpxLÓiq � 2xLi
BfpxLq

BxLi
. (35)

We use the expression for the derivative of layer probabilities in parameters (9)

Dl
ipxq � pZpa

l
iqx

l
i
B
Bθl
alipx

l�1; θlq (36)

and its oddness in xli. The gradient in parameters of the last layer becomes°
iD

L
i dfi �

°
j pZpa

L
i q

B
BθL

aLi px
L�1; θLq2 Bfpx

Lq

BxLi
, (37)

where we have canceled xLi x
L
i � 1.

With the linearization of FZ at ak, the Jacobians ∆ express linearly as follows:

∆k
i,j � xkj pFZpa

k
j q�FZpa

k
jÓiqq � xkj pZpa

k
j q
�
akj � akjÓi

�
, (38)

where pZ is the noise density, i.e. derivative of FZ , and we have denoted akjÓi � akj px
k�1
Ói ; θkq. Because ak is

linear in xk�1
i , we have similarly to (34) that

akj � akjÓi � 2xk�1
i

B

Bxk�1
i

akj px
k�1q. (39)

This allows to express

∆k
i,j � 2xkjx

k�1
i pZpa

k
j q

B

Bxk�1
i

akj px
k�1q � 2xkjx

k�1
i

B

Bxk�1
i

FZpa
kpxk�1qq. (40)

Note the occurrence of the formal derivative of FZpakpxk�1qq in xk�1
i , that will be the only derivative that is

used in the ST algorithm.

Finally observe that for the derivative in parameters of layer l, estimated with the product Dl∆l�1 � � � � � ∆Ldf
in PSA, for each k ¥ l the factors xkik appear exactly twice and thus cancel. We recover the product of
Jacobians without extra multipliers by xkik , which can be implemented with automatic differentiation as proposed
in Algorithm 2.

The connection to STE pointed out by [31] can be seen as a special case of our construction for a single hidden
layer, where local expectation gradients [30] apply and it suffices to linearize f .

B.5 Complexity and Efficient Implementation of PSA

We have made the following complexity claim.

Proposition 2. The computation complexity of gradient by Algorithm 1 in all parameters of a network with
convolutional and fully connected layers is the same as that of the standard back-propagation.
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For fully connected networks this complexity is indeed linear in the total number of inputs and weights. For
convolutional networks it is a bit more tricky because convolutions can generate big output tensors. In this case
the complexity can be stated as linear in the total number of inputs, weights and hidden units.

We prove the claim by giving the algorithms how to implement all necessary computations with the same
complexity as standard back-propagation.

First, we observe that the numbers q in Algorithm 1 are only used to determine the derivative and set to zero value
by line (8). The pre-activations a in Algorithm 1 are of the same form as in the standard network, evaluating
FZ component-wise does not increase complexity. Therefore backpropagation for these parts takes the same
time. We only need to additionally compute the matrices ∆ on the backward pass and explicitly implement the
transposed multiplication (resp. transposed convolution) with them to define a custom backprop operation for
the update (7).

Fully Connected Layers Consider the case of a fully connected layer with pre-activation apxq �Wx� b.
Then ∆ij has the same size as the matrix W . Recall it expresses as

∆i,j � xkj

�
FZpajq � FZpajpx

k�1
Ói qq

	
. (41)

The first summand can be computed in linear time once xk and a are known. The second summand is slightly
more complex as it involves pre-activations for inputs with a flipped component i. For linear layers we have:

ajpx
k�1
Ói q �Wxk�1

Ói � b � aj � 2Wj,ixi, (42)

i.e. all the numbers ajpxk�1
Ói q can be computed in time Opnknk�1q for a matrix W P Rnk�nk�1 . It follows that

computing matrix ∆ takes Opnknk�1q time, the same as the matrix-vector multiplication Wxk�1 for forward
pass or the transposed multiplication for the backward pass.

Convolutional Layer With a convolutional layer, the implementation is more tricky, because computing ∆
in a matrix form is no longer efficient. Consider the convolution pre-activation

ao,j �
¸
c,@i

wo,c,i�jxc,i, (43)

where c and o are input and output channels, i and j are 2d indices of spatial locations and @i denotes that the
range of i is given by the output location j and the weight kernel size: j � h{2 ¤ i ¤ j � h{2. This notation
makes it more easier to match with the equations in the matrix form.

