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Abstract

In this supplementary material (SM), we provide the proofs and computation details
leading to the results presented in the main manuscript. In Sec. I, we first recall
the definition of the statistical model used in Sec. 1 and we give proper definitions
of the denoising distributions involved in the analysis of the Bayes-optimal and
Empirical Risk Minimization (ERM) estimation. In particular, we provide the
analytical expressions of the denoising functions used in Sec. 3 to analyze ridge,
hinge and logistic regressions. In Sec. II, we detail the computation of the binary
classification generalization error leading to the expressions in Proposition. 2.1
and Thm. 2.4 respectively for ERM and Bayes-optimal estimation. In Sec. III,
we present the proofs of the central theorems stated in Sec. 2. In particular, we
derive the Gordon-based proof of the Thm. 2.2 in the more general regression (real-
valued) version and provide as well the proof of Corollary. 2.3 which establishes
the equivalence between the set of fixed-point equations of the Gordon’s proof
in the binary classification case and the one resulting from the heuristic replica
computation. The corresponding statistical physics framework used to analyze
Bayes and ERM statistical estimations and the replica computation leading to
expressions in Corollary. 2.3 are detailed In Sec. IV. The section V is devoted to
provide additional technical details on the results with `2 regularization addressed
in Sec. 3. In particular, we present the large α expansions of the generalization error
for the Bayes-optimal, ridge, pseudo-inverse and max-margin estimators, and we
investigate the performances of logistic regression on non-linearly separable data.
Finally in Sec. VI, we show the derivation of the fine-tuned loss and regularizer
provably leading to Bayes-optimal performances, as explained and advocated
in Sec. 4, and we show some numerical evidences that ERM achieves indeed
Bayes-optimal error in Fig. 3.
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I Definitions and notations

I.1 Statistical model

We recall the supervised machine learning task considered in the main manuscript eq. (1), whose
dataset is generated by a single layer neural network, often named a teacher, that belongs to the
Generalized Linear Model (GLM) class. Therefore we assume the n samples are drawn according to

y = ϕ?out

(
1√
d

Xw?
)
⇔ y ∼ P ?out (.) , (I.1)

where w? ∈ Rd denotes the ground truth vector drawn from a probability distribution Pw? with
second moment ρw? ≡ 1

dE
[
‖w?‖22

]
and ϕ?out represents a deterministic or stochastic activation

function equivalently associated to a distribution P ?out. The input data matrix X = (xµ)
n
µ=1 ∈ Rn×d

contains i.i.d Gaussian vectors, i.e ∀µ ∈ [1 : n], xµ ∼ N (0, Id).

I.2 Bayes-optimal and ERM estimation

Inferring the above statistical model from observations {y,X} can be tackled in several ways. In
particular, Bayesian inference provides a generic framework for statistical estimation based on the
high-dimensional, often intractable, posterior distribution

P (w|y,X) =
P (y|w,X)P (w)

P (y,X)
. (I.2)

Estimating the average of the above posterior distribution in the case we have access to the ground
truth prior distributions P (y|w,X) = Pout? (y|z) with z ≡ 1√

d
Xw and P (w) = Pw? (w), refers to

Bayes-optimal estimation and leads to the corresponding Minimal Mean-Squared Error (MMSE)
estimator ŵmmse = EP(w|y,X) [w]. It has been rigorously analyzed in details in [1] for the whole
GLM class eq. (I.1). Another celebrated approach and widely used in practice is the Empirical Risk
Minimization (ERM) that minimizes instead a regularized loss: ŵerm = argminw [L (w; y,X)] with

L (w; y,X) =

n∑
µ=1

l (w; yµ, xµ) + r (w) . (I.3)

Interestingly analyzing the ERM estimation may be included in the above Bayesian framework.
Indeed exponentiating eq. (I.3), we see that minimizing the loss L is equivalent to maximize the
posterior distribution P (w|y,X) = e−L(w;y,X) if we choose carefully the prior distributions as
functions of the regularizer r and the loss l:

− logP (y|w,X) = l (w; y,X) , − logP (w) = r (w) . (I.4)

Computing the maximum of the posterior P (y|w,X) refers instead to the so-called Maximum A
Posteriori (MAP) estimator, and therefore analyzing the empirical minimization of (I.3) is equivalent
to obtain the performance of the MAP estimator with prior distributions given by (I.4). Thus both the
study of ERM (MAP) and Bayes-optimal (MMSE) estimations are simply reduced to the analysis of
the posterior eq. (I.2).

I.3 Denoising distributions and updates

Analyzing the posterior distribution eq. (I.2) in the high-dimensional regime [1] will boil down to
introducing the scalar denoising distributions Qw, Qout and their respective normalizations Zw, Zout

Qw(w; γ,Λ) ≡ Pw(w)

Zw(γ,Λ)
e−

1
2 Λw2+γw , Qout(z; y, ω, V ) ≡ Pout (y|z)

Zout(y, ω, V )

e−
1
2V
−1(z−ω)2

√
2πV

,

Zw(γ,Λ) ≡ Ew∼Pw

[
e−

1
2 Λw2+γw

]
, Zout(y, ω, V ) ≡ Ez∼N (0,1)

[
Pout

(
y|
√
V z + ω

)]
.

(I.5)
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We define as well the denoising functions, that play a central role in Bayesian inference. Note in
particular that they correspond to the updates of the Approximate Message Passing algorithm in [2]
that we recalled in Sec. VI.1. They are defined as the derivatives of logZw and logZout, namely

fw(γ,Λ) ≡ ∂γ log (Zw) = EQw [w] and ∂γfw(γ,Λ) ≡ EQw

[
w2
]
− f2

w

fout(y, ω, V ) ≡ ∂ω log (Zout) = V −1EQout
[z − ω] and ∂ωfout(y, ω, V ) ≡ ∂fout(y, ω, V )

∂ω
.

(I.6)

I.3.1 Bayes-optimal - MMSE denoising functions

In Bayes-optimal estimation, the ground truth prior and channel distributions Pw?(w) and Pout? (y|z)
of the teacher eq. (1) are known. Hence, replacing Pw and Pout in (I.5), we obtain the Bayes-optimal
scalar denoising distributions in terms of which the Bayes-optimal free entropy eq. (IV.18) is written

Qw?(w; γ,Λ) ≡ Pw?(w)

Zw?(γ,Λ)
e−

1
2 Λw2+γw , Qout?(z; y, ω, V ) ≡ Pout? (y|z)

Zout?(y, ω, V )

e−
1
2V
−1(z−ω)2

√
2πV

.,

(I.7)

and the denoising updates are therefore given by eq. (I.6) with the corresponding distributions

fw?(γ,Λ) ≡ ∂γ logZw?(γ,Λ) , fout?(y, ω, V ) ≡ ∂ω logZout?(y, ω, V ) . (I.8)

I.3.2 ERM - MAP denoising functions

Before defining similar denoising functions to analyze the MAP for ERM estimation, we first recall
the definition of the Moreau-Yosida regularization.

Moreau-Yosida regularization and proximal Let Σ > 0, f(, z) a convex function in z. Defining
the regularized functional

LΣ[f(, .)](z;x) = f(, z) +
1

2Σ
(z − x)

2
, (I.9)

the Moreau-Yosida regularizationMΣ and the proximal map PΣ are defined by

PΣ[f(, .)](x) = argminzLΣ[f(, .)](z;x) = argminz

[
f(, z) +

1

2Σ
(z − x)

2

]
, (I.10)

MΣ[f(, .)](x) = min
z
LΣ[f(, .)](z;x) = min

z

[
f(, z) +

1

2Σ
(z − x)

2

]
, (I.11)

where (, z) denotes all the arguments of the function f , where z plays a central role. The MAP
denoising functions for any convex loss l(, .) and convex separable regularizer r(.) can be written in
terms of the Moreau-Yosida regularization or the proximal map as follows

fmap,r
w (γ,Λ) ≡ PΛ−1 [r(.)] (Λ−1γ) = Λ−1γ − Λ−1∂Λ−1γMΛ−1 [r(.)] (Λ−1γ) ,

fmap,l
out (y, ω, V ) ≡ −∂ωMV [l(y, .)](ω) = V −1 (PV [l(y, .)](ω)− ω) .

(I.12)

The above updates can be considered as definitions, but it is instructive to derive them from the
generic definition of the denoising distributions eq. (I.6) if we maximize the posterior distribution.
This is done by taking, in a physics language, a zero temperature limit and we present it in details in
the next paragraph.

Derivation of the MAP updates To have access to the maximum of the generic distributions
eq. (I.5), we introduce a fictive noise/temperature ∆ or inverse temperature β, ∆ = 1

β . In particular
for Bayes-optimal estimation this temperature is finite and fixed to ∆ = β = 1. Indeed with the
mapping eq. (I.4), minimizing the loss function L (I.3) is equivalent to maximize the posterior
distribution. Therefore it can be done by taking the zero noise/temperature limit ∆ → 0 of the
channel and prior denoising distributions Qout and Qw. It is the purpose of the following paragraphs
where we present the derivation leading to the result (I.12).
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Channel Using the mapping eq. (I.4), we assume that the channel distribution can be expressed
as P (y|z) ∝ e−l(y,z). Therefore we introduce the corresponding channel distribution Pout at finite
temperature ∆ associated to the convex loss l(y, z)

Pmap
out (y|z) =

e−
1
∆ l(y,z)√
2π∆

.

Note that the case of the square loss l(y, z) = 1
2 (y − z)2 is very specific. Its channel distribution

simply reads Pout (y|z) = e−
1

2∆
(y−z)2

√
2π∆

and is therefore equivalent to predict labels y according to a

noisy Gaussian linear model y = z +
√

∆ξ, where ξ ∼ N (0, 1) and ∆ denotes therefore the real
noise of the model.

In order to obtain a non trivial limit and a closed set of equations when ∆ → 0, we must define
rescaled variables as follows:

V† ≡ lim
∆→0

V

∆
, fmap

out,†(y, ω, V†) ≡ lim
∆→0

∆× fmap
out (y, ω, V ) ,

where we denote the rescaled quantities after taking the limit ∆→ 0 by †. Similarly to eq. (I.9), we
introduce therefore the rescaled functional

LV† [l(y, .)](z;ω) = l(y, z) +
1

2V†
(z − ω)

2
, (I.13)

such that, injecting Pmap
out , the channel denoising distribution Qmap

out and the corresponding partition
function Zmap

out eq. (I.5) simplify in the zero temperature limit as follows:

Qmap
out (z; y, ω, V ) ≡ lim

∆→0

e−
1
∆ l(y,z)+

1
2V (z−ω)2√

2π∆V†
√

2π∆
= lim

∆→0

e−
1
∆LV† [l(y,.)](z;ω)√
2π∆V†

√
2π∆

, (I.14)

∝ δ
(
z − PV† [l(y, .)](ω)

)
Zmap

out (y, ω, V ) = lim
∆→0

∫
R

dzQmap
out (z; y, ω, V ) = lim

∆→0

e−
1
∆MV† [l(y,.)](ω)√
2π∆V†

√
2π∆

, (I.15)

that involve the proximal map and the Moreau-Yosida regularization defined in eq. (I.11). Finally
taking the zero temperature limit, the MAP denoising function fmap

out,† leads to the result (I.12):

fmap
out,†(y, ω, V†) ≡ lim

∆→0
∆× fmap

out (y, ω, V )

≡ lim
∆→0

∆× ∂ω logZmap
out ≡ lim

∆→0
∆V −1EQmap

out
[z − ω]

= −∂ωMV† [l(y, .)](ω) = V −1
†
(
PV† [l(y, .)](ω)− ω

)
.

(I.16)

Prior Similarly as above, using the mapping eq. (I.4), for a convex and separable regularizer r, the
corresponding prior distribution at temperature ∆ can be written

Pmap
w (w) = e−

1
∆ r(w) .

Note that at ∆ = 1 the classical `1 regularization with strength λ, r`1(w) = −λ|w|, and the `2
regularization r`2(w) = −λw2/2 are equivalent to choosing a Laplace prior Pw(w) ∝ e−λ|w| or a
Gaussian prior Pw(w) ∝ e−

λw2

2 . To obtain a meaningful limit as ∆ → 0, we again introduce the
following rescaled variables

Λ† ≡ lim
∆→0

∆× Λ , γ† ≡ lim
∆→0

∆× γ ,

and the functional

LΛ−1
†

[r(.)] (w; Λ−1
† γ†) = r(w) +

1

2
Λ†
(
w − Λ−1

† γ†
)2

=

[
r(w) +

1

2
Λ†w

2 − γ†w
]

+
1

2
γ2
†Λ
−1
† ,

(I.17)
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such that in the zero temperature limit, the prior denoising distributionQmap
w and the partition function

Zmap
w reduce to

Qmap
w (w; γ,Λ) ≡ lim

∆→0
Pw(w)e−

1
2 Λw2+γw = lim

∆→0
e
− 1

∆LΛ
−1
†

[r](w;Λ−1
† γ†)

e−
1

2∆γ
2
†Λ
−1
†

∝ δ
(
w − PΛ−1

†
[r] (Λ−1

† γ†)
)

(I.18)

Zmap
w (y, ω, V ) = lim

∆→0

∫
R

dwQmap
w (w; γ,Λ) = lim

∆→0
e
− 1

∆MΛ
−1
†

[r](Λ−1
† γ†)

e−
1

2∆γ
2
†Λ
−1
† , (I.19)

that involve again the proximal map PΛ−1
†

and the Moreau-Yosida regularizationMΛ−1
†

defined in

eq. (I.11). Finally the MAP denoising update fmap
w,† is simply given by:

fmap
w,† (γ†,Λ†) ≡ lim

∆→0
fmap

w (γ,Λ) = lim
∆→0

∂γ logZmap
w ≡ lim

∆→0
EQmap

w
[w]

= lim
∆→0

∂γ

(
− 1

∆
MΛ−1

†
[r(.)] (Λ−1

† γ†)−
1

2∆
γ2
†Λ
−1
†

)
= ∂γ†

(
−MΛ−1

†
[r(.)] (Λ−1

† γ†)−
1

2
γ2
†Λ
−1
†

)
(I.20)

= Λ−1
† γ† − Λ−1

† ∂Λ−1
† γ†
MΛ−1

†
[r(.)] (Λ−1

† γ†) = PΛ−1
†

[r(.)] (Λ−1
† γ†)

= argminw

[
r(w) +

1

2
Λ†(w − Λ−1

† γ†)
2

]
= argminw

[
r(w) +

1

2
Λ†w

2 − γ†w
]
,

and we recover the result (I.12).

