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Abstract

We develop an approach for estimating models described via conditional moment
restrictions, with a prototypical application being non-parametric instrumental
variable regression. We introduce a min-max criterion function under which the
estimation problem can be thought of as solving a zero-sum game between a
modeler who is optimizing over the hypothesis space of the target model and an
adversary who identifies violating moments over a test function space. We analyze
the statistical estimation rate of the resulting estimator for arbitrary hypothesis
spaces, with respect to an appropriate analogue of the mean squared error metric, for
ill-posed inverse problems. We show that when the minimax criterion is regularized
with a second moment penalty on the test function and the test function space is
sufficiently rich, the estimation rate scales with the critical radius of the hypothesis
and test function spaces, a quantity which typically gives tight fast rates. Our main
result follows from a novel localized Rademacher analysis of statistical learning
problems defined via minimax objectives. We provide applications of our main
results for several hypothesis spaces used in practice such as: reproducing kernel
Hilbert spaces, high dimensional sparse linear functions, spaces defined via shape
constraints, ensemble estimators such as random forests, and neural networks.
For each of these applications we provide computationally efficient optimization
methods for solving the corresponding minimax problem (e.g., stochastic first-order
heuristics for neural networks). In several applications, we show how our modified
mean squared error rate, combined with conditions that bound the ill-posedness
of the inverse problem, lead to mean squared error rates. We conclude with an
extensive experimental analysis of the proposed methods.

1 Introduction

Understanding how policy choices affect social systems requires an understanding of the underlying
causal relationships between them. To measure these causal relationships, social scientists look to
either field experiments or quasi-experimental variation in observational data. Most observational
studies rely on assumptions that can be formalized in moment conditions. This is the basis of the
estimation approach known as generalized method of moments (GMM) [Hansen, 1982].

While GMM is an incredibly flexible estimation approach, it suffers from some drawbacks. The
underlying independence (randomization) assumptions often imply an infinite number of moment
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conditions. Imposing all of them is infeasible with finite data, but it is hard to know which ones to
select. For some special cases, asymptotic theory provides some guidance, but it is not clear that
this guidance translates well when the data is finite and/or the models are non-parametric. Given the
increasing availability of data and new machine learning approaches, researchers and data scientists
may want to apply adaptive non-parametric learners such as reproducing kernel Hilbert spaces,
high-dimensional regularized linear models, neural networks, and random forests to these GMM
estimation problems, but this requires a way of finding solutions to the moment conditions within
complex hypothesis classes imposed by the learner and selecting moment conditions that are adapted
to the hypothesis class of the learner.

Many theoretical developments in machine learning and statistics begin by formulating the target
estimand as the minimizer of a population loss function (typically strongly convex with respect to the
output of the hypothesis) over a hypothesis space and the estimation procedure as an M -estimator
(Chapter 5, [Van der Vaart, 2000]) that minimizes an empirical estimate of the population loss.
Framing learning as M -estimation with a strongly convex loss leads to many desirable properties:
1) tight generalization bounds and mean squared error rates based on localized notions of statistical
complexity can be invoked to provide tight and fast finite sample rates with minimal assumptions
[Bartlett et al., 2005, Wainwright, 2019], ii) regularization can be invoked to make the estimation
adaptive to the complexity of the true hypothesis space, without knowledge of that complexity [Lecué
and Mendelson, 2018, 2017, Negahban et al., 2012], iii) the computational problem can be typically
efficiently solved via first order methods that can scale massively [Agarwal et al., 2014, Rahimi and
Recht, 2008, Le, 2013, Sra et al., 2012, Bottou et al., 2007]. This formulation is seemingly at odds
with the method of moments approach to estimation, as often moment conditions do not correspond
to the gradient of some loss function, and this problem is exacerbated in the case of non-parametric
endogenous regression problems (i.e., when the instruments in the observational study does not
coincide with the treatments). This leads to the main question of this work: Can we develop an
analogue of the modern statistical learning theory of M -estimators for non-parametric problems
defined via moment restrictions?

Our starting point is a set of conditional moment restrictions
Ely — h(z) [ 2] =0 (1)
where y is an outcome of interest, x is a vector of treatments, and z is a vector of instruments.

