
A Proof of Theorem 1

Proof. Since Θ̂ε, Ûε, Ŵε are optimal solutions, and thus satisfy the following optimality conditions:

0 =
∂

∂Θ
F (Ŵε, Θ̂ε) (17)

0 =
∂

∂(W,U)
G(Ŵε, Ûε) + ε

∂

∂(W,U)
g(z, Ŵε, Ûε), (18)

where ∂(W,U) means concatenate the U and W as [W,U ] and compute the gradient w.r.t [W,U ].
We define the changes of parameters as ∆Wε = Ŵε − Ŵ , ∆Θε = Θ̂ε − Θ̂, and ∆Uε = Ûε − Û .
Applying Taylor expansion to the rhs of (18) we get
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]
Since W ∗, U∗ are optimal of unperturbed problem, ∂
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Since ε→ 0, we have further approximation[
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Similarly, based on (17) and applying first order Taylor expansion to its rhs we have
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Combining (21) and (22) we have
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where [·]W means taking the W part of the vector. Therefore,
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.

B Models and Hyperparameters for the Experiments in Sections 4.1, 4.2, 4.3
and 4.4

The model structures we used in Sections 4.1, 4.2, 4.3 and 4.4 are listed in Table A. As mentioned
in the main text, for all models, CNN layers are used as embeddings and fully connected layers are
task-specific. The number of neurons on the last fully connected layer is determined by the number
of classes in the classification. There is no activation at the final output layer and all other activations
are Tanh.
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• For MNIST experiments in Section 4.1 on embedding fixed, we train a four-class classifica-
tion (0, 1, 2, and 3) in pretraining. All examples in the original MNIST training set with with
these four labels are used in pretraining. The finetuning task is to classify the rest six classes,
and we subsample only 5000 examples to finetune. The pretrained embedding is fixed in
finetuning. We run Adam optimizer in both pretraining and finetuning with a batch size
of 512. The pretrained and finetuned models are trained to converge. When validating the
influence function score, we remove an example from pretraining dataset. Then we re-run
the pretraining and finetuning process with this leave-one-out pretraining dataset starting
from the original models’ weights. In this process, we only run 100 steps for pretraining
and finetuning as the models converge. When computing the influence function scores, the
damping term for the pretrained and finetuned model’s Hessians are 1× 10−2 and 1× 10−8,
respectively. We sample 1000 pretraining examples when computing the pretraind model’s
Hessian summation.

• For CIFAR experiments on embedding fixed, we train a two-class classification (“bird" vs
“frog") in pretraining. All examples in the original CIFAR training set with with these four
labels are used in pretraining. The finetuning task is to classify the rest eight classes, and we
subsample only 5000 examples to finetune. The pretrained embedding is fixed in finetuning.
We run Adam optimizer to train both pretrained and finetuned model with a batch size
of 128. The pretrained and finetuned models are trained to converge. When validating
the influence function score, we remove an example from pretraining dataset. Then we
re-run the pretraining and finetuning process with this leave-one-out pretraining dataset
starting from the original models’ weights. In this process, we only run 6000 steps for
pretraining and 3000 steps for finetuning. When computing the influence function scores, the
damping term for the pretrained and finetuned model’s Hessians are 1× 10−8 and 1× 10−6,
respectively. Same hyperparameters are used in experiments in Sections 4.3 and 4.4. We
also use these hyperparameters in with embedding unfix on CIFAR10’s experiments, except
that the pretrained embedding is updated in finetuning and the number of finetuning steps is
reduced to 1000 in validation. The α constant in Equation 15 is chosen as 0.01. We sample
1000 pretraining examples when computing the pretrained model’s Hessian summation.

Dataset MNIST CIFAR

Embedding

CONV 32 5×5+1 CONV 32 3×3+1
MAX-POOL 2×2 +2 CONV 64 4×4+1

CONV 64 5×5+1 MAX-POOL 2×2 +2
MAX-POOL 2×2 +2 CONV 128 2×2+1

MAX-POOL 2×2 +2
CONV 128 2×2+1

MAX-POOL 2×2 +2

Task specific FC <# classes> FC 1500
FC <# classes>

Table A: Model Architectures. “CONV k w×h+s” represents a 2D convolutional layer with k filters
of size w×h using a stride of s in both dimensions. “MAX-POOL w×h+s” represents a 2D max
pooling layer with kernel size w×h using a stride of s in both dimensions. “FC n” = fully connected
layer with n outputs. All activation functions are Tanh and last fully connected layers do not have
activation functions. The number of neurons on the last fully connected layer is determined by the
number of classes in the task.

C Additional Experimental Results

To demonstrate the effectiveness of the expensive inverse Hessian computation in our formulation.
We replace all inverse Hessians in (11) with identity matrices to compute the influence function
score for the MNIST model as a comparison to Figure A . The results are shown in Figure 2(c) with a
much smaller Pearson’s r of 0.17. This result shows effectiveness of our proposed influence function.

In Figure B, we plot the distribution of the influence function values with respect to each pretraining
example for two tasks described in Section 4.3. The finetuning task A is exactly the same as the
pretraining “bird vs. frog" classification, while the finetuning task B is a classification on two other
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classes (“automobile vs. deer"). We can see that, the first finetuning task influence function has much
larger absolute values than that of the second task.

In Figure C, we plot the influence function score with different numbers of finetuning examples as
introduced in Section 4.4. Model C is the model used in Section 4.1 and in model D we triple the
number of finetuning examples as well as the number of finetuning steps.
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Figure A: True loss difference vs. the influence function scores by our proposed method on MNIST.
Pearson r = 0.47. Embedding is fixed in finetuning task.
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Figure B: Two different finetuning task distribu-
tion of influence function scores. The pretrained
embedding is fixed in finetuning. For both finetun-
ing tasks, the pretrained model is the same, and
is trained using “bird vs. frog" in CIFAR-10. For
model A, finetuning task and pretraining task are
the same. The average absolute values of influence
function scores for models A and B are 0.055 and
0.025, respectively.
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Figure C: Two different finetuning task distribu-
tion of influence function scores. The pretrained
embedding is also updated in finetuning. The pre-
training and finetuning tasks are the same as in
Section 4.1. Model D’s number of finetuning ex-
amples and finetuning steps are 3X of model C’s.
The average absolute values of influence function
scores for Models C and D are 0.22 and 0.15, re-
spectively.
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