I.4 Applications

In this section we list the explicit expressions of the Bayes-optimal eq. (I.8) and ERM eq. (I.12)
denoising functions largely used to produce the examples in Sec. 3.

I.4.1 Bayes-optimal updates

The Bayes-optimal denoising functions (I.8) are detailed in the case of a linear, sign and rectangle
door channel with a Gaussian noise ξ ∼ N (0, 1) and variance ∆ ≥ 0, and for Gaussian and
sparse-binary weights.

Channel
• Linear: y = ϕout?(z) = z +

√
∆ξ

Zout?(y, ω, V ) = Nω (y,∆? + V ) ,

fout?(y, ω, V ) = (∆? + V )
−1

(y − ω) , ∂ωfout?(y, ω, V ) = − (∆? + V )
−1

.
(I.21)

• Sign: y = ϕout?(z) = sign(z) +
√

∆?ξ

Zout? (y, ω, V ) = Ny(1,∆?)
1

2

(
1 + erf

(
ω√
2V

))
+Ny(−1,∆?)

1

2

(
1− erf

(
ω√
2V

))
,

fout? (y, ω, V ) =
Ny(1,∆?)−Ny(−1,∆?)

Zout? (y, ω, V )
Nω(0, V ) .

(I.22)

• Rectangle door: y = ϕout?(z) = 1 (κm ≤ z ≤ κM )− 1 (z ≤ κm or z ≥ κM ) +
√

∆?ξ
For κm < κM , we obtain
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Zout?(y, ω, V ) = Ny(1,∆?)
1

2

(
erf

(
κM − ω√

2V

)
− erf

(
κm − ω√

2V

))
+Ny(−1,∆?)

1

2

(
1− 1

2

(
erf

(
κM − ω√

2V

)
− erf

(
κm − ω√

2V

)))
,

fout?(y, ω, V ) =
1

Zout
(Ny(1,∆?) (−Nω(κM , V ) +Nω(κm, V ))

+Ny(−1,∆?) (Nω(κM , V )−Nω(κm, V ))) .

(I.23)

Prior
• Gaussian weights: w ∼ Pw(w) = Nw(µ, σ)

Zw?(γ,Λ) =
e
γ2σ+2γµ−Λµ2

2(Λσ+1)

√
Λσ + 1

, fw?(γ,Λ) =
γσ + µ

1 + Λσ
, ∂γfw?(γ,Λ) =

σ

1 + Λσ
. (I.24)

• Sparse-binary weights: w ∼ Pw(w) = ρδ(w) + (ρ− 1) 1
2 (δ(w − 1) + δ(w + 1))

Zw?(γ,Λ) = ρ+ e−
Λ
2 (1− ρ) cosh(γ) ,

fw?(γ,Λ) =
e−

Λ
2 (1− ρ) sinh(γ)

ρ+ e−
Λ
2 (1− ρ) cosh(γ)

, ∂γfw?(γ,Λ) =
e−

Λ
2 (1− ρ) cosh(γ)

ρ+ e−
Λ
2 (1− ρ) cosh(γ)

.
(I.25)

I.4.2 ERM updates

The ERM denoising functions (I.12) have, very often, no explicit expression except for the square
and hinge losses, and for `1, `2 regularizations that are analytical. However, in the particular case of
a two times differentiable convex loss the denoising functions can still be written as the solution of an
implicit equation detailed below.

Convex losses
• Square loss

The proximal map for the square loss lsquare(y, z) = 1
2 (y − z)2 is easily obtained and reads

PV
[

1

2
(y, .)2

]
(ω) = argminz

[
1

2
(y − z)2

+
1

2V
(z − ω)

2

]
= (1 + V )

−1
(ω + yV ) .

Therefore (I.12) yields

f square
out (y, ω, V ) = V −1

(
PV
[

1

2
(y, .)2

]
(ω)− ω

)
= (1 + V )

−1
(y − ω) ,

∂ωf
square
out (y, ω, V ) = − (1 + V )

−1
.

(I.26)

• Hinge loss
The proximal map of the hinge loss lhinge(y, z) = max (0, 1− yz)

PV
[
lhinge(y, .)

]
(ω) = argminz

max (0, 1− yz) +
1

2V
(z − ω)

2︸ ︷︷ ︸
≡L0

 ≡ z?(y, ω, V ) .

can be expressed analytically by distinguishing all the possible cases:
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• 1− yz < 0: L0 = 1
2V (z − ω)

2 ⇒ z? = ω if yz? < 1⇔ z? = ω if ωy < 1.

• 1 − yz > 0: L0 = 1
2V (z − ω)

2
+ 1 − yz ⇒ (z? − ω) = yV ⇔ z? = ω + V y if

1− yz? > 0⇔ z? = ω + V y if ωy < 1− y2V = 1− V , as y2 = 1.
• Hence we have one last region to study 1− V < ωy < 1. It follows y(1− V ) < ω < y:

1

2V
(z − y)

2 ≤ 1

2V
(z − ω)

2 ⇒ z? = y .

Finally we obtain a simple analytical expression for the proximal and its derivative

PV
[
lhinge(y, .)

]
(ω) =


ω + V y if ωy < 1− V
y if 1− V < ωy < 1

ω if ωy > 1

, ∂ωPV
[
lhinge(y, .)

]
(ω) =


1 if ωy < 1− V
0 if 1− V < ωy < 1

1 if ωy > 1

.

Hence with (I.12), the hinge denoising function and its derivative read

fhinge
out (y, ω, V ) =


y if ωy < 1− V
(y−ω)
V if 1− V < ωy < 1

0 otherwise
, ∂ωf

hinge
out (y, ω, V ) =

{− 1
V if 1− V < ωy < 1

0 otherwise
.

(I.27)

• Generic differentiable convex loss
In general, finding the proximal map in (I.12) is intractable. In particular, it is the case for the logistic

loss considered in Sec. V.5. However assuming the convex loss is a generic two times differentiable
function l ∈ D2, taking the derivative of the proximal map

PV [l(y, .)] (ω) = argminz

[
l (y, z) +

1

2V
(z − ω)

2

]
≡ z?(y, ω, V ) ,

verifies therefore the implicit equations:

z?(y, ω, V ) = ω − V ∂zl (y, z?(y, ω, V )) , ∂ωz
?(y, ω, V ) =

(
1 + V ∂2

z l(y, z
?(y, ω, V ))

)−1
.

(I.28)
Once those equations solved, the denoising function and its derivative are simply expressed as
fdiff

out (y, ω, V ) = V −1(z? (y, ω, V )− ω) , ∂ωf
diff
out (y, ω, V ) = V −1 (∂ωz

? (y, ω, V )− 1) ,
(I.29)

with z? (y, ω, V ) = PV [l(y, .)] (ω) solution of (I.28).

Regularizations
• `2 regularization

Using the definition of the prior update in eq. (I.12) for the `2 regularization r(w) = λw2

2 , we obtain

f `2w (γ,Λ) = argminw

[
λw2

2
+

1

2
Λw2 − γw

]
=

γ

λ+ Λ
,

∂γf
`2
w (γ,Λ) =

1

λ+ Λ
and Z`2w (γ,Λ) = exp

(
γ2Λ

2(λ+ Λ)2

)
.

(I.30)

• `1 regularization
Performing the same computation for the `1 regularization r(w) = λ|w|, we obtain

f `1w (γ,Λ) = argminw

[
λ‖w‖+

1

2
Λw2 − γw

]
=


γ−λ

Λ γ > λ
γ+λ

Λ γ + λ < 0

0 otherwise
,

∂γf
`1
w (γ,Λ) =

{
1
Λ ‖γ‖ > λ

0 otherwise
.

(I.31)
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II Binary classification generalization errors

In this section, we present the computation of the asymptotic generalization error
eg(α) ≡ lim

d→∞
Ey,x1 [y 6= ŷ (ŵ(α); x)] , (II.1)

leading to expressions in Proposition. 2.1 and Thm. 2.4. The computation at finite dimension is
similar if we do not consider the limit d→∞.

II.1 General case

The generalization error eg is the prediction error of the estimator ŵ on new samples {y,X}, where
X is an i.i.d Gaussian matrix and y are ±1 labels generated according to (I.1):

y = ϕout? (z) with z =
1√
d

Xw? . (II.2)

As the model fitted by ERM may not lead to binary outputs, we may add a non-linearity ϕ : R 7→
{±1} (for example a sign) on top of it to insure to obtain binary outputs ŷ = ±1 according to

ŷ = ϕ (ẑ) with ẑ =
1√
d

Xŵ . (II.3)

The classification generalization error is given by the probability that the predicted labels ŷ and the
true labels y do not match. To compute it, first note that the vectors (z, ẑ) averaged over all possible
ground truth vectors w? (or equivalently labels y) and input matrix X follow in the large size limit a
joint Gaussian distribution with zero mean and covariance matrix

σ = lim
d→∞

Ew?,X
1

d

[
w?ᵀw? w?ᵀŵ
w?ᵀŵ ŵᵀŵ

]
≡
[
σw? σw?ŵ

σw?ŵ σŵ

]
. (II.4)

The asymptotic generalization error depends only on the covariance matrix σ and as the samples are
i.i.d it reads

eg(α) = lim
d→∞

Ey,x1 [y 6= ŷ (ŵ(α); x)] = 1− P[y = ŷ (ŵ(α); x)] = 1− 2

∫
(R+)2

dxNx (0, σ)

= 1−
(

1

2
+

1

π
atan

(√
σ2

w?ŵ

σw?σŵ − σ2
w?ŵ

))
=

1

π
acos

(
σw?ŵ√
σw?σŵ

)
,

(II.5)

where we used the fact that atan(x) = π
2 − 1

2 acos
(
x2−1
1+x2

)
and 1

2 acos
(
2x2 − 1

)
= acos(x). Finally

eg(α) ≡ lim
d→∞

Ey,x1 [y 6= ŷ (ŵ(α); x)] =
1

π
acos

(
σw?ŵ√
ρw?σŵ

)
, (II.6)

with

σw?ŵ ≡ lim
d→∞

Ew?,X
1

d
ŵᵀw? , ρw? ≡ lim

d→∞
Ew?

1

d
‖w?‖22 , σŵ ≡ lim

d→∞
Ew?,X

1

d
‖ŵ‖22 .

II.2 Bayes-optimal generalization error

The Bayes-optimal generalization error for classification is equal to eq. (II.6) where the Bayes
estimator ŵ is the average over the posterior distribution eq. (I.2) denoted 〈.〉, knowing the teacher
prior Pw? and channel Pout? distributions: ŵ = 〈w〉w. Hence the parameters σŵ and σw?ŵ read in
the Bayes-optimal case

σŵ ≡ lim
d→∞

Ew?,X
1

d
‖ŵ‖22 = lim

d→∞
Ew?,X

1

d
‖〈w〉w‖22 ≡ qb ,

σw?ŵ ≡ lim
d→∞

Ew?,X
1

d
ŵᵀw? = lim

d→∞
Ew?,X

1

d
〈w〉ᵀww? ≡ mb .

Using Nishimori identity [3], we easily obtain mb = qb which is solution of eq. (13). Therefore the
generalization error simplifies

ebayes
g (α) =

1

π
acos

(√
ηb

)
, with ηb =

qb

ρw?
. (II.7)
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II.3 ERM generalization error

The generalization error of the ERM estimator is given again by eq. (II.6) with parameters

σŵ ≡ lim
d→∞

Ew?,X
1

d
‖ŵ‖22 = lim

d→∞
Ew?,X

1

d
‖ŵerm‖22 ≡ q ,

σw?ŵ ≡ lim
d→∞

Ew?,X
1

d
ŵᵀw? = lim

d→∞
Ew?,X

1

d
(ŵerm)

ᵀ w? ≡ m.

where the parameters m, q are the asymptotic ERM overlaps solutions of eq. (11) and that finally lead
to the ERM generalization error for classification:

eerm
g (α) =

1

π
acos (

√
η) , with η ≡ m2

ρw?q
. (II.8)
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III Proofs of the ERM fixed points

III.1 Gordon’s result and proofs

We consider in this section that the data have been generated by a teacher (I.1) with Gaussian weights

w? ∼ Pw?(w?) = Nw? (0, ρw?Id) with ρw? ≡ E
[
(w?)2

]
. (III.1)

III.1.1 For real outputs - Regression with `2 regularization

In what follows, we prove a theorem that characterizes the asymptotic performance of empirical risk
minimization

ŵerm = argminw

n∑
i=1

l
(
yi,

1√
d

xᵀi w
)

+
λ‖w‖2

2
, (III.2)

where {yi}1≤i≤n are general real-valued outputs (that are not necessarily binary), l(y, z) is a loss
function that is convex with respect to z, and λ > 0 is the strength of the `2 regularization. Note that
this setting is more general than the one considered in Thm. 2.2 in the main text, which focuses on
binary outputs and loss functions in the form of l(y, z) = `(yz) for some convex function `(·).
Theorem III.1 (Regression with `2 regularization). As n, d → ∞ with n/d = α = Θ(1), the
overlap parameters m, q concentrate to

m −→
d→∞

√
ρw?µ

∗ , q −→
d→∞

(µ∗)2 + (δ∗)2 , (III.3)

where the parameters µ∗, δ∗ are the solutions of

(µ∗, δ∗) = arg min
µ,δ≥0

sup
τ>0

{
λ(µ2 + δ2)

2
− δ2

2τ
+ αEg,sMτ [l(ϕout?(

√
ρw?s), .)](µs+ δg)

}
.