To obtain a criterion function, we first move to an unconditional moment formulation, where the
moment restrictions are products of the moment conditions and test functions in the instruments. We
then take as our criterion function the maximum moment deviation over the set of test functions,
where the set of test functions is potentially infinite:

ho = arginf sup E[(y — h(x)) f(2)] =: arginf sup ¥(h, f) (2)
heH feF heH feF

This formulation of the conditional moment problem turns it into an adversarial learning problem,
reminiscent of adversarial approaches in machine learning, such as Generative Adversarial Networks
(GANSs). Similar to Wasserstein [Arjovsky et al., 2017] and MMD [Li et al., 2017] GANSs, in our
adversarial problem the learner is trying to find a model h that satisfies all moment constraints, and
the adversary is trying to identify moments that are violated for the chosen h. Unlike with GANs, we
do not learn a generative model or impose a likelihood but rather only impose moment conditions
that our model h needs to satisfy. This can be thought of as a zero-sum game between the learner and
the adversary where the adversary’s payoff for a strategy pair (h, f) is given by ¥(h, f) (2).

We show that, as long as the set of test functions F contains all functions of the form f(z) =
E[h(x) — h/(z) | 2] for h,h’ € H, an estimator based on a regularized empirical analogue of the
minimax criterion achieves a projected MSE rate that scales with the critical radius of the function
classes F, H, and their tensor product class (i.e., functions of the form f(z) - h(x), with f € F
and h € H). Since the critical radius captures information theoretically optimal rates for many
function classes of interest, our main theorem can be used to derive tight estimation rates for many
hypothesis spaces. Moreover, if the regularization terms relate to the squared norms of h and f in
their corresponding spaces, then the estimation error scales with the norm of the true hypothesis, even
without knowledge of this norm. Finally, one important aspect of the regularization that we consider
for our main theorem is that it contains a second moment penalty on the test functions with a weight
that does not vanish to zero asymptotically.



We offer applications of our main theorems for several hypothesis spaces of practical interest
including reproducing kernel Hilbert spaces (RKHS), sparse linear functions, functions defined via
shape restrictions, neural networks, and random forests. For many of these estimators, we offer
optimization algorithms with performance guarantees. As we illustrate in extensive simulation studies,
different estimators are best in different regimes.

Related work The non-parametric IV problem has a long history in econometrics [Newey and
Powell, 2003, Blundell et al., 2007, Chen and Pouzo, 2012, Chen and Christensen, 2018, Hall et al.,
2005, Horowitz, 2007, 2011, Darolles et al., 2011, Chen and Pouzo, 2009]. Arguably the closest to our
work is that of Chen and Pouzo [2012], who consider estimation of non-parametric function classes
and estimation via the method of sieves and a penalized minimum distance estimator of the form:
mingey E[E[y — h(x) | 2]2] + AR(h), where R(h) is a regularizer. As we show in Appendix A, our
estimator can be interpreted asymptotically as a minimum distance estimator, albeit our estimation
method applies to arbitrary function classes and non just linear sieves. There is also a growing body
of work in the machine learning literature on the non-parametric instrumental variable regression
problem [Hartford et al., 2017, Bennett et al., 2019, Singh et al., 2019, Muandet et al., 2019, 2020].
Our work has several features that draw connections to each of these works, e.g. Bennett et al. [2019],
Muandet et al. [2019, 2020] also use a minimax criterion and Bennett et al. [2019], Muandet et al.
[2019] also impose some form of variance penalty on the test function. We discuss subtle differences
in Appendix A. Moreover, Singh et al. [2019], Muandet et al. [2019] also study RKHS hypothesis
spaces and Hartford et al. [2017], Bennett et al. [2019] also study neural net hypothesis spaces. None
of these prior works provide finite sample estimation error rates for arbitrary hypothesis spaces and
typically only show consistency for the particular hypothesis space analyzed (with the exception of
Singh et al. [2019], who provide finite sample rates for RKHS spaces, under further conditions on the
smoothness of the true hypothesis). In Appendix A we offer a more detailed exposition on the related
work and how it relates to our main results.

2  Preliminary Definitions

We consider the problem of estimating a flexible econometric model that satisfies a set of conditional
moment restrictions presented in (1) (see also Appendix B), where z € Z C R¢, X € X C RP,
y€R, heH C (X — R) for H a hypothesis space. For simplicity of notation we will also denote
with ¢ (y; h(x)) = y — h(x). The truth is some model hg that satisfies all the moment restrictions.

We assume we have access to a set of n i.i.d. sample points {v; := (y;, z;, z;) }_; drawn from
some unknown distribution D that satisfies the moment condition in Equation (1). We will analyze
estimators that optimize an empirical analogue of the minimax objective presented in the introduction,
potentially adding norm-based penalties & : 7 — R, R : H — R,:

h:=argmin sup W,,(h, f) — A®(f) + p R(h)
heH feF

where U, (h, f) := %Z’;L:l Y(yi; h(i)) f(2i)-

We assume that H and F are classes of bounded functions on their corresponding domains and,
without loss of generality, their image is a subset of [—1,1]. Similarly, we will also assume that
y € [—1,1]. The results of this section hold for a general bounded range [—b, b] via standard re-
scaling arguments with an extra multiplicative factor of b. Moreover, we will assume that F is a
symmetric class, i.e. if f € F then —f € F. Moreover, we will assume that 7{ and F are equipped
with norms || - ||3, || - |- For any function class G we let Gg = {g € G : ||g|| < B}, be the B
bounded norm subset of the class.

