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Abstract

We consider the question of learning QQ-function in a sample efficient manner for
reinforcement learning with continuous state and action spaces under a generative
model. If Q-function is Lipschitz continuous, then the minimal sample complexity
for estimating e-optimal Q-function is known to scale as Q(W) per classical
non-parametric learning theory, where d; and dy denote the dimensions of the
state and action spaces respectively. The Q-function, when viewed as a kernel, in-
duces a Hilbert-Schmidt operator and hence possesses square-summable spectrum.
This motivates us to consider a parametric class of )-functions parameterized
by its “rank” r, which contains all Lipschitz Q-functions as » — co. As our
key contribution, we develop a simple, iterative learning algorithm that finds e-

optimal Q-function with sample complexity of O(W) when the optimal
Q-function has low rank r and the discounting factor - is below a certain threshold.
Thus, this provides an exponential improvement in sample complexity. To enable
our result, we develop a novel Matrix Estimation algorithm that faithfully estimates
an unknown low-rank matrix in the ¢, sense even in the presence of arbitrary
bounded noise, which might be of interest in its own right. Empirical results on
several stochastic control tasks confirm the efficacy of our “low-rank” algorithms.

1 Introduction

Reinforcement Learning (RL) has emerged as a promising technique for a variety of decision-making
tasks, highlighted by impressive successes in solving Atari games [29, 30] and Go [39, 40]. However,
generic RL methods suffer from “curse-of-dimensionality.” Specifically, the classical minimax theory
[41, 45] suggests that for € > 0, we need Q(W) samples to learn an e-optimal state-action value,
i.e., Q-function, when the (continuous) state and action spaces have dimensions d; and ds respectively
and the @-function is Lipschitz continuous. On the other hand, as exemplified by empirical successes,
practical RL tasks seem to possess low-dimensional latent structures. Indeed, feature-based methods
aim to explain such a phenomenon by positing that either the transition kernel [48, 49] or the value
function [44, 28, 31, 26, 52] is linear in low-dimensional features associated with states and actions.
That is, not only the states and actions have low-dimensional representations, the value function is
linear. While these may be true, the algorithm may not have the knowledge of such feature maps
beforehand; and relying on the hope of a neural network to find them might be too much to ask.

With these motivations, the primary goal of this work is to learn the optimal ()-function in a data-
efficient manner when it has a lower-dimensional structure, without the need for any additional
information such as knowledge of features. Thus, we ask the following key question in this paper:

“Is there a universal representation of Q-function that allows for designing a data-
efficient learning algorithm if the Q-function has a low-dimensional structure?”

*The author ordering is alphabetical.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



Table 1: Informal summary of sample complexity results for three different configurations of state/action spaces,
including our results, a few selected from the literature, and the lower bounds. See Them. 2 & Appx. E for ours.

Setting Our Results Selected from the Literature Lower Bound
Cont. § & Cont. .A O(m) ~ N/A ~ QW) [45]
Cont. S & Finite A O( —57z) O(=zi5s) 135] 0( —7z) [51] Q(552) [35]
max([S],]A]) 5 (_[s]1A] [S1A] & (ISIA]
Finite S & Finite A 0(7) O((1 ~%e 5) [37] ((1 Ve =) [38] Q( 1—)3e z) [3]

Contributions. As the main contribution of this work, we answer this question in the affirmative by
developing a novel spectral representation of the ()-function for a generic RL task, and provide a
data-efficient method to learn a near-optimal ()-function when it is lower-dimensional.

Representation. Given state space S = [—1, 1]% and action space A = [—1,1]%,let Q* : SxA — R
be the optimal Q-function for the RL task of interest. We consider the integral operator K = K-
induced by Q* that maps an integrable function b : S — R to Kh : A — R such that Kh(a) =
Jes @ (s,a)h(s)ds, Ya € A. For Lipschitz Q*, we show that K is a Hilbert-Schmidt operator
admitting generalized singular value decomposition. This leads to the spectral representation of (Q*:

a):Zaifi(s)gq;(a), VseS,ac A, (1)

with >, 0 < oo, and “singular vectors” {f; : ¢ € N} and {g; : i € N} being orthonormal
sets of functions. That is, for any 6 > 0, there exists 7(0) such that the () components in (1)
provide d-approximation of *. This inspires a parametric family of Q* parameterized by r > 1,
ie., Q*(s,a) =Y., 0ifi(s)gi(a), with all Lipschitz Q* captured as r — oo. When r is small, it
suggests a form of lower-dimensional structure within Q*: we call such a Q* to have rank 7.