(III.4)
Here,Mτ [l(, .)](x) is the Moreau-Yosida regularization defined in (I.11), and g, s are two i.i.d stan-
dard normal random variables.

Proof. Since the teacher weight vector w? is independent of the input data matrix X, we can assume
without loss of generality that

w? =
√
dρde1,

where e1 is the first natural basis vector of Rd, and ρd = ‖w?‖/
√
d. As d → ∞, ρd → √ρw? .

Accordingly, it will be convenient to split the data matrix into two parts:

X = [s B] , (III.5)

where s ∈ Rn×1 and B ∈ Rn×(d−1) are two sub-matrices of i.i.d standard normal entries. The weight
vector w in (III.2) can also be written as w = [

√
dµ, vᵀ]ᵀ, where µ ∈ R denotes the projection of w

onto the direction spanned by the teacher weight vector w?, and v ∈ Rd−1 is the projection of w onto
the complement subspace. These representations serve to simplify the notations in our subsequent
derivations. For example, we can now write the output as

yi = ϕout?(ρdsi), (III.6)

where si is the ith entry of the Gaussian vector s in (III.5).

Let Φd denote the cost of the ERM in (III.2), normalized by d. Using our new representations
introduced above, we have

Φd = min
µ,v

1

d

n∑
i=1

l
(
yi, µsi + 1√

d
bᵀ
i v
)

+
λ(dµ2 + ‖v‖2)

2d
, (III.7)

where bᵀ
i denotes the ith row of B. Since the loss function l(yi, z) is convex with respect to z, we

can rewrite it as
l(yi, z) = sup

q
{qz − l∗(yi, q)}, (III.8)
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where l∗(yi, q) = supz{qz − l(yi, z)} is its convex conjugate. Substituting (III.8) into (III.7), we
have

Φd = min
µ,v

sup
q

µqᵀs
d

+
1

d3/2
qᵀBv− 1

d

n∑
i=1

l∗(yi, qi) +
λ
(
dµ2 + ‖v‖2

)
2d

 . (III.9)

Now consider a new optimization problem

Φ̃d = min
µ,v

sup
q

µqᵀs
d

+
‖q‖√
d

hᵀv
d

+
‖v‖√
d

gᵀq
d
− 1

d

n∑
i=1

l∗(yi, qi) +
λ
(
dµ2 + ‖v‖2

)
2d

 , (III.10)

where h ∼ N (0, Id−1) and g ∼ N (0, In) are two independent standard normal vectors. It follows
from Gordon’s minimax comparison inequality (see, e.g., [4]) that

P(|Φd − c| ≥ ε) ≤ 2P
(∣∣∣Φ̃d − c∣∣∣ ≥ ε) (III.11)

for any constants c and ε > 0. This implies that Φ̃d serves as a surrogate of Φd. Specifically, if Φ̃d
concentrates around some deterministic limit c as d→∞, so does Φd. In what follows, we proceed
to solve the surrogate problem in (III.10). First, let δ = ‖v‖/

√
d. It is easy to see that (III.10) can be

simplified as

Φ̃d = min
µ,δ≥0

sup
q

{
qᵀ(µs + δg)

d
− δ ‖q‖√

d

‖h‖√
d
− 1

d

n∑
i=1

l∗(yi, qi) +
λ(µ2 + δ2)

2

}
(a)
= min

µ,δ≥0
sup
τ>0

sup
q

{
−τ‖q‖

2

2d
− δ2‖h‖2

2τd
+

qᵀ(µs + δg)

d
− 1

d

n∑
i=1

l∗(yi, qi) +
λ(µ2 + δ2)

2

}

= min
µ,δ≥0

sup
τ>0

{
λ(µ2 + δ2)

2
− δ2‖h‖2

2τd
− α

n
inf

q

[τ‖q‖2
2
− qᵀ(µs + δg) +

n∑
i=1

l∗(yi, qi)
]}

(b)
= min

µ,δ≥0
sup
τ>0

{
λ(µ2 + δ2)

2
− δ2‖h‖2

2τd
− α

n

n∑
i=1

Mτ [l(yi, .)](µsi + δgi)

}
.

In (a), we have introduced an auxiliary variable τ to rewrite −δ ‖q‖√
d

‖h‖√
d

as

−δ ‖q‖√
d

‖h‖√
d

= sup
τ>0

{
−τ‖q‖

2

2d
− δ2‖h‖2

2τd

}
,

and to get (b), we use the identity

inf
q

{τ
2
q2 − qz + `∗(q)

}
= − inf

x

{
(z − x)2

2τ
+ `(x)

}
that holds for any z and for any convex function `(x) and its conjugate `∗(q). As d → ∞,
standard concentration arguments give us ‖h‖

2

d → 1 and 1
n

∑n
i=1Mτ [l(yi, .)](µsi + δgi) →

Eg,sMτ [l(y, .)](µs + δg) locally uniformly over τ, µ and δ. Using (III.11) and recalling (III.6),
we can then conclude that the normalized cost of the ERM Φd converges to the optimal value of
the deterministic optimization problem in (III.4). Finally, since λ > 0, one can show that the cost
function of (III.4) has a unique global minima at µ∗ and δ∗. It follows that the empirical values of
(µ, δ) associated with the surrogate optimization problem (III.10) converge to their corresponding
deterministic limits (µ∗, δ∗). Finally, the convergence of (µ, δ) associated with the original optimiza-
tion problem (III.9) towards the same limits can be established by evoking standard arguments (see,
e.g., [5, Theorem 6.1, statement (iii)]).

III.1.2 For binary outputs - Classification with `2 regularization

In what follows, we specialize the previous theorem to the case of binary classification, with a convex
loss function in the form of l(y, z) = `(yz) for some function `(·).
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Theorem III.2 (Thm. 2.2 in the main text. Gordon’s min-max fixed point - Classification with `2
regularization). As n, d→∞ with n/d = α = Θ(1), the overlap parameters m, q concentrate to

m −→
d→∞

√
ρw?µ

∗ , q −→
d→∞

(µ∗)2 + (δ∗)2 , (III.12)

where parameters µ∗, δ∗ are solutions of

(µ∗, δ∗) = arg min
µ,δ≥0

sup
τ>0

{
λ(µ2 + δ2)

2
− δ2

2τ
+ αEg,sMτ [δg + µsϕout?(

√
ρw?s)]

}
, (III.13)

and g, s are two i.i.d standard normal random variables. The solutions (µ∗, δ∗, τ∗) of (III.13) can
be reformulated as a set of fixed point equations

µ∗ =
α

λτ∗ + α
E[s · ϕout?(

√
ρw?s) · Pτ∗(δ∗g + µ∗sϕout?(

√
ρw?s))] ,

δ∗ =
α

λτ∗ + α− 1
E[g · Pτ∗(δ∗g + µ∗sϕout?(

√
ρw?s))] ,

(δ∗)2 = αE[(δ∗g + µ∗sϕout?(
√
ρw?s)− Pτ∗(δ∗g + µ∗sϕout?(

√
ρw?s)))

2
] ,

(III.14)

whereMτ and Pτ denote the Moreau-Yosida regularization and the proximal map of a convex loss
function (y, z) 7→ `(yz):

Mτ (z) = min
x

{
`(x) +

(x− z)2

2τ

}
, Pτ (z) = arg min

x

{
`(x) +

(x− z)2

2τ

}
.

Proof. We start by deriving (III.13) as a special case of (III.4). To that end, we note that

Mτ [l(y, .)](z) = min
x

{
l(y;x) +

(x− z)2

2τ

}
= min

x

{
`(yx) +

(x− z)2

2τ

}
= min

x

{
`(x) +

(x− yz)2

2τ

}
=Mτ (yz),

where to reach the last equality we have used the fact that y ∈ {±1}. Substituting this special form
into (III.4) and recalling (III.6), we reach (III.13).

Finally, to obtain the fixed point equations (III.14), we simply take the partial derivatives of the cost
function in (III.13) with respect to µ, δ, τ , and use the following well-known calculus rules for the
Moreau-Yosida regularization [6]:

∂Mτ (z)

∂z
=
z − Pτ (z)

τ
,

∂Mτ (z)

∂τ
= − (z − Pτ (z))2

2τ2
.

III.2 Replica’s formulation

The replica computation presented in Sec. IV boils down to the characterization of the overlaps m, q
in the high-dimensional limit n, d → ∞ with α = n

d = Θ(1), given by the solution of a set of,
in the most general case, six fixed point equations over m, q,Q, m̂, q̂, Q̂. Introducing the natural
variables Σ ≡ Q− q, Σ̂ ≡ Q̂+ q̂, η ≡ m2

ρw?q
and η̂ ≡ m̂2

q̂ , the set of fixed point equations for arbitrary
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Pw? , Pout? , convex loss l(y, z) and regularizer r(w), is finally given by

m = Eξ
[
Zw?

(√
η̂ξ, η̂

)
fw?

(√
η̂ξ, η̂

)
fw

(
q̂1/2ξ, Σ̂

)]
,

q = Eξ
[
Zw?

(√
η̂ξ, η̂

)
fw

(
q̂1/2ξ, Σ̂

)2
]
,

Σ = Eξ
[
Zw?

(√
η̂ξ, η̂

)
∂γfw

(
q̂1/2ξ, Σ̂

)]
,

m̂ = αEy,ξ
[
Zout?(.) · fout? (y,

√
ρw?ηξ, ρw? (1− η)) fout

(
y, q1/2ξ,Σ

)]
,

q̂ = αEy,ξ
[
Zout? (y,

√
ρw?ηξ, ρw? (1− η)) fout

(
y, q1/2ξ,Σ

)2
]
,

Σ̂ = −αEy,ξ
[
Zout? (y,

√
ρw?ηξ, ρw? (1− η)) ∂ωfout

(
y, q1/2ξ,Σ

)]
.

(III.15)

The above equations depend on the Bayes-optimal partition functions Zw? ,Zout? defined in eq. (I.7),
the updates fw? , fout? in eq. (I.8) and the ERM updates fw, fout eq. (I.12).

III.3 Equivalence Gordon-Replica’s formulation - `2 regularization and Gaussian weights

III.3.1 Replica’s formulation for `2 regularization

The proximal for the `2 penalty with strength λ can be computed explicitly in eq. (I.30) and the
corresponding denoising function is simply given by f `2,λw (γ,Λ) = γ

λ+Λ . Therefore, for a Gaussian
teacher (III.1) already considered in Thm. (III.14) with second moment ρw? , using the denoising
function (I.24), the fixed point equations over m, q,Σ can be computed analytically and lead to

m =
ρw?m̂

λ+ Σ̂
, q =

ρw?m̂
2 + q̂

(λ+ Σ̂)2
, Σ =

1

λ+ Σ̂
. (III.16)

Hence, removing the hat variables in eqs. (III.15), the set of fixed point equations can be rewritten in
a more compact way leading to the Corollary. 2.3 that we recall here:
Corollary III.3 (Corollary. 2.3 in the main text. Equivalence Gordon-Replicas). The set of fixed
point equations (III.14) in Thm. III.2 that govern the asymptotic behaviour of the overlaps m and q is
equivalent to the following set of equations, obtained from the heuristic replica computation:

m = αΣρw? · Ey,ξ
[
Zout? (.) · fout? (y,

√
ρw?ηξ, ρw? (1− η)) · fout

(
y, q1/2ξ,Σ

)]
q = m2/ρw? + αΣ2 · Ey,ξ

[
Zout? (y,

√
ρw?ηξ, ρw? (1− η)) · fout

(
y, q1/2ξ,Σ

)2
]

(III.17)

Σ =
(
λ− α · Ey,ξ

[
Zout? (y,

√
ρw?ηξ, ρw? (1− η)) · ∂ωfout

(
y, q1/2ξ,Σ

)])−1

with η ≡ m2

ρw?q
, ξ ∼ N (0, 1) and Ey the continuous or discrete sum over all possible values y

according to Pout? .

Proof of Corollary. III.3(Corollary. 2.3). For the sake of clarity, we use the abusive notation
PV (y, ω) = PV [l(y, .)](ω), and we remove the ∗.

Dictionary We first map the Gordon’s parameters (µ, δ, τ) in eq. (III.14) to (m, q,Σ) in eq. (III.17):
√
ρw?µ↔ m, µ2 + δ2 ↔ q , τ ↔ Σ .

so that

η =
m2

ρw?q
=

µ2

µ2 + δ2
, 1− η =

δ2

µ2 + δ2
.