Our estimation target is good generalization performance with respect to the projected root-mean-
squared-error (RMSE), defined as the RMSE projected onto the space of instruments:

IT(h — ho)2 := \/IE [(E[ﬁ(x) ~ ho(z) | z])2] (Projected RMSE)

where T' : H — F is the linear operator defined as Th := E[h(X) | Z = ‘]. This performance
metric is appropriate given the ill-posedness problem well known in this setting; imposing further
conditions on the strength of the correlation between the treatments and instruments (instrument



strength) allows one to, translate bounds on the projected RMSE to bounds on the RMSE (see e.g.
Chen and Pouzo [2012] and other references in the applications below).!

We start by defining some preliminary notions from empirical process theory that are required
to state our main results. Let G a class of uniformly bounded functions g : ¥V — [—1,1] from
some domain V to [—1, 1]. The localized Rademacher complexity of the function class is defined

25 Rn(539) = Brer, (udie, |59 oc6 |7 i cig(vi)
gll2>

from some distribution D on V and {¢; }!"_; are i.i.d. Rademacher random variables taking values

equiprobably in {—1, 1}. We will also denote with R,,(G), the un-restricted Rademacher complexity,

ie. § = oo.

], where {v;}? ; are i.i.d. samples

We denote with || - ||5 the £2-norm with respect to the distribution D, i.e. ||g]l2 = /Eu~plg(v)3],

and analogously we define the empirical (>-norm as ||g||2,n = 1/ £ 3=, g(v;)2. In our context, where

v = (y,x, z), when functions take as input subsets of the vector v, then we will overload notation
and let || - |2 and || - ||2,,, denote the population and sample ¢; norms with respect to the marginal
distribution of the corresponding input, e.g., if / is a function of x alone and f a function of z alone,

we write [hll2 = Ea[h@), || fll2 = VE-[F(2)7], and [ flls = v/Ev o [(@)? F(2)7).
A function class G is said to be symmetricif g € G = —g € G. Moreover, it is said to be

star-convex if: g € G = rg € G,Vr € [0, 1]. The critical radius §,, of the function class G is any
solution to the inequality R.,(5; G) < §2.

3 Main Theorems

We show that, if the function space Fi; contains projected differences of hypothesis spaces h € H g,
with some benchmark hypothesis h, € Hpg, i.e. T(h — h,.) € Fy, then a regularized minimax
estimator can achieve estimation rates that are of the order of the projected root-mean-squared-error
of the benchmark hypothesis &, and the critical radii of (i) the function class F3;; and (ii) a function
class G that consists of functions of the form: ¢(z) - T'q(z), for ¢ = h — h.. The projected root mean
squared error of the benchmark class can be understood as the approximation error or bias of the
hypothesis space H p, and the critical radius can be understood as the sampling error or variance of
the estimate. If hy € H g, then the approximation error is zero. We present a slightly more general
statement, where we also allow for F; to not exactly include T'(h — h. ), but rather functions that are
close to it with respect to the £ norm. For this reason, we will need to define the following slightly
more complex hypothesis space, in order to state our main theorem:

Gou :={(x,2) = 7 (h(x) — he(x)) fI(z) :heHst. h—h, e Hp,r€[0,1]}  (3)
where f/ = argmin;cz, ||f —T(h — hy)|l2. ¥ T(h — h,) € Fy, then this simplifies to the class
of functions of the form: (h — h.)(x) T'(h — h.)(2).

Theorem 1. Let F be a symmetric and star-convex set of test functions and consider the estimator:

. U
h—argmin sup W (0.7) A (113 + G117
heH feF

) Tl @

Let h, € H be any fixed hypothesis (independent of the samples) and hy be any hypothesis (not
necessarily in H) that satisfies the Conditional Moment (1) and suppose that:

VheH: min  ||[f =T(h—h)|2 <m0 (5)

S L2 n—n. 3,

"For our main theorem we do not even require completeness, i.e. there can be many h. € 7 such that
E[(y — h«(x))|z] = 0. Even without completeness we can still show convergence to an equivalence class of
ho under the projected mean-squared error metric. This adds robustness to our main theorem, as compared
to existing approaches in econometrics that typically assume completeness to provide any form of guarantee.
Such robustness could prove useful in settings with weak instruments where point identifiability only holds
asymptotically. Imposing further assumptions on completeness or the degree of ill-posedness can allow one to
relate the projected metric to the standard root-mean-squared-error metric and show RMSE-convergence to ho
(see Appendix C.4).