Sample-Efficient RL. Given the above universal representation with the notion of dimensionality for
Q* through its rank, we develop a data-efficient RL method. Specifically, for any € > 0, our method
finds Q such that ||Q — Q*||oe < € using O(e*(max{dl*dz}“)) samples, with the hidden constant
in O(-) dependent on 7, max{d, dy} (cf. Theorem 2). In contrast, the minimax lower bound for
learning a generic Lipschitz Q* in the L™ sense (also in the L?-sense) is of (e~ (41F42+2)) [45].
That is, our method removes the dependence on the smaller of the two dimensions by exploiting the
low-rank structure in Q*. Note that this provides an exponential improvement in sample complexity,
e.g., with d; = dy = d, our method requires the number of samples scaling as e ~?~2 in contrast to
€~24=2 required for generic Lipschitz Q*. For a quick comparison, see Table 1 and Related Work.

Matrix Estimation (ME), A Novel Method. Our data-efficient RL method relies on a novel low-rank
Matrix Estimation method we introduce. Notice that for any set of m states {sj }7, and n actions
{a¢}}_,, the induced matrix [Q*(sk, ar) : k € [m], £ € [n]] has rank (at most) r. At a high level, to
obtain the improved sample complexity as claimed, we wish to faithfully recover the m x n rank-r
matrix in the /., sense, by observing only O( max(m, n)r) entries with each entry having bounded,
but arbitrary noise §. In the literature [8, 9, 11, 15], such a harsh setting has not been considered. In
this work, we introduce a ME method that manages to recover the entire matrix with entry-wise error
within O(d) (cf. Proposition 5). This advance in ME should be of independent interest (see Table 2
for comparison). With this novel method, we improve our estimates of QQ* iteratively by interleaving
one-step lookahead and ME. This, ultimately leads to an e-optimal Q* with desired sample size.

Empirical Success. While low-rank representation of Q* enables theoretical guarantees, the proof is
in the puddling: we find that for well-known control tasks, the underlying (* has a low-rank structure.
In particular, using our method that exploits the low-rank structure leads to a significant improvement
in sample complexity over the method that does not. Our novel ME, with provable guarantees, turns
out to be computationally most efficient, while offering superior performance of sample complexity.

Summary. To the best of our knowledge, this is the first work to show a provable, quantitative utility
of exploiting the low-rank structure to reduce sample complexity in (Q-learning. We believe that
“factorization” of Q* can be beneficial more broadly in improving the efficiency of RL, e.g., it could
be embedded as an architectural constraint in neural network representation of the Q*. Moreover, the
main insight we develop in this paper remains valid and applicable to various problems in machine
learning beyond RL, which involve a bivariate function possessing a low-rank structure.



Table 2: Comparison of different ME methods with different guarantees. Ours is the only method
that provides entry-wise guarantee while allowing for arbitrary, bounded error in each entry.

Method Noise Model Error Guarantees ~ Sampling Model ~ # of Samples
Our Method bounded arbitrary entrywise adaptive O(n)
Convex Relaxation noiseless exact independent w.p. p  O(nlog?n)
[9,7,23] bounded arbitrary Frobenius independent w.p. p  O(nlog®n)
Spectral Thresholding [10] Zero-mean Frobenius independent w.p. p Oo(n'Te)
Factorization (noncvx) [13] Zero-mean entrywise independent w.p. p  O(nlog®n)

Related Work. A brief discussion of related work on RL and Matrix Estimation is provided.