From eq. (I.7), we can rewrite the channel partition function Zout? and its derivative

Zout? (y, ω, V ) = Ez
[
Pout?

(
y|
√
V z + ω

)]
,

∂ωZout? (y, ω, V ) =
1√
V
Ez
[
zPout?

(
y|
√
V z + ω

)]
,

(III.18)

where z denotes a standard normal random variable.
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Equation over m Let us start with the equation over m in eq. (III.17):
m = Σαρw?Ey,ξ [Zout? (y,

√
ρw?ηξ, ρw? (1− η)) fout? (y,

√
ρw?ηξ, ρw? (1− η))

×fout

(
y, q1/2ξ,Σ

)]
= Σα

√
ρw?√

1− ηEy,ξ,z
[
zPout?

(
y|√ρw?

(√
1− ηz +

√
ηξ
))

Σ−1(PΣ (y,
√
qξ)−√qξ)

]
(Using eq. (III.18))

⇔ µ =

√
µ2 + δ2

δ
αEy,ξ,z

[
zPout?

[
y|√ρw?

δz + µξ√
µ2 + δ2

](
Pτ
(
y,
√
µ2 + δ2ξ

)
−
√
µ2 + δ2ξ

)]
(Dictionary)

=

√
µ2 + δ2

δ
αEξ,z

[
z

(
Pτ
(
ϕout?

(
√
ρw?

δz + µξ√
µ2 + δ2

)
,
√
µ2 + δ2ξ

)
−
√
µ2 + δ2ξ

)]
(Integration over y)

= αEs,g
[(
s− µ

δ
g
)

(Pτ (ϕout? (
√
ρw?s) , δg + µs)− (δg + µs))

]
(Change of variables (ξ, z)→ (g, s))

= αEs,g
[(
s− µ

δ
g
)

(Pτ (ϕout? (
√
ρw?s) , δg + µs))

]
(Gaussian integrations)

⇔ µ =
αEs,g

[
s · Pτ

(
ϕout?

(√
ρw?s

)
, δg + µs

)]
1 + α

δ Es,g
[
g · Pτ

(
ϕout?

(√
ρw?s

)
, δg + µs

)]
=

α

λτ + α
Es,g [s · ϕout? (

√
ρw?s) (Pτ (δg + µs)ϕout? (

√
ρw?s))] ,

(Second fixed point equation)

where we used the fact that Pout? (y|z) = δ(y − ϕout?(z)), the change of variables
s = µξ+δz√

µ2+δ2

g = δξ−µz√
µ2+δ2

⇔


ξ = δg+µs√

µ2+δ2

z = δs−µg√
µ2+δ2

, (III.19)

and finally in the last equality the definition of the second fixed point equation in eqs. (III.14):

δ = α
Es,g

[
g · Pτ

(
ϕout?

(√
ρw?s

)
, δg + µs

)]
λτ + α− 1

. (III.20)

Equation over q Let us now compute the equation over q in eq. (III.17):

q −m2/ρw? = Σ2αEy,ξ
[
Zout? (y,

√
ρw?ηξ, ρw? (1− η)) fout

(
y, q1/2ξ,Σ

)2
]

= Σ2αEy,ξ,z
[
Pout?

(
y|√ρw?

(√
1− ηz +

√
ηξ
)) 1

Σ2
(pΣ (y,

√
qξ)−√qξ)2

]
(Using eq. (III.18))

⇔ δ2 = αEy,ξ,z

[
Pout?

(
y|√ρw?

δz + µξ√
µ2 + δ2

)(
pτ

(
y,
√
µ2 + δ2ξ

)
−
√
µ2 + δ2ξ

)2
]

(Dictionary)

= αEξ,z

(pτ (ϕout?

(
√
ρw?

δz + µξ√
µ2 + δ2

)
,
√
µ2 + δ2ξ

)
−
√
µ2 + δ2ξ

)2


(Integration over y)

= αEg,s
[
(pτ (ϕout? (

√
ρw?s) , δg + µs)− (δg + µs))

2
]

(Change of variables (ξ, z)→ (g, s))
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Equation over Σ Let us conclude with the equation over Σ in eq. (III.17) that we encountered in
eq. (III.20). Let us first compute

αEy,ξ
[
Zout? (y,

√
ρw?ηξ, ρw? (1− η)) ∂ωfout

(
y, q1/2ξ,Σ

)]
= αEy,ξ,z

[
Pout?

(
y|√ρw?

(√
1− ηz +

√
ηξ
)) 1

Σ
(∂ωpΣ (y,

√
qξ)− 1)

]
(Using eq. (III.18))

=
α

τ
Ey,ξ,z

[
Pout?

(
y|√ρw?

δz + µξ√
µ2 + δ2

)(
∂ωPτ

(
y,
√
µ2 + δ2ξ

)
− 1
)]

(Dictionary)

=
α

τ
Eξ,z

[
∂ωPτ

(
ϕout?

(
√
ρw?

δz + µξ√
µ2 + δ2

)
,
√
µ2 + δ2ξ

)]
− α

τ
(Integration over y)

=
1

τ
α (Eg,s [∂ωPτ (ϕout? (

√
ρw?s) , δg + µs)]− 1) (Change of variables (ξ, z)→ (g, s))

therefore, the last equation over Σ in eq. (III.17) reads

Σ =
(
λ− αEy,ξ

[
Zout? (y,

√
ρw?ηξ, ρw? (1− η)) ∂ωfout

(
y, q1/2ξ,Σ

)])−1

⇔

τ =

(
λ− 1

τ
α (Eg,s [∂ωPτ (ϕout? (

√
ρw?s) , δg + µs)]− 1)

)−1

⇔
αEg,s [∂ωPτ (ϕout? (

√
ρw?s) , δg + µs)] = τλ+ α− 1 .

Noting that

Eg,s [∂ωPτ (ϕout? (
√
ρw?s) , δg + µs)] =

1

δ
Eg,s [d∂ωPτ (ϕout? (

√
ρw?s) , δg + µs)]

=
1

δ
Eg,s [∂gPτ (ϕout? (

√
ρw?s) , δg + µs)] =

1

δ
Eg,s [gPτ (δg + µsϕout? (

√
ρw?s))]

(Stein’s lemma)

where we used the Stein’s lemma in the last equality, we finally obtain

αEg,s [∂ωPτ (ϕout? (
√
ρw?s) , δg + µs)] = τλ+ α− 1

⇔δ =
α

τλ+ α− 1
Eg,s [g · Pτ (ϕout? (

√
ρw?s) , δg + µs)] .

Gauge transformation We still remain to prove that

Es,g [g · Pτ (ϕout? (
√
ρw?s) , δg + µs)] = Es,g [g · Pτ (δg + µsϕout? (

√
ρw?s))]

Es,g [s · Pτ (ϕout? (
√
ρw?s) , δg + µs)] = Es,g [s · Pτ (δg + µsϕout? (

√
ρw?s))]

Eg,s
[
(pτ (ϕout? (

√
ρw?s) , δg + µs)− (δg + µs))

2
]

= Eg,s [

((pτ − 1) (δg + µsϕout? (
√
ρw?s)))

2
]

(III.21)

As ϕout?
(√
ρw?s

)
= ±1, we can transform s → sϕout?

(√
ρw?s

)
= s̃. It does not change

the distribution of the random variable s̃ that is still a normal random variable. Finally denoting
Pτ
(
1, δg + µsϕout?

(√
ρw?s

))
= Pτ

(
δg + µsϕout?

(√
ρw?s

))
, we obtain the equivalence with

eq. (III.14), which concludes the proof.
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IV Replica computation for Bayes-optimal and ERM estimations

In this section, we present the statistical physics framework and the replica computation leading to
the general set of fixed point equations (11) and to the Bayes-optimal fixed point equations (13).

IV.1 Statistical inference and free entropy

As stressed in Sec. I, both ERM and Bayes-optimal estimations can be analyzed in a unified framework
that consists in studying the joint distribution P (y,X) in the following posterior distribution

P (w|y,X) =
P (y|w,X)P (w)

P (y,X)
, (IV.1)

known as the so-called partition function in the physics literature. It is the generating function of
many useful statistical quantities and is defined by

Z (y,X) ≡ P (y,X) =

∫
Rd

dwPout (y|w,X)Pw (w)

=

∫
Rn

dzPout (y|z)

∫
Rd

dwPw (w) δ

(
z− 1√

d
Xw
)
,

(IV.2)

where we introduced the variable z = 1√
d

Xw. However in the considered high-dimensional regime
(d→∞, n→∞, α = Θ(1)), we are interested instead in the averaged (over instances of input data
X and teacher weights w? or equivalently over the output labels y) free entropy Φ defined as

Φ(α) ≡ Ey,X

[
lim
d→∞

1

d
logZ (y,X)

]
. (IV.3)

The replica method is an heuristic method of statistical mechanics that allows to compute the above
average over the random dataset {y,X}. We show in the next section the classical computation for
the Generalized Linear Model hypothesis class and i.i.d data X.

IV.2 Replica computation

IV.2.1 Derivation

We present here the replica computation of the averaged free entropy Φ(α) in eq. (IV.3) for general
prior distributions Pw, Pw? and channel distributions Pout, Pout? , so that the computation remain
valid for both Bayes-optimal and ERM estimation (with any convex loss l and regularizer r).

Replica trick The average in eq. (IV.3) is intractable in general, and the computation relies on the
so called replica trick that consists in applying the identity

Ey,X

[
lim
d→∞

1

d
logZ (y,X)

]
= lim
r→0

[
lim
d→∞

1

d

∂ logEy,X [Z (y,X)
r
]

∂r

]
. (IV.4)

This is interesting in the sense that it reduces the intractable average to the computation of the
moments of the averaged partition function, which are easiest quantities to compute. Note that for
r ∈ N, Z (y,X)

r represents the partition function of r ∈ N identical non-interacting copies of the
initial system, called replicas. Taking the average will then correlate the replicas, before taking the
number of replicas r → 0. Therefore, we assume there exists an analytical continuation so that r ∈ R
and the limit is well defined. Finally, note we exchanged the order of the limits r → 0 and d→∞.
These technicalities are crucial points but are not rigorously justified and we will ignore them in the
rest of the computation.
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Thus the replicated partition function in eq. (IV.4) can be written as

Ey,X [Z (y,X)
r
] = Ew?,X

[
r∏
a=1

∫
Rn

dzaPouta (y|za)

∫
Rd

dwaPwa (wa) δ

(
za − 1√

d
Xwa

)]

= EX

∫
Rn

dy
∫
Rn

dz?Pout? (y|z?)
∫
Rd

dw?Pw? (w?) δ
(

z? − 1√
d

Xw?
)

×
[

r∏
a=1

∫
Rn

dzaPouta (y|za)

∫
Rd

dwaPwa (wa) δ

(
za − 1√

d
Xwa

)]

= EX

∫
Rn

dy
r∏
a=0

∫
Rn

dzaPouta (y|za)

∫
Rd

dwaPwa (wa) δ

(
za − 1√

d
Xwa

)
(IV.5)

with the decoupled channel Pout (y|z) =

n∏
µ=1

Pout (yµ|zµ). Note that the average over y is equivalent

to the one over the ground truth vector w?, which can be considered as a new replica w0 with index
a = 0 leading to a total of r + 1 replicas.

We suppose that inputs are drawn from an i.i.d distribution, for example a Gaussian N (0, 1). More
precisely, for i, j ∈ [1 : d], µ, ν ∈ [1 : n], EX

[
x

(µ)
i x

(ν)
j

]
= δµνδij . Hence zaµ = 1√

d

∑d
i=1 x

(µ)
i wai is

the sum of i.i.d random variables. The central limit theorem insures that zaµ ∼ N
(
EX[zaµ],EX[zaµz

b
µ]
)
,

with the two first moments given by:
EX[zaµ] = 1√

d

∑d
i=1 EX

[
x

(µ)
i

]
wai = 0

EX[zaµz
b
µ] = 1

d

∑
ij EX

[
x

(µ)
i x

(µ)
j

]
wai w

b
j = 1

d

∑
ij δijw

a
i w

b
j = 1

dwa · wb .
(IV.6)

In the following we introduce the symmetric overlap matrix Q({wa}) ≡
(

1
dwa · wb

)
a,b=0..r

. Let
us define z̃µ ≡ (zaµ)a=0..r and w̃i ≡ (wai )a=0..r. The vector z̃µ follows a multivariate Gaussian
distribution z̃µ ∼ Pz̃(z̃;Q) = Nz̃(0r+1, Q) and as Pw̃(w̃) =

∏r
a=0 Pw(w̃a) it follows

Ey,X [Z (y,X)
r
] = EX

∫
Rn

dy
r∏
a=0

∫
Rn

dzaPouta (y|za)

∫
Rd

dwaPwa (wa) δ

(
za − 1√

d
Xwa

)

=

[∫
R

dy

∫
Rr+1

dz̃Pout (y|z̃)Pz̃(z̃;Q(w̃))

]n [∫
Rr+1

dw̃Pw̃ (w̃)

]d
,

because the channel and the prior distributions factorize. Introducing the change of variable and the
Fourier representation of the δ-Dirac function, which involves a new ad-hoc parameter Q̂:

1 =

∫
Rr+1×r+1

dQ
∏
a≤b

δ

(
dQab −

d∑
i=1

wai w
b
i

)

∝
∫
Rr+1×r+1

dQ

∫
Rr+1×r+1

dQ̂ exp
(
−dTr

[
QQ̂
])

exp

(
1

2

d∑
i=1

w̃ᵀ
i Q̂w̃i

)
,

the replicated partition function becomes an integral over the symmetric matrices Q ∈ Rr+1×r+1

and Q̂ ∈ Rr+1×r+1, that can be evaluated using a Laplace method in the d→∞ limit,

Ey,X [Z (y,X)
r
] =

∫
Rr+1×r+1

dQ

∫
Rr+1×r+1

dQ̂edΦ(r)(Q,Q̂) (IV.7)

'
d→∞

exp
(
d · extrQ,Q̂

{
Φ(r)(Q, Q̂)

})
, (IV.8)
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where we defined

Φ(r)(Q, Q̂) = −Tr
[
QQ̂
]

+ log Ψ
(r)
w (Q̂) + α log Ψ

(r)
out(Q)

Ψ
(r)
w (Q̂) =

∫
Rr+1

dw̃Pw̃(w̃)e
1
2 w̃

ᵀQ̂w̃

Ψ
(r)
out(Q) =

∫
dy

∫
Rr+1

dz̃Pz̃(z̃;Q)Pout(y|z̃) ,

(IV.9)

and Pz̃(z̃;Q) =
e−

1
2 z̃ᵀQ−1 z̃

det(2πQ)
1/2

.