For the gradient in the standard network, a transposed convolution occurs:

B

Bxk�1
c,i

�
¸
o,@j

wo,c,j�i
B

Bxko,j
. (44)

For the gradient in PSA, we need to implement the following sum with ∆:

B

Bqk�1
c,i

�
¸
o,j

∆o,c,j,i
B

Bqko,j
, (45)

where in the case of convolution and symmetric noise, ∆ is given by

∆o,c,j,i � xko,j

�
FZpao,jq � FZpao,jpx

k�1
c,Ói qq

	
. (46)

Using that ao,jpxk�1
c,Ói q itself is given by the convolution, we have

ao,jpx
k�1
c,Ói q �

#
ao,j � 2wo,c,i�jx

k�1
c,i , if � h{2 ¤ i ¤ h{2;

ao,j , otherwise.
(47)

Therefore ∆o,c,j,i has the same support in indices i, j as the convolution, but it is different in that it cannot be
represented as just a function of i� j. It can be interpreted as a convolution with a kernel, which is spatially
varied, i.e. at all locations a different kernel is applied.

Due to the structure of ∆, the sum (45) takes the same range of indices as the convolution, we may write:

B

Bqk�1
c,i

�
¸
o,@j

∆o,c,j,i
B

Bqko,j
. (48)

The elements of the kernel ∆o,c,j,i are computed in Op1q time, therefore the full backprop operation (45) has
the same complexity as backprop with standard network (assuming small kernel size, where convolution uses
straightforward implementation and not FFT).
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We take one step further, to show that convolution with ∆ for logistic noise needs literally the same amount
of operations. Computing the convolution (45) with the first summand of ∆ is easy. As it does not involve the
index i, it reduces to multiplication in the output space (indices o, j), summation over o and a convolution with
just the support indicator in j.

It remains to compute the convolution (50) with the second summand of ∆, i.e.:¸
o,@j

xko,jFZpao,j � 2wo,c,i�jx
k�1
c,i qgo,j , (49)

where we denoted the gradient w.r.t. the output as g. The factor xko,j is easily accounted for, by introducing
g̃o,j � go,jx

k
o,j . We can further expand for logistic noise:¸

o,@j

1

1 � eao,j e�2wo,c,i�jx
k�1
c,i

g̃o,j . (50)

Since xk�1
c,i takes only two possible values, for each input gradient coordinate c, i we need the convolution

with e�2wo,c,i�j . We can precompute Ao,j � exppao,jq, W�
o,c,l � expp�2wo,c,i�jq, i.e. the expensive exp

operations need to be performed only for the output and the kernel alone, and not inside the convolution. For the
dominant complexity part involving c, o, i,@j indices, we only need to compute and aggregate¸

o,@j

g̃o,j

1 �Ao,jW
�
o,c,i�j

. (51)

Compared to standard convolution, this costs only one extra addition and division operation. We call the
operation (51) a ratio convolution and implemented it in CUDA. Since our implementation is not fully optimized
and we need to load twice as much data (g and A) for the input and W� for the “kernel”, the actual run-time is
3-4 times slower than that of cuDNN standard convolution.

Head Function For the head function fpxLq that is a composition of a linear layer WxL� b and some fixed
function h, in order to compute fpxLq � fpxLÓiq we need again to form all pre-activations ajpxLÓiq that takes
OpnLKq time, where K is the number of classes (more generally, the dimensionality of the network output).
This is of the same size as the matrix W . Assuming that the final loss function h : RK Ñ R (e.g., cross-entropy)
takes time OpKq, the computation in the last layer has complexity OpnLKq as we need to call this function for
all input flips. This is however still of the same complexity as size of the matrix W .

C Details of Experiments and Additional Comparisons

In this section we describe details of the experimental setup and measuring techniques and offer some auxiliary
experiments.

C.1 Gradient Estimation Accuracy

We use the simple problem instance shown in Fig. B.1(a) with 2 classes and 100 training points per class in 2D
and a classification network with 5-5-5 Bernoulli units. The data was generated as follows. Points of class 1 (resp.
2) are uniformly distributed above y � 0 (resp. below y � cospxq) for x P r�π{2, π{2s. The implementation
is available in gradeval/expclass.py. We have experimented with several configurations varying the
number of units and layers. Generally, with a smaller number of units ARM gets more accurate and ST gets less
accurate, but the overall picture stays. We therefore demonstrate the comparison on the 5-5-5 configuration.