Assume that functions in Hp and Fsy have uniformly bounded ranges in [—1,1] and that: § =
On + o1/ %, Sfor universal constants cqy, c1, and §,, an upper bound on the critical radii of Fsy
and QAB’ng. If A > 62/U and pu > 2\(AL2 + 27U/ B), then h satisfies w.p. 1 — 3(:
T~ )l 70— Rl < O (54 o+ a3 252 + | T(he — b + 17 )
If further A\, p = O(6%) and § > ||T(h« — ho)
IT(h = ha)ll2, [IT(h = ho)ll2 < O (§ max{L, [[hu][3} + mn + [ T (7 — ho)l2)

o, then:

Observe that in (4), the regularization terms push for a norm-constrained solution. If the classes H, F
already are norm constrained, then the theorem directly applies to the estimator that solely penalizes
the /5, norm of f,i.e.:?

h = argmin sup W, (h, f) — || f
heH feF
However, as we show below, imposing norm regularization as opposed to hard norm constraints leads
to adaptivity properties of the estimator.

2 ©)

Adaptivity of regularized estimator Suppose that we know that for B,U = 1, we have that
functions in H g, Fyy have ranges in [—1, 1] as their inputs range in X’ and Z correspondingly. Then
our theorem requires that we set: A > 62 and p > 2A(4L? + 27), where 6% depends on the critical
radius of the function class F; and G;. Observe that none of these values depend on the norm of the
benchmark hypothesis || |3, which can be arbitrary and not constrained by our theorem (see also
Appendix C.1).

For some function classes # that admit sparse representations, we can get an improved performance
if instead of testing for classes of functions F that contain 7'(h — h..), we test functions whose linear
span contains T'(h — hy), i.e. that T'(h — h,) = >, w; f;, assuming the weights required in this
linear span have small ¢; norm. The reason being that the generalization error of linear spans with
bounded ¢; norm can be prohibitively large to get fast error rates, i.e. the Rademacher complexity
of the span of F can be much larger than F, thereby introducing large sampling variance to our
sup-loss objective. To state the improved result, we define for any function space F: span, (F) :=
{28 L wifi s fi € F,|Jwlli € k,p < 00}, i.e. the set of functions that consist of linear combinations
of a finite set of elements F, with the ¢; norm of the weights bounded by R. To get fast rates in this
second result, we will require that the ¢5-normalized T'(h — h..) belongs to the span. We present the
theorem in the well-specified setting, but a similar result holds in the case where hg ¢ H g, with the
extra modification of adding a second moment penalty on f.

Theorem 2. Consider a set of test functions F := Uf:l‘]: i, that is decomposable as a union of d
symmetric test function spaces F* and let Fi, = {f € F' : || f|% < U}. Consider the estimator:

h=argmin sup W, (h, f)+ Allhllx @)
heH feFu

Let hg € Hp be any fixed (independent of the samples) hypothesis that satisfies the Conditional

Moment (1). Let 6,, ¢ = 2 Inaxfz1 Rn (]-7]) + co M, for some universal constants cy, c1
and By, ».¢ = ||ho|l2 + On,c /. Suppose that:

h—h
Vh € Hp : m € span,. (Fu)

n,\,¢

Then if A > 6, ¢, h satisfies for some universal constants cg, c1, that wp. 1 — (:
17 (ko = )ll2 < e (2(B +1) R (M) + dnc + A (IlRollse = 1l ))

In Appendix C we provide further discussion related to our main theorems: i) we provide further
discussion on the adaptivity of our estimators, ii) we provide connections between the critical radius
and the entropy integral and how to bound the critical radius via covering arguments, iii) we provide
generic approaches to solving the optimization problem, iv) we show how to combine our main
theorem on the projected MSE with bounds on the ill-posedness of the inverse problem in order to
achieve MSE rates, v) we offer a discussion on the optimality of our estimation rate.

By setting A = 62 /U and pu = 2\ (4L2 + 27U/B), using an ¢, norm in both function spaces, and taking
U, B — oo. Observe that we can also take L = 1, since || Th||oc < ||h]|co for any 7.