Finally switching the two limits r → 0 and d → ∞, the quenched free entropy Φ simplifies as a
saddle point equation

Φ(α) = extrQ,Q̂

{
lim
r→0

∂Φ(r)(Q, Q̂)

∂r

}
, (IV.10)

over symmetric matrices Q ∈ Rr+1×r+1 and Q̂ ∈ Rr+1×r+1. In the following we will assume a
simple ansatz for these matrices in order to first obtain an analytic expression in r before taking the
derivative with respect to r.

RS free entropy Let’s compute the functional Φ(r)(Q, Q̂) appearing in the free entropy eq. (IV.10)
in the simplest ansatz: the Replica Symmetric ansatz. This later assumes that all replica remain
equivalent with a common overlap q = 1

dwa · wb for a 6= b, a norm Q = 1
d‖wa‖22, and an overlap

with the ground truth m = 1
dwa · w?, leading to the following expressions of the replica symmetric

matrices Qrs ∈ Rr+1×r+1 and Q̂rs ∈ Rr+1×r+1:

Qrs =

Q
0 m ... m
m Q ... ...
... ... ... q
m ... q Q

 and Q̂rs =


Q̂0 m̂ ... m̂

m̂ − 1
2 Q̂ ... ...

... ... ... q̂

m̂ ... q̂ − 1
2 Q̂

 , (IV.11)

with Q0 = ρw? = 1
d‖w?‖22. Let’s compute separately the terms involved in the functional Φ(r)(Q, Q̂)

eq. (IV.9) with this ansatz: the first is a trace term, the second a term Ψ
(r)
w depending on the prior

distributions Pw, Pw? and finally the third a term Ψ
(r)
out that depends on the channel distributions

Pout? ,Pout.

Trace term The trace term can be easily computed and takes the following form:

Tr
(
QQ̂
)∣∣∣

rs
= Q0Q̂0 + rmm̂− 1

2
rQQ̂+

r(r − 1)

2
qq̂ . (IV.12)

Prior integral Evaluated at the RS fixed point, and using a Gaussian identity also known as a
Hubbard-Stratonovich transformation Eξ exp(

√
aξ) = e

a
2 , the prior integral can be further simplified

Ψ(r)
w (Q̂)

∣∣∣
rs

=

∫
Rr+1

dw̃Pw̃(w̃)e
1
2 w̃

ᵀQ̂rsw̃

= Ew?e
1
2 Q̂

0(w?)2

∫
Rr
dw̃Pw̃(w̃)ew

?m̂
∑r
a=1 w̃

a− 1
2 (Q̂+q̂)

∑r
a=1(w̃a)2+ 1

2 q̂(
∑r
a=1 w̃

a)2

= Eξ,w?e
1
2 Q̂

0(w?)2

[
Ew exp

([
m̂w?w − 1

2
(Q̂+ q̂)w2 + q̂1/2ξw

])]r
.

(IV.13)

Channel integral Let’s focus on the inverse matrix

Q−1
rs =


Q−1

00 Q−1
01 Q−1

01 Q−1
01

Q−1
01 Q−1

11 Q−1
12 Q−1

12

Q−1
01 Q−1

12 Q−1
11 Q−1

12

Q−1
01 Q−1

12 Q−1
12 Q−1

11

 (IV.14)
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with 

Q−1
00 =

(
Q0 − rm(Q+ (r − 1)q)−1m

)−1

Q−1
01 = −

(
Q0 − rm(Q+ (r − 1)q)−1m

)−1
m(q + (r − 1)q)−1

Q−1
11 = (Q− q)−1 − (Q+ (r − 1)q)−1q(Q− q)−1

+(Q+ (r − 1)q)−1m
(
Q0 − rm(Q+ (r − 1)q)−1m

)−1
m(Q+ (r − 1)q)−1

Q−1
12 = −(Q+ (r − 1)q)−1q(Q− q)−1

+(Q+ (r − 1)q)−1m
(
Q− rm(Q+ (r − 1)q)−1m

)−1
m(Q+ (r − 1)q)−1

and its determinant:

detQrs = (Q− q)r−1
(Q+ (r − 1)q)

(
Q0 − rm(Q+ (r − 1)q)−1m

)
Using the same kind of Gaussian transformation, we obtain

Ψ
(r)
out(Q)

∣∣∣
rs

=

∫
dy

∫
Rr+1

dz̃e−
1
2 z̃ᵀQ−1

rs z̃− 1
2 log(det(2πQrs))Pout(y|z̃)

= Ey,ξe−
1
2 log(det(2πQrs))

×
∫

dz?Pout? (y|z?) e− 1
2Q
−1
00 (z?)2

[∫
dzPout (y|z) e−Q−1

01 z
?z− 1

2 (Q−1
11 −Q−1

12 )z2−Q−1/2
12 ξz

]r
IV.3 ERM and Bayes-optimal free entropy

Taking carefully the derivative and the r → 0 limit imposes Q̂0 = 0 and we finally obtain the replica
symmetric free entropy Φrs:

Φrs(α) ≡ Ey,X

[
lim
d→∞

1

d
log (Z (y,X))

]
(IV.15)

= extrQ,Q̂,q,q̂,m,m̂

{
−mm̂+

1

2
QQ̂+

1

2
qq̂ + Ψw

(
Q̂, m̂, q̂

)
+ αΨout (Q,m, q; ρw?)

}
,

where ρw? = limd→∞ Ew?
1
d‖w?‖22 and the channel and prior integrals are defined by

Ψw

(
Q̂, m̂, q̂

)
≡ Eξ

[
Zw?

(
m̂q̂−1/2ξ, m̂q̂−1m̂

)
logZw

(
q̂1/2ξ, Q̂+ q̂

)]
,

Ψout (Q,m, q; ρw?) ≡ Ey,ξ
[
Zout?

(
y,mq−1/2ξ, ρw? −mq−1m

)
logZout

(
y, q1/2ξ,Q− q

)]
,

(IV.16)

where again Zout? and Zw? are defined in eq. (I.7) and depend on the teacher, while the denoising
functions Zout and Zw depend on the inference model. In particular, we explicit in the next sections
the above free entropy in the case of ERM and Bayes-optimal estimation.

IV.3.1 ERM estimation

As described in eq. (I.4), the free entropy for ERM estimation is therefore given by eq. (IV.15) if
we take − logP (y|z) = l(y, z) and − logP (w) = r(w). As described in Sec. I.3.2 they lead to the
following partition functions:

Zλw (γ,Λ) = lim
∆→0

e−
1
∆MΛ−1 [r(λ,.)](Λ−1γ)e−

1
2∆γ

2Λ−1

,

Zout (y, ω, V ) = lim
∆→0

e
− 1

∆MV
∆

[l(y,.)](ω)

√
2πV
√

2π∆
,

(IV.17)

with the Moreau-Yosida regularization (I.11).
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IV.3.2 Bayes-optimal estimation

In the Bayes-optimal case, we have access to the ground truth distributions P (y|z) = Pout? (y|z)
and P (w) = Pw?(w), and therefore Zout = Zout? , Zw = Zw? . Nishimori conditions in the Bayes-
optimal case [3] imply that Q = ρw? , m = q = qb, Q̂ = 0, m̂ = q̂ = q̂b. Therefore the free entropy
eq. (IV.15) simplifies as an optimization problem over two scalar overlaps qb, q̂b:

Φb(α) = extrqb,q̂b

{
−1

2
qbq̂b + Ψb

w (q̂b) + αΨb
out (qb; ρw?)

}
, (IV.18)

with free entropy terms Ψb
w and Ψb

out given by

Ψb
w (q̂) = Eξ

[
Zw?

(
q̂1/2ξ, q̂

)
logZw?

(
q̂1/2ξ, q̂

)]
,

Ψb
out (q; ρw?) = Ey,ξ

[
Zout?

(
y, q1/2ξ, ρw? − q

)
logZout?

(
y, q1/2ξ, ρw? − q

)]
.

and again Zout? and Zw? are defined in eq. (I.7). The above replica symmetric free entropy in the
Bayes-optimal case has been rigorously proven in [1].

IV.4 Sets of fixed point equations

As highlighted in Sec. II, the asymptotic overlaps m, q measure the performances of the ERM or
Bayes-optimal statistical estimators, whose behaviours are respectively characterized by extremizing
the free entropy (IV.15) and (IV.18). This section is devoted to derive the corresponding sets of fixed
point equations.

IV.4.1 ERM estimation

Extremizing the free entropy eq. (IV.15), we easily obtain the set of six fixed point equations

Q̂ = −2α∂QΨout , Q = −2∂Q̂Ψw

q̂ = −2α∂qΨout , q = −2∂q̂Ψw ,

m̂ = α∂mΨout , m = ∂m̂Ψw .

(IV.19)

These equations can be formulated as functions of the partition functions Zout? , Zw? and the
denoising functions fout? , fw? , fout, fw defined in eq. (I.8) and eq. (I.12). The derivation is shown in
Appendix. IV.5.3 and defining the natural variables Σ = Q− q, Σ̂ = Q̂+ q̂, η ≡ m2

ρw?q
and η̂ ≡ m̂2

q̂ ,
it can be written as

m = Eξ
[
Zw?

(√
η̂ξ, η̂

)
fw?

(√
η̂ξ, η̂

)
fw

(
q̂1/2ξ, Σ̂

)]
,

q = Eξ
[
Zw?

(√
η̂ξ, η̂

)
fw

(
q̂1/2ξ, Σ̂

)2
]
,

Σ = Eξ
[
Zw?

(√
η̂ξ, η̂

)
∂γfw

(
q̂1/2ξ, Σ̂

)]
,

m̂ = αEy,ξ
[
Zout?(.) · fout? (y,

√
ρw?ηξ, ρw? (1− η)) fout

(
y, q1/2ξ,Σ

)]
,

q̂ = αEy,ξ
[
Zout? (y,

√
ρw?ηξ, ρw? (1− η)) fout

(
y, q1/2ξ,Σ

)2
]
,

Σ̂ = −αEy,ξ
[
Zout? (y,

√
ρw?ηξ, ρw? (1− η)) ∂ωfout

(
y, q1/2ξ,Σ

)]
,

(IV.20)

and we finally obtain the set of equations eqs. (III.15).

IV.4.2 Bayes-optimal estimation

Extremizing the Bayes-optimal free entropy eq. (IV.18), we easily obtain the set of 2 fixed point
equations over the scalar parameters qb, q̂b. In fact, it can also be deduced from eq. (IV.20) using the
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Nishimori conditions fw = fw? , fout = fout? , m = q = qb,Σ = ρw? − q, m̂ = q̂ = q̂b and Q̂ = 0
that lead to the result (13) in Thm. 2.4, from [1]

q̂b = αEy,ξ
[
Zout?

(
y, q

1/2
b ξ, ρw? − qb

)
fout?

(
y, q

1/2
b ξ, ρw? − qb

)2
]
,

qb = Eξ
[
Zw?

(
q̂

1/2
b ξ, q̂b

)
fw?

(
q̂

1/2
b ξ, q̂b

)2
]
.

(IV.21)

IV.5 Useful derivations

In this section, we give useful computation steps that we used to transform the sets of fixed point
equations (IV.19).

IV.5.1 Prior free entropy term

In specific simple cases, the prior free entropy term

Ψw

(
Q̂, m̂, q̂

)
≡ Eξ

[
Zw?

(
m̂q̂−1/2ξ, m̂q̂−1m̂

)
logZw

(
q̂1/2ξ, Q̂+ q̂

)]
in (IV.16) can be computed explicitly. This is the case of Gaussian and binary priors Pw? with `2
regularization. In particular, they lead surprisingly to the same expression meaning that choosing a
binary or Gaussian teacher distribution does not affect the ERM performances with `2 regularization.

Gaussian prior Let us compute the corresponding free entropy term with partition functions Zw?

for a Gaussian prior Pw?(w?) = Nw?(0, ρw?) and Z`2,λw for a `2 regularization respectively given by
eq. (I.24) and eq. (I.30):

Zw? (γ,Λ) =
e

γ2ρw?

2(Λρw?+1)

√
Λρw? + 1

, Z`2,λw (γ,Λ) =
e

γ2

2(Λ+λ)

√
Λ + λ

.

The prior free entropy term reads

Ψw

(
Q̂, m̂, q̂

)
= Eξ

[
Zw?