RL problems with both continuous state and action spaces received significantly less attention in
the literature. While there are practical RL algorithms to deal with continuous domains [46, 24, 20,
25], theoretical understanding on this class of problems, especially on sample complexity, is very
limited [1]. Since we interpolate our estimates to the entire space via non-parametric regression
without making any additional model assumptions, a comparison with the non-parametric minimax
rate Q(W) for learning Lipschitz function [41, 45] is meaningful.

Our algorithm and proofs are general, which can be reduced to low-rank settings with a finite (discrete)
space in a similar manner (Appendix E.3). The lower bound scales as Q(ed%) for problems with

continuous state space and finite action space [35] and O( (EU@E? ) for problems with both state and

action spaces being finite [3]. When reduced to those domains, our method scales as O(Ed%) for
the former and O(w) for the latter, respectively. That is, the smaller of the two dimensions
is “removed” from sample complexity by exploiting the low-rank structure in the same way as in
the continuous problems. Results in finite domains are abundant in the literature and it is impossible
to cover them all. We provide a high-level summary in Table 1 to communicate how our algorithm
fares with a few selected work. Note that the detailed setting often varies in the literature and we
refer readers to Appendix G for further discussions. Finally, we remark that our analysis requires the
discounting factor v to be small, and leave it as an important future direction to extend to all .

We mention the recent empirical work [50] that investigates low-rank Q* with matrix estimation
for finite state and action spaces. The results in [50] are solely empirical and it uses off-the-shelf
ME methods. In that sense, we provide a formal framework to understand why [50] works so well,
resolving the theoretical open problem raised in their work, and we provide natural generalization for
continuous state and action spaces that was missing, along with a novel ME method.

As discussed, matrix estimation concerns recovering a low-rank m X n matrix from partial, noisy
observation of it. This problem has been extremely well studied [32, 8, 9, 23, 10, 12, 15, 11]. However,
most recovery guarantees are given in terms of Frobenius norm of the error, or mean squared error. In
this work, we need reliable estimation for each entry, i.e., £, error bound. This is technically hard
and there are only limited results [16, 13]. To make matters worse, the measurement noise in our
setting can be arbitrary (not necessarily zero mean) though bounded. Thus, a new method is required
and that is precisely what we do in this work. See Appendix G for more detailed discussions on why
existing ME methods do not work and ours does, along with directions for future research.

2 Markov Decision Process, Representation of ()-function

Markov Decision Process (MDP). We consider the standard setup of infinite-horizon discounted
MDP, which is described by (S, A, P, R,~). S and A are the state and action spaces, respectively.
P(s'|s,a) is the unknown transition kernel, while R(s, a) determines the immediate reward received.
Finally, v € (0, 1) is the discounting factor. A policy 7(a|s) specifies the probability of selecting
action a € A at state s € S. The standard value function associated with a policy 7 is defined as
V7™(s) = Ex[>ieg v R(st, ar) | so = s]. The optimal value function, denoted by V'*, is the value
function of the reward-maximizing policy. That is, V*(s) = sup, V" (s),Vs € S. Correspondingly,
we define the optimal Q-function, denoted by Q*, as Q*(s,a) = R(s,a) + YEgp(|s,qa) [V (s")].

MDP Regularity. Throughout this paper, we assume the existence of a generative model (i.e., a
simulator) [21]. We consider MDPs with the following properties: (1) (Compact domain) The



state space S and the action space .4 are compact subsets of a Euclidean space; Without loss of
generality, let S = [—1,1]% and A = [—1,1]%2. (2) (Bounded reward) For every (s,a) € S x A,
the reward R(s, a) is bounded, i.e., |R(s,a)| < Rmax. (3) (Smoothness) The optimal Q-function,
Q*, is L-Lipschitz with respect to the 1-product metric in S X A, i.e., |Q*(s1,a1) — Q*(s2,a2)| <

Ld$xA((51>a1), (82,02)) where deA((517a1)7 (82702)) = |[|s1 — s2l|2 + [Ja1 — az|2.

We note that the bounded reward implies that for any policy 7, |V (s)| < Vipax = Rumax/(1 —7) for
all s. This yields |Q*(s, )| < Vinax, too. Finally, we remark that for learning MDPs with continuous
state/action space under ¢, guarantee, some form of smoothness assumption, such as the Lipschitz
continuity above, is natural and typical [51, 1, 36, 35, 18].