4 Application: Reproducing Kernel Hilbert Spaces

In this section we describe how Theorem 1 applies to the case where hg lies in a reproducing kernel
Hilbert space (RKHS) Hp,, with kernel K3, : X x & — R and T'hg lies in another RKHS H .
with kernel K= : Z x Z — R. We choose F to be an RKHS norm ball of K = and outline here the
main ideas behind the three components required to apply our general theory. A complete discussion
is deferred to Appendix E.

First we characterize the set of test functions that are sufficient to satisfy the requirement that
T(h — ho) € Fy. In Lemma 7, we show that Th € Hg . whenever the conditional density function
z + p(x | z) resides in the RKHS H . for each . Moreover, we show that under the stronger
conditions (see Lemma 8) that p(z | z) = p(x — 2) and K¢ (z,y) = k(x — y), for k positive definite
and continuous, then Th € Hy, i.e. Th falls in the same RKHS as h. These two theorems give
concrete guidance in terms of primitive assumptions on what RKHS should be used as a test function
space to satisfy T'(h — hg) € Fy.

Second, by recent results in statistical learning theory [Wainwright, 2019, Lem. 13.6], the critical
radius of any RKHS-norm constrained subset of an RKHS class with kernel K and norm bound B, can
be characterized as a function of the eigen-decay of the empirical kernel matrix K defined as K;; =

K (z;,x;)/n. More concretely, 0, is the smallest positive solution to B\/g \/ > min{\y, 42} <

62, where XS are the empirical eigenvalues and, in the worst-case is of the order of n~/%. In the
context of Theorem 1, the function classes F and Gp are norm balls of the reproducing kernel Hilbert
spaces with kernels Kz and Ky ((z, 2), (¢, 2")) = Ky (z,2") - K#(z, 2’) respectively. Thus we can
bound the critical radius required in the theorem as a function of the eigendecay of the corresponding
empirical kernel matrices, which are data-dependent quantities.

Combining these two facts, we can then apply Theorem 1 to get a bound on the estimation error of
the minimax or regularized minimax estimator. Moreover, we show that for this set of test functions
and hypothesis spaces, the empirical min-max optimization problem can be solved in closed form. In
particular, the estimator in Equation (4) takes the form:

h= Y0, o, iK(wi, ) a = (KynMEKyp + 47 K p) Ky oMy
where Ky n = (Ky(zi,25))7 ;=1 and Kz, = (K#(zi,2;))} ;= are empirical kernel matrices,
and M = Klf/ i(%[( Fn+1 )_1K}/7 i (for At the Moore-Penrose pseudoinverse of A). Moreover,

in Appendix E.3, we discuss how ideas from low rank kernel matrix approximation (such as the
Nystrom method) can avoid the O(n?) running time for matrix inverse computation in the latter
closed form. Finally, we show (see Appendix E.4) that if we make further assumptions on the rate at
which the operator T distorts the orthonormality of the eigenfunctions of the kernel K3, then our
analysis also yields mean-squared-error rates.

S Application: High-Dimensional Sparse Linear Function Spaces

In this section we deal with high-dimensional linear function classes, i.e. the case when X', Z C RP
for p > n and ho(x) = (A, =) (see Appendix F for more details). We will address the case when the
function 6 is assumed to be sparse, i.e. ||0y|lo := {j € [p] : |0;| > 0} < s. We will be denoting with
S the subset of coordinates of 6 that are non-zero and with S¢ its complement. For simplicity of
exposition we will also assume that E[z; | z] = (3, z), though most of the results of this section also
extend to the case where E[z; | z] € F; for some F; with small Rademacher complexity. Variants of
this setting have been analyzed in the prior works of [Gautier et al., 2011, Fan and Liao, 2014]. We
focus on the case where the covariance matrix V := E[E[x | 2]E[x | 2] "], has a restricted minimum
eigenvalue of « and apply Theorem 2. We note that without the minimum eigenvalue condition, our
Theorem 1 provides slow rates of the order of n~'/4, for computationally efficient estimators that
replace the hard sparsity constraint with an ¢;-norm constraint.

Corollary 3. Suppose that ho(x) = (0, x) with ||6gllo < s and ||6o|l1 < B and ||0p|lc < 1.