(
m̂q̂−1/2ξ, m̂q̂−1m̂

)
logZ`2,λw

(
q̂1/2ξ, q̂ + Q̂

)]
= Eξ

Zw?

(
m̂q̂−1/2ξ, m̂q̂−1m̂

) q̂ξ2

2
(
λ+ Q̂+ q̂

) − 1

2
log
(
λ+ Q̂+ q̂

)
=

∫
dξNξ

(
0, 1 + ρw?m̂

2q̂−1
) q̂ξ2

2
(
λ+ Q̂+ q̂

) − 1

2
log
(
λ+ Q̂+ q̂

)
=

1

2

(
q̂ + ρw?m̂

2

λ+ Q̂+ q̂
− log

(
λ+ Q̂+ q̂

))
(IV.22)

In the Bayes-optimal case for ρw? = 1, the computation is similar and is given by the above expression
with λ = 1, Q̂ = 0, m̂ = q̂:

Ψbayes
w (q̂) = =

1

2
(q̂ − log (1 + q̂)) (IV.23)

Binary prior Let us compute the corresponding free entropy term with partition functions Zw? for
a binary prior Pw?(w?) = 1

2 (δ(w? − 1) + δ(w? + 1)) and Z`2,λw for a `2 regularization respectively
given by eq. (I.25) and eq. (I.30):

Zw? (γ,Λ) = e−
Λ
2 cosh(γ) , Z`2,λw (γ,Λ) =

e
γ2

2(Λ+λ)

√
Λ + λ

.
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The entropy term Ψw reads

Ψw

(
Q̂, m̂, q̂

)
= Eξ

[
Zw?

(
m̂q̂−1/2ξ, m̂q̂−1m̂

)
logZ`2,λw

(
q̂1/2ξ, q̂ + Q̂

)]
= Eξ

Zw?

(
m̂q̂−1/2ξ, m̂q̂−1m̂

) q̂ξ2

2
(
λ+ Q̂+ q̂

) − 1

2
log
(
λ+ Q̂+ q̂

)
=

∫
dξ
e−

ξ2

2√
2π

e−
m̂q̂−1m̂

2 cosh
(
m̂q̂−1/2ξ

) q̂ξ2

2
(
λ+ Q̂+ q̂

) − 1

2
log
(
λ+ Q̂+ q̂

)
=

1

2

(
q̂ + m̂2

λ+ Q̂+ q̂
− log

(
λ+ Q̂+ q̂

))
(IV.24)

We recover exactly the same free entropy term than for Gaussian prior teacher eq. (IV.22) for ρw? = 1.

IV.5.2 Updates derivatives

Let’s compute, in full generality, the derivative of the partition functions defined in Sec. I.5 and that
will be useful to simplify the set (IV.19).

∂γZw (γ,Λ) = Zw (γ,Λ)× EQw
[w] = Zw (γ,Λ) fw (γ,Λ)

∂ΛZw (γ,Λ) = −1

2
Zw (γ,Λ)× EQw

[
w2
]

= −1

2

(
∂γfw(γ,Λ) + f2

w(γ,Λ)
)

∂ωZout (y, ω, V ) = Zout (y, ω, V )× V −1EQout [z − ω]

= Zout (y, ω, V ) fout (y, ω, V )

∂V Zout (y, ω, V ) =
1

2
Zout (y, ω, V )×

(
EQout

[
V −2(z − ω)2

]
− V −1

)
=

1

2
Zout (y, ω, V )

(
∂ωfout (y, ω, V ) + f2

out (y, ω, V )
)

(IV.25)

IV.5.3 Simplifications of the fixed point equations

We recall the set of fixed point equations eq. (IV.19)

Q̂ = −2α∂QΨout , Q = −2∂Q̂Ψw

q̂ = −2α∂qΨout , q = −2∂q̂Ψw ,

m̂ = α∂mΨout , m = ∂m̂Ψw ,

(IV.26)

that can be simplified and formulated as functions of Zout? , Zw? ,fout? , fw? , fout, and fw defined in
eq. (I.8) and eq. (I.12), using the derivatives in (IV.25).
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Equation over q̂

∂qΨout = ∂qEy,ξ
[
Zout?

(
y,mq−1/2ξ, ρw? −mq−1m

)
logZout

(
y, q1/2ξ,Q− q

)]
= Ey,ξ [∂qω

?∂ωZout? logZout + ∂qV
?∂V Zout? logZout

+
Zout?

Zout
(∂qω∂ωZout + ∂qV ∂V Zout)

]
= Ey,ξ

[
−m

2
q−3/2ξfout?Zout? logZout +

m2q−2

2

(
∂ωfout? + f2

out?
)
Zout? logZout

+
Zout?

Zout

(
1

2
q−1/2ξfoutZout −

1

2

(
∂ωfout + f2

out

)
Zout

)]
=

1

2
Ey,ξ

[
−m2q−2∂ξ (fout?Zout? logZout) +m2q−2

(
∂ωfout? + f2

out?
)
Zout? logZout

+
(
∂ξ (foutZout?)−

(
∂ωfout + f2

out

)
Zout?

)]
(Stein lemma)

=
1

2
Ey,ξ

[
−m2q−2

(
∂ωfout? logZout + Zout?f

2
out? logZout

−
(
∂ωfout? + f2

out?
)
Zout? logZout

)]
+

1

2
Ey,ξ

[
−mq−1Zout?fout?fout

]
+

1

2
Ey,ξ

[
∂ωfoutZout +mq−1Zout?fout?fout −

(
∂ωfout + f2

out

)
Zout?

]
= −1

2
Ey,ξ

[
Zout?

(
y,mq−1/2ξ, ρw? −mq−1m

)
f2

out

(
y, q1/2ξ,Q− q

)]
,

(Simplifications with (IV.25))

that leads to

q̂ = −2α∂qΨout = αEy,ξ
[
Zout?

(
y,mq−1/2ξ, ρw? −mq−1m

)
fout

(
y, q1/2ξ,Q− q

)2
]
.

(IV.27)

Equation over m̂

∂mΨout = Ey,ξ
[
∂mZout?

(
y,mq−1/2ξ, ρw? −mq−1m

)
logZout

(
y, q1/2ξ,Q− q

)]
= Ey,ξ [(∂mω

?∂ωZout? + ∂mV
?∂V Zout?) logZout]

= Ey,ξ
[(
q−1/2ξfout?Zout? −mq−1

(
∂ωfout? + f2

out?
)
Zout?

)
logZout

]
= Ey,ξ

[
∂ξ (fout?Zout? logZout)−

(
∂ωfout? + f2

out?
)
Zout? logZout

]
(Stein Lemma)

= Ey,ξ
[
mq−1 (∂ωfout?Zout? logZout + fout?∂ωZout? logZout

−
(
∂ωfout? + f2

out?
)
Zout?

)
logZout

]
+ Ey,ξ [Zout?fout?fout]

= Ey,ξ
[
Zout? (., ., .) fout?

(
y,mq−1/2ξ, ρw? −mq−1m

)
fout

(
y, q1/2ξ,Q− q

)]
(Simplifications with (IV.25))

that leads to
m̂ = α∂mΨout

= αEy,ξ
[
Zout? (., ., .) fout?

(
y,mq−1/2ξ, ρw? −mq−1m

)
fout

(
y, q1/2ξ,Q− q

)]
.

(IV.28)

Equation over Q̂

∂QΨout = Ey,ξ
[
Zout?

(
y,mq−1/2ξ, ρw? −mq−1m

)
∂Q logZout

(
y, q1/2ξ,Q− q

)]
= Ey,ξ

[
Zout?

(
y,mq−1/2ξ, ρw? −mq−1m

)
∂QV ∂V logZout

(
y, q1/2ξ,Q− q

)]
=

1

2
Ey,ξ

[
Zout?

(
y,mq−1/2ξ, ρw? −mq−1m

) (
∂ωfout + f2

out

) (
y, q1/2ξ,Q− q

)]
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leading to

Q̂ = −2α∂QΨout

= −αEy,ξ
[
Zout?

(
y,mq−1/2ξ, ρw? −mq−1m

)
∂ωfout

(
y, q1/2ξ,Q− q

)]
− q̂ .

(IV.29)

Equation over q

∂q̂Ψw = ∂q̂Eξ
[
Zw?

(
m̂q̂−1/2ξ, m̂q̂−1m̂

)
logZw

(
q̂1/2ξ, Q̂+ q̂

)]
= Eξ

[
∂q̂ω

?∂ωZw? logZw + ∂q̂V
?∂V Zw? logZw +

Zw?

Zw
(∂q̂ω∂ωZw + ∂q̂V ∂V Zw)

]
= Eξ

[
−m̂

2
q̂−3/2ξfw?Zw? logZw +

m̂2q̂−2

2

(
∂ωfw? + f2

w?
)
Zw? logZw

+
Zw?

Zw

(
1

2
q̂−1/2ξfwZw −

1

2

(
∂ωfw + f2

w

)
Zw

)]
= Eξ

[
−m̂

2
q̂−3/2∂ξ (fw?Zw? logZw) +

m̂2q̂−2

2

(
∂ωfw? + f2

w?
)
Zw? logZw

+

(
1

2
q̂−1/2∂ξ (fwZw?)− 1

2

(
∂ωfw + f2

w

)
Zw?

)]
(Stein lemma)

=
1

2
Eξ
[
−m̂2q̂−2

(
∂ωfw?Zw? logZw + Zw?f

2
w? logZw −

(
∂ωfw? + f2

w?
)
Zw? logZw

)
−m̂q̂−1Zw?fw?fw +

(
m̂q̂−1Zw?fwfw? + Zw?∂ωfw −

(
∂ωfw + f2

w

)
Zw?

)]
= −1

2
Eξ
[
Zw?

(
m̂q̂−1/2ξ, m̂q̂−1m̂

)
fw

(
q̂1/2ξ, Q̂+ q̂

)2
]

(Simplifications with (IV.25))

leading to

q = −2∂q̂Ψw = Eξ
[
Zw?

(
m̂q̂−1/2ξ, m̂q̂−1m̂

)
fw

(
q̂1/2ξ, q̂ + Q̂

)2
]

(IV.30)

Equation over m

∂m̂Ψw = ∂mEξ
[
Zw?

(
m̂q̂−1/2ξ, m̂q̂−1m̂

)
logZw

(
q̂1/2ξ, Q̂+ q̂

)]
= Eξ [(∂m̂ω

?∂ωZw? + ∂m̂V
?∂V Zw?) logZw]

= Eξ
[(
q̂−1/2ξfw?Zw? − m̂q̂−1

(
∂ωfw? + f2

w?
)
Zw?

)
logZw

]
= Eξ

[
m̂q̂−1∂ξ (fw?Zw? logZw)−

(
∂ωfw? + f2

w?
)
Zw? logZw

]
(Stein Lemma)

= Eξ
[
m̂q̂−1

(
∂ωfw?Zw? logZw + Zw?f

2
w? logZw −

(
∂ωfw? + f2

w?
)
Zw? logZw

)
+Zw?fw?fw]

= Eξ
[
Zw?

(
m̂q̂−1/2ξ, m̂q̂−1m̂

)
fw?

(
m̂q̂−1/2ξ, m̂q̂−1m̂

)
fw

(
q̂1/2ξ, Q̂+ q̂

)]
(Simplifications with (IV.25))

leading to

m = 2∂m̂Ψw = Eξ
[
Zw?

(
m̂q̂−1/2ξ, m̂q̂−1m̂

)
fw?

(
m̂q̂−1/2ξ, m̂q̂−1m̂

)
fw

(
q̂1/2ξ, q̂ + Q̂

)]
(IV.31)

Equation over Q

∂Q̂Ψw

(
Q̂, m̂, q̂

)
= ∂Q̂Eξ

[
Zw?

(
m̂q̂−1/2ξ, m̂q̂−1m̂

)
logZw

(
q̂1/2ξ, Q̂+ q̂

)]
= Eξ

[
Zw?

(
m̂q̂−1/2ξ, m̂q̂−1m̂

) 1

Zw
∂Q̂Λ∂ΛZw

(
q̂1/2ξ, Q̂+ q̂

)]
= −1

2
Eξ
[
Zw?

(
m̂q̂−1/2ξ, m̂q̂−1m̂

) (
∂γfw + f2

w

)]
(with (IV.25))
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hence

Q = −2∂Q̂Ψw = Eξ
[
Zw?

(
m̂q̂−1/2ξ, m̂q̂−1m̂

)
∂γfw

(
q̂1/2ξ, q̂ + Q̂

)]
+ q . (IV.32)
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V Applications

In this section, we provide details of the results presented in Sec. 3. In particular as an illustration,
we consider a Gaussian teacher (ρw? = 1) with a noiseless sign activation:

Pout?(y|z) = δ (y − sign(z)) , Pw?(w?) = Nw? (0, ρw?) , (V.1)

whose corresponding denoising functions are derived in eq. (I.22) and eq. (I.24).

Remark V.1. Note that performances of ERM with `2 regularization for a teacher with Gaussian
weights Pw?(w) = Nw (0, 1) or binary weights Pw?(w) = 1

2 (δ(w − 1) + δ(w + 1)), will be similar.
Indeed free entropy terms Ψw eq. (IV.16) for a Gaussian prior (IV.22) and for binary weights (IV.24)
are equal in this setting, so do the set of fixed point equations.