The training progress is shown in Fig. C.2. In this problem unbiased estimators perform well and an extra
variance reduction of PSA is not essential. To measure RMSE and cosine similarity errors in Fig. 2, we collect
T � 104 total samples for each estimator. For each value of the number of samples M shown on the x-axis, we
calculate the mean and variance of an M -sample estimator by using the T {M sample groups to estimate these
statistics. The same T samples are used to estimate the values for varying M . Towards M Ñ T the estimates
become more noisy, so the rightmost parts of the plots shouldn’t be considered reliable.

Comparisons with additional unbiased methods is proposed in Fig. C.3 and Fig. C.4. We compare to the
following techniques: 1. REINFORCE with the constant input-dependent baseline set to the true expected function
value of the loss objective per data sample. This choice represents the best of what one can expect to get with
input-dependent baselines constant or trained with a neural network as NVIL [18]. 2. MuProp [10], which uses a
linear baseline around deterministically propagated points. The constant part of the baseline may also optionally
set to the input-dependent true value. It is seen from the results that the linear baseline of MuProp does not
improve accuracy in deep layers, possibly connected to the fact that the loss depends only on the state of the last
layer and thus its linear approximation using states of the first layers is not helpful. It is also seen in Fig. C.4 that
the linear baseline of MuProp degrades at 2000 epochs. For this experiment we used only T � 2000 samples.
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Figure C.1: Additional plots to Fig. 4: validation losses and training accuracies.

C.2 Deep Learning

Dataset The learning experiments are performed on CIFAR10 dataset2. The dataset contains a training set
and a test set. Following the common approach, we withhold 5000 samples (10 percent) of the training set as a
validation set. Since we do not perform any hyper-parameter tuning or model selection based on the validation
set, it provides an independent and unbiased estimates.

Augmentation For Affine augmentation experiment we used random affine transforms that included shifts
by �5% and rotation by �10 deg, linearly interpolated. Flip&Crop is the commonly applied augmentation
for this dataset. It consists of random horizontal flips and random shifts with zero padding by �4 pixels
(transforms.RandomCrop(32, 4)). Fro the training plots and loss values achieved we can hypothesize
that this augmentation is more "diverse" and harder to fit that the Affine augmentation above.

Network For simplicity, we used a variant of All convolutional network (Springenberg et al. 2014), with
strides instead of max pooling. The network structure is as follows:

ksize = [3, 3, 3, 3, 3, 3, 3, 1 ]
stride= [1, 1, 2, 1, 1, 2, 1, 1 ]
depth = [96, 96, 96, 192, 192, 192, 192, 192]

There is no padding and the output is a 192 � 2 � 2 binary tensor, which is then flattened and passed to the
head function consisting of an affine transform to the 10-dimensional class logits. This network is smaller than
VGG-type networks commonly used [12], however significantly smaller is size esp. considering the last fully
connected layer. Our FC has size 768�10, the ones in [12] (there are three) are: 8192�1024, 1024�1024,
1024�10. No batch normalization is used for the purity of comparison experiments. If we were chasing the
highest accuracy, we can confirm that BN improves the results.

Optimizer For the optimization we used batch size 64 and SGD optimizer with Nesterov Momentum 0.9
(pytorch default) and a constant learning rate. Because different methods have different variance and biases,
for a fair comparison we tried to find the optimal learning rate for each method individually. We selected the
learning rate by a numerical optimization based on the performance of the model in 5 epochs as measured by
the objective optimized by the method (i.e. the sample-based estimate of the expected loss or the approximated
expected loss) on the training set. We used exponentially weighted average on the objective value to reduce its
variance. We used

scipy.optimize.minimize_scalar(f, method=’bounded’, bounds=(-6,
0),maxiter=10)

2https://www.cs.toronto.edu/~kriz/cifar.html
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for the numerical search of the optimal log of the learning rate. Arguably, this learning rate selection optimizing
the short-horizon performance may be sub-optimal in a longer run, but is the first best approximation to deal
with this issue.

Parameters of linear and convolutional layers were initialized as uniformly distributed. We then perform
one iteration, computing mean and variance statistics over a batch and spatial dimensions and whitening pre-
activations using these statistics, similar to batch normalization. This is performed only as a data-dependent
initialization to make sure that activations are in a reasonable range on average and the gradients are initially
non-vanishing.

Test Metrics In our experiments all hyperparameters including the learning rates are tuned exclusively on
the training set as detailed above. Hence the validation set provides an unbiased estimate of the test error and we
report only it.