Representation of Q*. With the discussion above, Q* : [—1,1]% x [~1,1]9 — R is L-Lipschitz
and also bounded. As introduced earlier, it induces an integral kernel operator K = Kg« :
L?([~1,1]%) — L?([~1,1]%) between the spaces of square integrable functions L?([—1, 1]%) (for
d € {di,d>}) endowed with the standard inner product {f, g) = fze[—m]d f(x)g(x)dz. Through
this lens, we obtain the following representation for Q*, noticing that K is a Hilbert-Schmidt operator.

Theorem 1. Suppose the MDP regularity conditions (1) - (3). Then there exist a nonincreasing
sequence (0; > Ry : i € N) with 3.2 0 < oo and orthonormal sets of functions {f; €

L%([-1,1]%) : i € N} and {g; € L*([-1,1]%) : i € N} such that
Q*(S’a) = Zaifi(s)gi(a)’ V(S,&) € [_17 1]d1 X [_1’ 1](12' (2)

As a result, for any 6 > 0, there exists r* = 1r*(8) € N such that for all r > r*, the rank-r
approximation error satisfies [q. 4 (Y1 0ifi(s)gila) — Q* (s, a))zds da=3 72 07 <4

Low Rank Q*. Theorem 1 motivates us to consider low-rank (Q*. For any integer > 1, we call Q*
to have rank 7 if o; = 0 for all ¢ > r in (2). More generally, we say Q* has §-approximate rank 7 if
r*(§) = r in Theorem 1. We focus on efficient RL for Q* with exact or approximate low rank r. To
motivate the readers, we present an example of classical MDPs that exhibits low-rank structure in Q*.

Example 1. The linear quadratic regulator (LQR) problem considers designing a linear controller
for a linear dynamical system given by s;+1 = As;+ Bay, a; = msy, by minimizing a quadratic cost
(negative reward) function R(s;,a) = stTEst + atTFat. Here, s; € R% s the state of the system
at time t, a; € R% is the control input to the system att, A € Rh>*4 B ¢ RIxdz 7 ¢ RI=2xd
are matrices describing the system, and E € R4 F ¢ dy x dy are symmetric positive definite
matrices. According to linear-quadratic control theory [5], the value function can be expressed as
V™ (sy) = sI K,s; where K is a cost matrix for policy ; thus, the Q-function for 7 is written as

Q" (s,a) = R(s,a) + 7V™ ((As + Ba))
=sT(E+~yATK A)s +2vsT ATKBa + o (F + yBT K, B)a.
Letting ATK B = 22:1 TiuiU;‘F be the SVD of AT K. B, we can see that

-
Q7 (s,a) = Q’YZTZ'(’UJ?S) -(vFa) + (s Mss) - 1a4(a) + 1s(s) - (a7 M 4a)
i=1
where Ms = E +~yATK A, M4 = F +~vBT K. B and 1s (14) denotes a constant-1 function on
S (A). It is easy to observe that 15, sT Mss, and {ul s}7_, form an orthogonal set in L*(S) as long
as S is symmetric (i.e., S = —S8). Similarly, 1 4, aT M 4a, and {v}a}?_, form an orthogonal set in
L?(A) when A is symmetric. Thus, the rank of Q™ is at most min{dy, d>} + 2, and so is the rank of
Q*, which is significantly smaller than |S| ~ 2% or | A| ~ 2% (after quantization).

3 Reinforcement Learning using Matrix Estimation

We introduce an RL algorithm using generic ME procedures as a subroutine. We require the ME
method in use to satisfy Assumption 1 (see Section 4) to provide meaningful performance guarantees.
However, there is no known ME procedure satisfying Assumption 1 in the literature. In Section 5, we
introduce a simple ME procedure that satisfies it when QQ* is exactly or approximately low-rank.



The RL algorithm iteratively improves estimation of QQ*. Each iteration consists of four steps:
discretization, exploration, matrix estimation and generalization. We provide a narrative overview of
the algorithm; the pseudo-code can be found in Appendix A.