V.1 Bayes-optimal estimation

Using expressions eq. (I.22) and eq. (I.24), corresponding to the teacher model eq. (V.1), the prior
equation eq. (IV.21) can be simplified while the channel one has no analytical expression. Hence the
set of fixed point equations eqs. (IV.23) for the model eq. (V.1) read

qb =
q̂b

1 + q̂b
, q̂b = αEy,ξ

[
Zout?

(
y, q

1/2
b ξ, ρw? − qb

)
fout?

(
y, q

1/2
b ξ, ρw? − qb

)2
]
. (V.2)

Large α behaviour Let us derive the large α behaviour of the Bayes-optimal generalization error
eq. (II.7) that depends only on the overlap qb solution of eq. (V.2). qb measures the correlation with
the ground truth, so we expect that in the limit α→∞, qb → 1. Therefore, we need to extract the
behaviour of q̂b in eq. (V.2). Injecting expressions Zout? and fout? from eq. (I.22), we obtain

q̂b = αEy,ξ
[
Zout?

(
y, q

1/2
b ξ, 1− qb

)
fout?

(
y, q

1/2
b ξ, 1− qb

)2
]

= 2α

∫
Dξy2

N√qξ(0, 1− qb)2

1
2

(
1 + erf

( √
qbξ√

2(1−qb)

)) =
2

π

α

1− qb

∫
Dξ

e
− qbξ

2

1−qb(
1 + erf

( √
qbξ√

2(1−qb)

)) ,

where the last integral can be computed in the limit qb → 1:

∫
Dξ

e
− qbξ

2

1−qb(
1 + erf

( √
qbξ√

2(1−qb)

)) =

∫
dξ

−e
ξ2(qb+1)
2(1−qb)√

2π(
1 + erf

( √
qbξ√

2(1−qb)

))

'
∫

dξ

−e
ξ2

1−qb√
2π(

1 + erf

(
ξ√

2(1−qb)

)) =

√
1− qb√

2π

∫
dη

e−η
2

1 + erf
(
η√
2

) =
c0√
2π

√
1− qb ,

with c0 ≡
∫

dη e−η
2

1+erf
(
η√
2

) ' 2.83748. Finally, we obtain in the large α limit:

q̂b = k
α√

1− qb
, qb =

q̂b

1 + q̂b
,

with k ≡ 2c0
π
√

2π
' 0.720647. The above equations can be solved analytically and lead to:

qb =
1

2

(
αk
√
α2k2 + 4− α2k2

)
'

α→∞
1− 1

α2k2
, q̂b = k2α2 ,

and therefore the Bayes-optimal asymptotic generalization error is given by

ebayes
g (α) =

1

π
acos (

√
qb) '

α→∞
1

kπ

1

α
' 0.4417

α
. (V.3)
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V.2 Generalities on ERM with `2 regularization

Combining the teacher update for Gaussian weights eq. (I.24) with the update associated to the
`2 regularization eq. (I.24), the free entropy term can be explicitly derived in (IV.22). Taking the
corresponding derivatives, the fixed point equations for m, q,Σ eq. (IV.19) are thus explicit and
simply read

Σ =
1

λ+ Σ̂
, q =

ρw?m̂
2 + q̂

(λ+ Σ̂)2
, m =

ρw?m̂

λ+ Σ̂
. (V.4)

All the following examples have been performed with a `2 regularization, so that the above equations
(V.4) remain valid for the different losses considered in Sec. 3. In the next subsections, we provide
some details on the asymptotic performances of ERM with various losses with `2 regularization and
ρw? = 1.

In general for a generic loss, the proximal eq. (I.12) has no analytical expression, just as the fixed
point equations (IV.20). The square loss is particular in the sense eqs. (IV.20) have a closed form
solution. Also the Hinge loss has an analytical proximal. Apart from that, eqs. (IV.20) must be solved
numerically. However it is useful to notice that the proximal can be easily found for a two times
differentiable loss using eq. (I.29). This is for example the case of the logistic loss.

V.3 Ridge regression - Square loss with `2 regularization

The prior equations over m, q,Σ are already derived in eq. (V.4) and remain valid. Combining
eq. (I.22) for the considered sign channel with a potential additional Gaussian noise ∆? in (V.1) and
the square loss eq. (I.26), the channel fixed point equations for q̂, m̂, Σ̂ eqs. (IV.20) lead to

Σ =
1

λ+ Σ̂
, Σ̂ =

α

Σ + 1
,

q =
m̂2 + q̂

(λ+ Σ̂)2
, q̂ = α

(1 + q + ∆?)− 2
√

2m2

π

(Σ + 1)2 ,

m =
m̂

λ+ Σ̂
, m̂ =

α
√

2
π

Σ + 1
.

(V.5)

V.3.1 Pseudo-inverse estimator

We analyze the fixed point equations eqs. (V.5) for the pseudo-inverse estimator, that is in the limit
λ→ 0.

Solving Σ Combining the two first equations over Σ and Σ̂ in (V.5), we obtain

Σ =

√
(α+ λ− 1)2 + 4λ− α− λ+ 1

2λ
'
λ→0

1− α+ |α− 1|
2λ

+
1

2

(
α+ 1

|α− 1| − 1

)
, (V.6)

that exhibits two different behaviour depending if α < 1 or α > 1.

Regime α < 1 In this regime α < 1, eq. (V.6) becomes

Σ =
1− α
λ

+
α

1− α ,

that leads to the closed set of equations in the limit λ→ 0

Σ =
(1− α)2 + αλ

λ (1− α)
'
λ→0

1− α
λ

, Σ̂ =
(1− α)αλ

(α− 1)2 + λ
'
λ→0

λα

1− α ,

m =
α(1− α)

λ+ (1− α)

√
2

π
'
λ→0

α

√
2

π
, m̂ =

λα
√

2
π

λ+ (1− α)
'
λ→0

λα
√

2
π

1− α ,

q '
λ→0

α(π(1 + ∆?)− 2α)

π(1− α)
, q̂ '

λ→0

αλ2(2(α− 2)α+ π(∆? + 1))

π(1− α)(1− α+ λ)2
.

(V.7)
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Hence we obtain for α < 1:

mpseudo = α

√
2

π
qpseudo =

α(π(1 + ∆?)− 2α)

π(1− α)
(V.8)

and the corresponding generalization error

epseudo
g (α) =

1

π
acos

(√
2α(1− α)

π (1 + ∆?)− 2α

)
if α < 1 . (V.9)

Note in particular that epseudo
g (α) −→

α→1
0.5, meaning that the interpolation peak at α = 1 reaches the

maximum generalization error.

Regime α > 1 Eq. (V.6) becomes

Σ =
1

2

(
α+ 1

α− 1
− 1

)
=

1

2

(
α+ 1

α− 1
− 1

)
=

1

α− 1
.

In the limit λ→ 0, the fixed point equations eqs. (V.5) reduce to

Σ + 1 =
α

α− 1
, Σ̂ = α− 1 ,

q =
(α− 1)

2 2
π + q̂

(α− 1)
2 , q̂ =

(α− 1)2

α

(
(1 + q + ∆?)− 4

π

)
,

m =

√
2

π
, m̂ = (α− 1)

√
2

π
.

(V.10)

In particular we obtain for α > 1:

mpseudo =

√
2

π
, qpseudo =

1

α− 1

(
1 + ∆? +

2

π
(α− 2)

)
, (V.11)

and the corresponding generalization error

epseudo
g (α) =

1

π
acos

(√
α− 1

π
2 (1 + ∆?) + (α− 2)

)
if α > 1 . (V.12)

Large α behaviour From this expression we easily obtain the large α behaviour of the pseudo-
inverse estimator:

epseudo
g (α) =

1

π
acos

(√
α− 1

π
2 (1 + ∆?) + (α− 2)

)
=

1

π
acos

((
1 +

C

α− 1

)1/2
)
'

α→∞
c√
α

where C = π
2 (1 + ∆?)−1 and c =

√
C
π . In particular for a noiseless teacher ∆? = 0, c =

√
π−2
2π2 '

0.240487, leading to

epseudo
g (α) '

α→∞
0.2405√

α
. (V.13)

V.3.2 Ridge at finite λ

Let us now consider the set of fixed point equation eq. (V.5) for finite λ 6= 0. Defining

t0 ≡
√

(α+ λ− 1)2 + 4λ

t1 ≡ (t0 + α+ λ+ 1)
−1

t2 ≡
√

2(α+ 1)λ+ (α− 1)2 + λ2

t3 ≡ (t2 + α+ λ+ 1)
−1

t4 ≡
√
α2 + 2α(λ− 1) + (λ+ 1)2 ,
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the equations can be in fact fully solved analytically and read

Σ =
1

2

t0 − α− λ+ 1

λ

Σ̂ =
1

2

(
t0 + α− λ− 1

)
q =

2α
(
−8α2t1 + 2α+ π∆? + π

)
π (α2 + α (t2 + 2λ− 2) + (λ+ 1) (t2 + λ+ 1))

,

q̂ =
(
4αλ2

(
π(∆? + 1)

(
t4 + (α+ λ)

(
t2 + α+ λ

)
+ 2λ+ 1

)
− 8αt3

(
t4 + (α+ λ)

(√
2(α+ 1)λ+ (α− 1)2 + λ2 + α+ λ

)
+ 2λ

)
− 8αt3 + 4α2

))
,

m =
2
√

2
πα

t2 + α+ λ+ 1
,

m̂ =
2
√

2
παλ

t0 − α+ λ+ 1
.

Generalization error behaviour at large α Expanding the ratio m√
q in the large α limit, we obtain

m√
q
' 1− C

2α
with C =

π

2
(1 + ∆?)− 1

leading to

eridge,λ
g (α) =

1

π
acos

(
m√
q

)
'

α→∞
c√
α

with c =

√
C

π
. (V.14)

Thus, the asymptotic generalization error for ridge regression with any regularization strength λ ≥ 0
decrease as 0.2405√

α
, similarly to the pseudo-inverse result.

Optimal regularization The optimal value λopt(α), introduced in Sec. 3, which minimizes the
generalization error at a given α can be found taking the derivative of m√

q and is written as the root of
the following functional

F [α, λ,∆?] = ∂λ

(
m√
q

)
=
a1a2

a3a2
4

,

with

a1 = −4α

√
a4

α2 + α (t2 + 2λ− 2) + (λ+ 1) (t2 + λ+ 1)
,

a2 = 2
(
α2t3 + α (2λt3 + (t2 + 2) t3 − 1) + (λ+ 1) (t2 + λ+ 1) t3

)
− π(1 + ∆?) ,

a3 =
t0
t1
,

a4 = α (2− 8t1) + π (1 + ∆?) .

Unfortunately, this functional cannot be analyzed analytically. Instead we plot its value for a wide
range of α as a function of λ (for ∆? = 0) and we observe in particular that there exists a unique
value λopt ' 0.570796 as illustrated in Fig. 1 (left) that is independent of α. As an illustration,
we show the generalization error of ridge regression with the optimal regularization λopt = 0.5708
compared to the Bayes-optimal performances in Fig. 1 (right).
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Figure 1: (Left) Absolute value of the derivative of m/
√
q with respect to λ plotted in a logarithmic

scale. λopt is reached at the root of the functional F [α, λ] that corresponds to the divergence in the
logarithmic scale. Plotted for a wide range of α, the optimal value is clearly constant and independent
of α. Its value is approximately λopt ' 0.570796. (Right) Bayes-optimal (black) vs ridge regression
(dashed red) generalization errors with optimal `2 regularization λopt ' 0.570796.

V.4 Hinge regression / SVM - Hinge loss with `2 regularization

The hinge loss lhinge(y, z) = max (0, 1− yz) is linear by part and is therefore another simple
example of analytical loss to analyze. In particular its proximal map can computed in eq. (I.27) and
the corresponding denoising functions read:

fout

(
y, q1/2ξ,Σ

)
=


y if ξy < 1−Σ√

q

y−√qξ
Σ if 1−Σ√

q < ξy < 1√
q

0 otherwise

,

∂ωfout

(
y, q1/2ξ,Σ

)
=

−
1
Σ if 1−Σ√

q < ξy < 1√
q

0 otherwise
.

(V.15)

The fixed point equations eq. (IV.20) have unfortunately no closed form and need to be solved
numerically.
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V.4.1 Max-margin estimator

As proven in [7] both the hinge and logistic estimators converge to the max-margin solution in the
limit λ→ 0 as soon as the data are linearly separable. We will start with the fixed point equations for
hinge, whose denoising functions (V.15) are analytical. Taking the λ→ 0 limit is non-trivial and we
need therefore to introduce some rescaled variables to obtain a closed set of equations. Numerical
evidences at finite α show that we shall use the following rescaled variables:

m̂ = Θ (λ) , q̂ = Θ
(
λ2
)
, Σ̂ = Θ (λ) , m = Θ(1), q = Θ(1), Σ = Θ

(
λ¯1
)
.

The fixed point equations eq. (IV.20) simplify and become

m =
m̂

1 + Σ̂
, q =

m̂2 + q̂

(1 + Σ̂)2
, Σ =

1

1 + Σ̂
,

m̂ =
2α

Σ
Im̂(q, η) , q̂ =

2α

Σ2
Iq̂(q, η) , Σ̂ =

2α

Σ
IΣ̂(q, η) ,

(V.16)

with

Im̂(q, η) ≡
∫ 1√

q

−∞
dξNξ(0, 1)Nξ

(
0,

1− η√
η

)
(1−√qξ) ,

=

√
2π

(
erf
(

1√
2
√
q(1−η)

)
+ 1

)
+ 2e−

1
2q(1−η)

√
q(1− η)

4π

Iq̂(q, η) ≡
∫ 1√

q

−∞
dξNξ(0, 1)

1

2

(
1 + erf

( √
ηξ√

2(1− η)

))
(1−√qξ)2

,

IΣ̂(q, η) ≡
∫ 1√

q

−∞
dξNξ(0, 1)

1

2

(
1 + erf

( √
ηξ√

2(1− η)

))
.