Moreover, suppose that E[z; | z] = (B}, z), with 3 € RP and ||88||1 < U and that the co-variance
matrix V satisfies the following restricted eigenvalue condition:

Vv € RP sit. ||vge|lr < ||vslli +20nc: v Vi > v




Then let H = {x — (0,x) : 0 € RP}, {0, Ml = ||0)l1, Fu ={z = (B,2) : BeRP ||B]1 < U}
and ||(B, )||7 = ||B||l1. Then the estimator presented in Equation (7) with A < L, satisfies that w.p.
1—¢(:

8s’

|IT(h — ho)l|l2 < O <max{1, +2} \E ((B + 1)/l 4 g7, flose) \/1°g<:j/<>>)

If instead we assume that ||B}||2 < U and sup,cz ||z||2 < R then by setting Fiy = {z = (B,2) :
IBll2 < U} and ||(B, )|+ = ||Bl|2, then the later rate holds with U/ **5®) replaced by U—\/g.

n

Notably, observe that in the case of ||3}|l2 < U, we note that if one wants to learn the true 3 with
respect to the ¢5 norm or the functions E[xz; | z] with respect to the RMSE, then the best rate one can
achieve (by standard results for statistical learning with the square loss), even when one assumes that
T U R) 1/4

n

sup,cz ||2]|2 < R and that E[zz ' | has minimum eigenvalue of at least -y, is: min { VE, (

For large p > n the first rate is vacuous. Thus we see that even though we cannot accurately learn the
conditional expectation functions at a 1/4/n rate, we can still estimate hg at a 1/4/n rate, assuming
that A is sparse. Therefore, the minimax approach offers some form of robustness to nuisance
parameters, reminiscent of Neyman orthogonal methods (see e.g. Chernozhukov et al. [2018]).

In Appendix F.3 we also provide first-order iterative and computationally efficient algorithms with
provable guarantees for solving the optimization problem. Moreover, we show that recent advances in
online learning theory can be utilized to get fast iteration complexity, i.e. achieve error ¢ after O(1/¢)
iterations (instead of the typical rate of O(1/¢?) for non-smooth functions). Finally, in Appendix F.4,
we also show if we assume that the minimum eigenvalue of V is at least v and the maximum
eigenvalue of ¥ = E[zz] is at most o, then the same rate as the one presented in Corollary 3 holds

for the MSE, multiplied by the constant /o /7.

6 Neural Networks

In this section we describe how one can apply the theoretical findings from the previous sections
to understand how to train neural networks that solve the conditional moment problem. We will
consider the case when our true function hg can be represented (or well-approximated) by a deep
neural network function of z, for some given domain specific network architecture, and we will
represent it as ho(z) = hg, (x), where 6 are the weights of the neural net (see Appendix H for more
details). Moreover, we will assume that the linear operator 7', satisfies that for any set of weights
0, we have that Thy belongs to a set of functions that can be represented (or well-approximated) as
another deep neural network architecture, and we will denote these functions as f,(z), where w are
the weights of the neural net.

Adversarial GMM Networks (AGMM) Thus we can apply our general approach presented in
Theorem 1 (simplified for the case when U = B = 1, A = §2, u = 262(4L? + 27), where L is a
bound on the lipschitzness of the operator 1" with respect to the two function space norms and J is a

bound on the critical radius of the function spaces F3 and QAL 2):

0 = arg minsup En [ (y;; ho (2:)) fu ()] = | fullF — % Y fulz)® + e8| holl3,
for some constant ¢ > 1 that depends on the lipschitzness of the operator 7. The AGMM criterion
for training neural networks is closely related to the work of Bennett et al. [2019]. However, the
regularization presented in Bennett et al. [2019] is not a simple second moment penalization, so as to
emulate the optimally weighted GMM criterion Hansen [1982]. Here we show that such a more com-
plex penalty is not required if one simply wants fast projected MSE rates (in Appendix H we provide
further discussion). Moreover, in Appendix H.1, we show how to derive intuition from our RKHS
analysis to develop an architecture for the test function network that under conditions is guaranteed
to contain the set of functions of the form 7T'h. This leads to an MMD-GAN style adversarial GMM
approach, where we consider test functions of the form: f(z) = £ 37 | 5;K(c;, guw(z)), where ¢;
are parameters that could also be trained via gradient descent. The latter essentially corresponds to
adding what is known as an RBF layer at the end of the adversary neural net (denoted as KLayer-
Trained in experiments). Finally, in Appendix H.2, we provide heuristic methods for solving the
non-convex/non-concave zero-sum game, using first order dynamics.