Methods Here we specify additional details on the baseline methods used in the learning experiment. The
ADF method, called AP2 in [? ], propagates means and variances through the hidden layers fully analytically.
This method is the equivalent of the PBNET method in [22] when the weights are deterministic. We only
sample the states of the last binary layer are sampled, as a general solution suitable with different head functions.
The ADF family of methods includes expectation propagation [17] designed for approximate variational
inference in graphical models. It computes an approximation to summation (5) by fitting and propagating a fully
factorized approximation to marginal distributions ppxk|x0q with forward KL divergence. The gradient of this
approximation is then evaluated. The PSA method differs in that it approximates the gradient directly and does
not make a strong factorization assumption. From the experiments we observe that ADF performs very well in
the beginning, when all weights are initially random and then it over-fits to the relaxed objective.

In the LocalReparam method we sample pre-activations from their approximated Normal distribution and
computed probabilities of the outputs analytically. This is related but different from the PBNET-S method [22],
which samples activations from the concrete relaxation distribution and is not directly applicable to real-valued
deterministic weights. The implementation of our methods and these baselines is available.

Infrastructure The experiments were run on linux servers with NVIDIA GTX1080 cards and Tesla P100
cards.

Running Time We measure running time for a single batch of size 64 and the running time for one epoch of
training / validation. The training loop includes measuring statistics using 10 samples of the model per data
point, which increases amount of forward computations performed. Please consider that these numbers are
indicative only, as we did not optimize for performance beyond providing the CUDA kernel for PSA. We also
have lots of overhead from implementing padding and strides in pytorch, externally to the kernel. Times are
given in seconds.

Method Forward batch Backward batch Train Epoch
with measure-
ments

Val Epoch with
measurements

PSA 0.013 0.056 105 14
Gumbel 0.009 0.012 77 13
Tanh 0.005 0.011 77 12.5
REINFORCE 0.014 0.009 77 14
ADF 0.012 0.031 91.5 14
LocalReparam 0.015 0.029 98 14
ST 0.009 0.011 77 13
HardST 0.009 0.011 77 13

C.3 MuProp and REINFORCE with Baselines

For fairness of comparison we have additionally tried to use REINFORCE with a centering variance reduction
and MuProp. As a baselines for these methods we use the exponentially weighted average (EWA) of the loss
function per data point with momentum=0.9. Since the learning rate needed for these methods is rather small,
the EWA is close to the true expected loss value per data point. Since the EWA is kept per data point, this is
an accurate input-dependent constant baseline. We made several learning trials with automatically selected
learning rates (denoted with stars in Fig. C.7) as well as manually set learning rates. Since automatic learning
rates appear to be too high as they lead do divergence, it only makes sense to decrease these learning rates. We
tried setting the learning rates smaller. The results in Fig. C.7 show that with some careful choice of parameters,
REINFORCE and MuProp can make progress. However, the learning rates required are 1-2 orders smaller than
with biased methods, which leads to much slower performance. Indeed, comparing Fig. C.7 and Fig. 4 (note the
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Figure C.2: Training losses when training a small network 5-5-5 on the data in Fig. B.1(a) with
several methods. Here the dashed curves show the SBN objective, the expected loss of randomized
predictor (15), which upper bounds the the loss of the ensemble (15) shown with solid curves. We see
that REINFORCE (score) does not do very well in the beginning, but eventually gets into a mode that
allows it to optimize the objective. The methods ARM and PSA perform similar and ST is somewhat
slower due to its bias for this small model.
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Figure C.3: Root mean squared error of the gradient in layers 1 to 3 relative to the true gradient
length after epoch 1. Comparisons with more unbiased methods in the same setting as Fig. 2.
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Figure C.4: Cosine similarity of the estimated gradient to the true gradient in layer 1 at different
points during training. Comparisons with more unbiased methods in the same setting as Fig. 3.

scale difference of y-axis), we observe that variance-reduced REINFORCE and MuProp in 1000 epochs have
barely made the progress of biased estimators in 10 epochs.
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Figure C.5: Dependence on the network width. Shown gradient RMES in Layer 1 after epoch 1
(close to randomly initialized network). Bias of PSA and ST is more prominent in small models.
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Figure C.6: Dependence on the network depth. Shown gradient RMES in Layer 1 after epoch 1
(close to randomly initialized network). The variance of unbiased estimators grows much faster when
increasing the network depth. The network width is fixed to 5 units per layer.
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Figure C.7: Performance of REINFORCE and MuProp with different learning rates and input-
dependnet constant baselines estimated using a running averages. No smoothing is applied across
epochs in this plot. Note the limits of y-axis in comparison to Fig. 3.
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