(V.17)

Large α expansion Numerically at large α (and λ→ 0), we obtain the following scalings

q = Θ(α2) , m = Θ(α) , Σ = Θ(1) , q̂ = Θ(1) , m̂ = Θ(α) , Σ̂ = Θ(1) . (V.18)

Therefore, in order to close the equations, we introduce new variables (cq, cη) such that

q =
α→∞

cqα
2 , η = 1− cη

α2
. (V.19)

In this limit, we can extract the large α behaviours of integrals Im̂, Iq̂, IΣ̂:

Im̂(q, η) = I∞m̂ (cq, cη) , Iq̂(q, η) =
I∞q̂ (cq, cη)

α
, IΣ̂(q, η) =

I∞
Σ̂

(cq, cη)

α
, (V.20)

where I∞m̂ , I∞q̂ , I∞Σ̂ are Θ(1) and read

I∞m̂ (cq, cη) ≡
√

2π
(

erf
(

1√
2
√
cηcq

)
+ 1
)

+ 2e
− 1

2cηcq
√
cηcq

4π
,

I∞q̂ (cq, cη) ≡
e
− 1

2cηcq

(√
2π(3cηcq + 1)e

1
2cηcq

(
erf
(

1√
2
√
cηcq

)
+ 1
)

+ 4(cηcq)
3/2 + 2

√
cηcq

)
12π
√
cq

,

I∞
Σ̂

(cq, cη) ≡
√

2π
(

erf
(

1√
2
√
cηcq

)
+ 1
)

+ 2e
− 1

2cηcq
√
cηcq

4π
√
cq

.

(V.21)
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Hence the set of fixed-point equations eq. (V.16) simplifies to:

Σ̂ =
2I∞

Σ̂
(cq, cη)

1− 2I∞
Σ̂

(cq, cη)
, Σ = 1− 2I∞

Σ̂
(cq, cη)

m̂ =
2αI∞m̂ (cq, cη)

1− 2I∞
Σ̂

(cq, cη)
, m = 2αI∞m̂ (cq, cη)

q̂ =
2I∞q̂ (cq, cη)(

1− 2I∞
Σ̂

(cq, cη)
)2 , q = 4α2 (I∞m̂ (cq, cη))

2
+ 2I∞q̂ (cq, cη) ,

(V.22)

which can be closed by rewriting the equations eqs. (V.19):

η =
m2

q
≡ 1− cη

α2
= 1−

I∞q̂ (cq, cη)

2 (I∞m̂ (cq, cη))
2

1

α2
,

q = cqα
2 ' 4α2 (I∞m̂ (cq, cη))

2
.

(V.23)

Equivalently (c?q , c
?
η) is the root of the set of non-linear fixed point equations (Fη(cq, cη), Fq(cq, cη)):

Fη(cq, cη) ≡
I∞q̂ (cq, cη)

2 (I∞m̂ (cq, cη))
2 − cη , Fq(cq, cη) ≡ 4 (I∞m̂ (cq, cη))

2 − cq , (V.24)

that cannot be solved analytically. However a unique numerical solution is found and lead to
(c?q , c

?
η) = (0.9911, 2.4722). Therefore the generalization error of the max-margin estimator in the

large α regime is given by

emax−margin
g (α) =

1

π
arccos

(
m√
q

)
'

α→∞
1

π
arccos

(
1− c?η

α2

)
'

α→∞
K

α
, (V.25)

with K =

√
c?η
π ' 0.5005, leading to

emax−margin
g (α) '

α→∞
0.5005

α
. (V.26)

V.5 Logistic regression

The logistic loss is a combination of the cross entropy loss l(y, z) = −y log(σ(z)) − (1 −
y) log(1− σ(z)) with as sigmoid activation function σ, that simplifies for binary labels y ± 1
to llogistic(y, z) = log(1 + exp(−yz)) with the two first derivatives given by

∂zl
logistic(y, z) = − y

ezy + 1
, ∂2

z l
logistic(y, z) =

y2

2(1 + cosh (zy))
=

y2

4cosh
(
yz
2

) .
Its proximal is not analytical, but it can be written as the solution of the implicit equation (I.28)
providing the corresponding denoising functions (I.29). Solving the fixed point equations (IV.20), we
obtain performances that approach closely the Bayes-optimal baseline as illustrated in Fig. 2 (left).

V.6 Logistic with non-linearly separable data - A rectangle door teacher

The analysis of ERM for the linearly separable dataset generated by (V.1) reveals that logistic
regression with `2 regularization was able to approach very closely Bayes-optimal error. Therefore
it seems us very interesting to investigate if logistic regression could perform as well on a more
complicated non-linearly separable dataset obtained by a rectangle door channel

y = sign
(∣∣∣∣ 1√

d
Xw?

∣∣∣∣− κ) . (V.27)

This channel has been already considered in [1] and we fix the width of the door to κ = 0.6745 to
obtain labels ±1 with probability 0.5. We then compare the ERM performances of logistic regression
with `2 regularization to the Bayes-optimal performances given by (V.2) with denoising functions
derived in eq. (I.23). We show in Fig. 2 (right) the comparison only for an arbitrary hyper-parameter
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Figure 2: (Left) Logistic regression - Generalization error as a function of α for different regulariza-
tions strength λ. Decreasing λ, the generalization error approaches very closely the Bayes-optimal
error (black line). The difference with the Bayes error is shown as an inset. Logistic flirts with
Bayes error but never achieves it exactly. The asymptotic behaviour is compared to numerical
logistic regression with d = 103 and averaged over ns = 20 samples, performed with the default
method LogisticRegression of the scikit-learn package [8]. (Right) Rectangle door teacher with
κ = 0.6745 - Bayes-optimal generalization error (black) compared to asymptotic generalization
performances of `2 logistic regression (dashed yellow line) and numerical ERM (crosses).

λ = 10−2, as results are similar for any regularization. As we might expect, the logistic regression is
not able to reach the Bayes-optimal generalization error. Both Bayes-optimal and ERM performances
are stuck in the symmetric fixed point m = 0 up to αit ' 1.393. Above this threshold it becomes
unstable and Bayes error decreases to zero in the α → 0 limit, while the logistic regression with
arbitrary λ remains stuck to its maximal generalization error, meaning that in this non-linearly
separable case, the logistic regression largely underperforms Bayes-optimal performances.
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VI Reaching Bayes optimality

In this section, we propose a derivation inspired by [9–18] of the fine-tuned loss and regularizer (17)
discussed in Sec. 4. We assume that the dataset is generated by a teacher (I.1) such that Zout?(., ω, .)
and Zw?(γ, .) are respectively log-concave in ω and γ. The derivation is based on the GAMP
algorithm introduced in [2] for the model eq. (1), that we start by recalling.

VI.1 Generalized Approximate Message Passing (GAMP) algorithm

The GAMP algorithm can be written as the following set of iterative equations that depend on the
update functions (I.6):


ŵt+1 = fw(γt,Λt)

ĉt+1
w = ∂γfw(γt,Λt)

ftout = fout (y,ωt, V t)

and



Λti = − 1
d

∑n
µ=1 X2

µi∂ωf
t
out,µ

γti = 1√
d

∑n
µ=1 Xµif tout,µ + Λtiŵ

t
i

V tµ = 1
d

∑d
i=1 X2

µiĉ
t
w,i

ωtµ = 1√
d

∑d
i=1 Xµiŵti − V tµf t−1

out,µ

. (VI.1)

It has been proven in [19] that the GAMP algorithm with Bayes-optimal update functions fw = fw?

and fout = fout? (I.8) converges to the Bayes-optimal performances in the large size limit. Yet
the GAMP denoising functions are generic and can be chosen as will depending on the statistical
estimation method. In particular we may choose the denoising functions for Bayes-optimal estimation
(I.8) or the ones corresponding to ERM estimation (I.12)

fbayes
w (γ,Λ) = ∂γ log (Zw?) ,

fbayes
out (y, ω, V ) = ∂ω log (Zout?) ,

f erm,r
w (γ,Λ) = Λ−1γ − Λ−1∂Λ−1γMΛ−1 [r(.)] (Λ−1γ) ,

f erm,l
out (y, ω, V ) = −∂ωMV [l(y, .)](ω) ,

(VI.2)

whose corresponding GAMP algorithms (VI.1) will achieve potentially different fixed points and
thus different performances. As it is proven that GAMP with Bayes-optimal updates lead to the
optimal generalization error, so that ERM matches the same performances it is sufficient to enforce
that at each time step t the Bayes-optimal and ERM denoising functions are equal fbayes = f erm.
Enforcing these two constraints will lead to the expressions for the optimal loss lopt and regularizer
ropt, so that ERM matches Bayes-optimal performances.

VI.2 Matching Bayes-optimal and ERM performances

Imposing the equality on the channel updates we obtain

fbayes
out (y, ω, V ) = f erm,l

out (y, ω, V )⇔ ∂ω log (Zout?) (y, ω, V ) = −∂ωMV

[
lopt (y, .)

]
(ω) .

Integrating, leaving aside the constant that will not influence the final result, and taking the Moreau-
Yosida regularization on both sides, we obtain:

MV [logZout? (y, ., V )] (ω) =MV

[
−MV

[
lopt (y, .)

]
(ω)
]

= −lopt (y, ω) ,

where we invert the Moreau-Yosida regularization in the last equality that is valid as long as
Zout?(y, ω, V ) is assumed to be log-concave in ω, (see [11] for a derivation). We finally obtain

lopt (y, z) = −MV [log (Zout?) (y, ., V )] (z) = −min
ω

(
(z − ω)2

2V
+ logZout? (y, ω, V )

)
.

(VI.3)

Let us perform the same computation for the prior updates. First we introduce a rescaled denoising
distribution:

Q̃w?(w; γ,Λ) ≡ 1

Z̃w?(γ,Λ)
Pw?(w)e−

1
2 Λ(w−Λ−1γ)

2

,

log
(
Z̃w?(γ,Λ)

)
= log (Zw?(γ,Λ))− 1

2
Λ−1γ2 ,

(VI.4)
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so that the the prior updates read

fbayes
w (γ,Λ) = ∂γ log (Zw?) = Λ−1γ + Λ−1∂Λ−1γ log

(
Z̃w?

)
,

f erm,r
w (γ,Λ) = PΛ−1 [r] (Λ−1γ) = Λ−1γ − Λ−1∂Λ−1γMΛ−1 [r] (Λ−1γ) .

(VI.5)

Imposing the equivalence of the Bayes-optimal and ERM prior update,

fbayes
w (γ,Λ) = f erm,r

w (γ,Λ)⇔ ∂Λ−1γ log
(
Z̃w?

)
= −∂Λ−1γMΛ−1

[
ropt

]
(Λ−1γ) , (VI.6)

and assuming that Zw(γ,Λ) is log-concave in γ, we may invert the Moreau-Yosida regularization,
that leads to:

ropt
(
Λ−1γ

)
= −MΛ−1

[
log
(
Z̃w?

) (
.,Λ−1

)]
(w) (VI.7)

= − min
Λ−1γ

(
(w − Λ−1γ)2

2Λ−1
+ log Z̃w? (γ,Λ)

)
= −min

γ

(
1

2
Λw2 − γw + logZw? (γ,Λ)

)
.

The last step, is to characterize the variances V and Λ involved in (VI.3) and (VI.7) that are so far
undetermined. To achieve the Bayes-optimal performances, we therefore need to use the variances V
and Λ solutions of the Bayes-optimal GAMP algorithm (VI.1). In the large size limit, these quantities
concentrate and are given by the State Evolution (SE) of the GAMP algorithm, that we recall herein.

State evolution of GAMP In the large size limit, the expectation of the parameter V and Λ over
the ground truth w? and the input data X lead to [19]:

Ew?,X [ V ] = ρw? − qb , Ew?,X [ Λ] = q̂b , (VI.8)

where qb and q̂b are solutions of the Bayes-optimal set of fixed point equations eq. (13).

VI.3 Summary and numerical evidences

Choosing the fine-tuned (potentially non-convex depending on Zout? and Zw? ) loss and regularizer

lopt (y, z) = −min
ω

(
(z − ω)2

2(ρw? − qb)
+ logZout? (y, ω, ρw? − qb)

)
ropt (w) = −min

γ

(
1

2
q̂bw

2 − γw + logZw? (γ, q̂b)

) (VI.9)

with qb and q̂b are solutions of the Bayes-optimal set of fixed point equations eq. (13), we showed
that ERM can provably match the Bayes-optimal performances. In particular we illustrated the
behaviour of the optimal loss and regularizer λopt and ropt for the model (2) in Fig. 2 of the main text.
Note in particular that even though the loss lopt is not convex (but seems quasi-convex), numerical
simulations of ERM with (VI.9) (black dots) presented in Fig. 3 show that ERM achieves indeed the
Bayes-optimal performances (black line) even at finite dimension.
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Figure 3: Generalization error obtained by optimization of the optimal loss lopt and ropt for the
model (2), compared to `2 logistic regression and Bayes-optimal performances. Numerics has been
performed with scipy.optimize.minimize with the L-BFGS-B solver for d = 103 and averaged
over ns = 10 instances. The error bars are barely visible.
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