7 Random Forests via a Reduction Approach

We will show that we can reduce the problem presented in (6) to a regression oracle over the function
space JF and a classification oracle over the function space H (see Appendix I for more details). We
will assume that we have a regression oracle that solves the square loss problem over F: for any set
of labels and features z1.,, u1., it returns

. 2

Oracler (21:n, t1:n) = argmingc £ 30 1 (u; — f(2))
Moreover, we assume that we have a classification oracle that solves the weighted binary classification
problem over H w.r.t. the accuracy criterion: for any set of sample weights wj.,,, binary labels v1.,,
in {0, 1} and features x1.,:

OracleH (Qil;n, Vlin, wl;n) = argmaxy -4 % Z?:l w; Pr (1+h(mi)) [’Ui = Zl]
2

z; ~Bernoulli
Theorem 4. Consider the algorithm where fort =1,...,T: let
ui = % (yl - i Zi;ll hT(xi)> ’ ft = Oracler (zlznvutlzn)

’U'f = 1{ft(zl) > 0},’(Uf = ‘ft(zl)‘ hy = Oracley, (x1:7L7vi:n7w§:7L)

Suppose that the set A = {(f(z1),...,f(zn)) : f € F} is a convex set. Then the ensemble:
h = % ZtT:l hy, is a Mw-apprzmimate solution to the minimax problem in Equation (6).

In practice, we will consider a random forest regression method as the oracle over F and a binary
decision tree classification method as the oracle for H (which we will refer to as RFIV). Prior work
on random forests for causal inference has focused primarily on learning forests that capture the
heterogeneity of the treatment effect of a treatment, but did not account for non-linear relationships
between the treatment and the outcome variable. The method proposed in this section makes this
possible. Observe that the convexity of the set A is violated by the random forest function class with
a bounded set of trees. Albeit in practice this non-convexity can be alleviated by growing a large
set of trees on bootstrap sub-samples or using gradient boosted forests as oracles for /. Moreover,
observe that we solely addressed the optimization problem and postpone the statistical part of random
forests (e.g. critical radius) to future work (see also Appendix I).

8 Further Applications

In the appendix we also provide further applications of our main theorems. In Appendix D we show
how our theorems apply to the case where H and F are growing linear sieves, which is a typical
approach to non-parametric estimation in the econometric literature (see e.g. Chen and Pouzo [2012]).
In Appendix G we analyze the case where #H and F are function classes defined via shape constraints.
We analyze the case of total variation bound constraints and convexity constraints. This applications
provides analogues of the convex regression and the isotonic regression to the endogenous regression
setting and draws connections to recent works in econometrics on estimation subject to monotonicity
constraints Chetverikov and Wilhelm [2017].

9 Experimental Analysis
Experimental Design. We consider the following data generating processes: for n, = 1 and
n, >1
y = ho(z[0]) + e+, § ~ N(0,.1)
z=vz[0]+ (1 —7)e+n, z~N(0,21,,),e ~ N(0,2),y ~ N(0,.1)
While, when n, = n, > 1, then we consider the following modified treatment equation:
r=7yz+(1=7)e+,

We consider several functional forms for hj including absolute value, sigmoid and sin functions
(more details in Appendix J) and several ranges of the number of samples n, number of treatments n,,
number of instruments 7, and instrument strength y. We consider as classic benchmarks 2SLS with



a polynomial features of degree 3 (2SLS) and a regularized version of 2SLS where ElasticNetCV is
used in both stages (Reg2SLS).

In addition to these regimes, we consider high-dimensional experiments with images, following the
scenarios proposed in Bennett et al. [2019] where either the instrument 2 or treatment  or both are
images from the MNIST dataset consisting of grayscale images of 28 x 28 pixels. We compare the
performance of our approaches to that of Bennett et al. [2019], using their code. A full description of
the DGP is given in the supplementary material.

Results. The main findings are: i) for small number of treatments, the RKHS method with a
Nystrom approximation (NystromRKHS), outperforms all methods (Figure 1), ii) for moderate
number of instruments and treatments, Random Forest IV (RFIV) significantly outperforms most
methods, with second best being neural networks (AGMM, KLayerTrained) (Figure 2), iii) the
estimator for sparse linear hypotheses can handle an ultra-high dimensional regime (Figure 3), iv)
neural network methods (AGMM, KLayerTrained) outperform the state of the art in prior work
[Bennett et al., 2019] for tasks that involve images (Figure 4). The figures below present the average
MSE across 100 experiments (10 experiments for Figure 4) and two times the standard error of the
average MSE.

NystromRKHS 2SLS Reg2SLS RFIV
abs 0.045 £ 0.010 0.100 £ 0.035 1.733 £ 2.981 0.084 £ 0.007
2dpoly 0.121 £ 0.014 | 0.036 + 0.022 9.068 £ 16.071 | 0.379 £ 0.022
sigmoid 0.016 £ 0.003 0.071 £ 0.037 0.429 £ 0.244 0.044 £ 0.006
sin 0.023 £ 0.003 0.090 £ 0.042 0.801 £ 0.420 0.057 £ 0.007
frequentsin 0.129 £ 0.005 0.193 £ 0.040 0.145 £ 0.017 0.126 £ 0.010
step 0.035 £ 0.003 0.103 £ 0.043 0.497 £ 0.276 0.056 £ 0.007
3dpoly 0.220 £ 0.037 0.004 £ 0.003 0.066 £ 0.014 0.687 £ 0.069
linear 0.019 £ 0.003 0.038 £ 0.021 0.355 £ 0.189 0.048 £ 0.005
band 0.059 £ 0.003 0.125 £ 0.051 0.085 £ 0.017 0.071 £ 0.008
Figure 1: n =300,n, =1,n, =1,7=.6
NystromRKHS 2SLS Reg2SLS RFIV AGMM KLayerTrained
abs 0.143 £ 0.005 10050.672 + 13267.141 0.122 + 0.011 0.049 + 0.001 0.062 £ 0.003 0.127 £ 0.007
2dpoly 0.595 £ 0.025 5890.128 £ 8261.553 4.510 £ 1.245 0.346 £ 0.014 | 0.099 £ 0.006 | 0.240 £ 0.014
sigmoid 0.045 £ 0.003 11712.144 4+ 16799.716 | 0.091 4 0.005 0.017 £ 0.001 0.040 £ 0.001 0.024 £ 0.001
sin 0.058 £ 0.003 13769.428 + 20805.861 0.114 £ 0.006 | 0.029 + 0.001 0.074 £ 0.002 | 0.057 £ 0.002
frequentsin 0.136 4 0.004 12928.749 4 19554.361 0.144 +0.004 | 0.120 £ 0.002 0.158 +0.002 | 0.128 £ 0.002
step 0.064 4 0.003 12187.342 4+ 17814.756 | 0.109 &+ 0.004 | 0.027 + 0.001 0.066 4+ 0.002 | 0.050 £ 0.001
3dpoly 0.648 £ 0.039 432.572 4 596.731 0.061 £ 0.005 0.444 £0.029 | 0.426 £ 0.027 0.491 £ 0.029
linear 0.080 £ 0.002 6964.376 + 9566.774 0.107 £ 0.006 0.016 £ 0.001 0.020 £ 0.001 0.013 £ 0.001
band 0.078 £ 0.004 20401.368 4 29655.000 | 0.090 & 0.004 | 0.049 + 0.002 0.088 £ 0.003 0.074 £ 0.003
Figure 2: n = 2000, n, = 10, n, = 10,7 = .6
p=_ 1000 10000 | 100000 1000000
SpLin 0.020 4 0.003 | 0.021 £ 0.003 - -
StSpLin ‘ 0.020 £ 0.002 ‘ 0.023 £ 0.002 ‘ 0.033 £ 0.002 | 0.050 £ 0.004

Figure 3: n =400, n, = n, := p,y = .6, ho(z[0]) = z[0]

|| DeepGMM (Bennett et al. [2019]) |  AGMM KLayerTrained |
MNIST, 0.12 £ 0.07 0.04 £ 0.03 0.05 £ 0.02
MNIST,. 0.34 +£0.21 0.24 £+ 0.08 0.36 £+ 0.20
MNIST,. . 0.26 +0.16 0.21 £ 0.07 0.26 £ 0.11

Figure 4: MSE on the high-dimensional DGPs

Broader Impact

Our work presents a unifying framework for the classical problem of generalized method of moments
(GMM). Our framework can be easily applied in a diverse range of scenarios and is efficient
at yielding accurate results even in high-dimensional scenarios. Moreover, we provide a strong
theoretical foundation for our framework which shows how to use regularization or constrained
optimization to obtain a theoretical bound on the performance of the underlying estimator. In
providing the theoretical upper bounds on the generalization error of the GMM estimator, we bring
in a statistical learning view, which is novel and has many related directions to explore in future. A



number of recent works (Bennett et al. [2019], Hartford et al. [2017]) try to tackle the GMM problem
using neural networks. We build on this direction and present many novel ways in which one can
use kernel ideas combined with neural networks to produce different estimators. We believe this
flexibility offered by our framework speaks for its generality and potential for future impact. On a
more broader front, within the econometrics literature, the GMM problem arises in many scenarios
where a policy decision which impacts humans is to be made. A better and theoretically sound
estimation procedure would result in better decisions made. Moreover, given instances of the problem
where the decisions downstream impact humans, quantities such as privacy and fairness could also be
incorporated into our framework for GMM estimation. A better and theoretically sound estimation
procedure would result in better decisions made. Moreover, given instances of the problem where
the decisions downstream impact humans, quantities such as privacy and fairness could also be
incorporated into our framework for GMM estimation.
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