Continuous Space S XA SOxA® Matrix Partial Observations Q® on Q(©) Completed Est. ) on §®xA® Interpolated Q) on SxA

()
Discretization Exploration @ Matrix Est. Generalization
5®,

®
with Q=1 Q

A Next Iteration H

Figure 1: Iterative RL using ME: exploration uses estimation Q™Y from previous iteration.

Step 1. Discretization. At iteration ¢, we produce 5)-nets, S®) ¢ S and A®) C A, for properly
chosen resolution 3(*) € (0, 1) that decreases with ¢. In our setup, |S®)| = O((1/8®)41), |A®)| =
O((1/B®)42). In total, this produces |S®||.A®)| many (s, a) pairs in the discretized set S® x A®).

Step 2. Exploration. Using estimate Q(*~1) over the entire S x .A from the previous iteration, we
wish to produce an improved estimate of Q* over S® x A® through this and the next step, and
then generalize it to S x A in Step 4. To produce an improved estimate over S® x A® in a sample-
efficient manner, we first “explore” a carefully selected subset Q) c S x A®), Specifically, for
each (s,a) € Q) we obtain N*) samples of independent transitions using the generative model,
which results in a set of sampled next states {s;},_; __n. We obtain an estimate QW(s,a) as

N®
N 1
Q(t)(& a) < R(s,a)+v - —= Z V(s  with V(t_l)(s) = max Q(t_l)(s, a). (3)
N (@) — v a

Step 3. Matrix Estimation. Given Q) (s, a), V(s, a) € Q) updated in Step 2, we wish to obtain an
improved estimate of Q* for the entire S(*) x A(*). This can be viewed as a matrix estimation problem.
When Q* has rank 7 as discussed in Section 2, the sampled matrix [Q*(s,a) : s € S®),a € AW)],
induced by discretization, has rank at most . Thus, we want to estimate the low-rank matrix by
having access to noisy measurements for a subset of entries in Q) ¢ S®) x A®)_ Specifically, the
noise in the measurements are not necessarily i.i.d. as they are coupled through V (*~1); thus, they are
bounded but can be arbitrary. Ideally, we wish to obtain estimates for all entries in the matrix with
the maximum error at a similar level as that in Q(*) (s,a). This demands that the ME method in use
is well-behaved in the ¢, sense, satisfying Assumption 1 as stated later. While this is absent in the
literature, we shall describe ME methods fulfilling the desideratum in Sections 5.1, 5.2 and Appendix
F. As a result, we obtain improved estimates Q") (s, a) for all (s,a) € S® x A® after the ME step.

Step 4. Generalization. With estimates Q(!)(s,a), (s,a) € S® x A®), we generalize to S x A
via interpolating them. This can be achieved by any supervised learning algorithm. We simply utilize
the 1-nearest neighbor: for any (s,a) € S x A, at the end of iteration ¢ we output Q) (s, a) <
QW (s',a’) where (s, a’) is closest to (s,a) in S®) x A® with ties broken arbitrarily.

4 Main Result: Correctness, Convergence & Sample Complexity

In this section, we state the result establishing correctness, convergence and finite sample analysis of
our RL algorithm. We require a specific property, stated as Assumption 1, for the Matrix Estimation
(ME) method utilized in Step 3 of the algorithm. While there is no known ME method in the literature
that satisfies it, we provide novel ME method with the desired property in Section 5.

Property of Matrix Estimation. Recall that we describe our RL algorithm with a generic matrix
estimation subroutine in Step 3, without specifying what ME method is used. In fact, the success
of the RL algorithm hinges on the performance of the ME method in use. For the convenience of
exposition, we define (Cpe, Cme )-property of an ME method for Cpne, Cme > 0, which abstracts the
‘success’ of the ME method and serves as a pivotal premise for the success of the entire RL algorithm.



Assumption 1 ((Cpne, Cme )-property). Given finite S C S, A% C A, it is possible to construct
QW C SO x A® with |QW| < Cme(|5(t)| + \A(t)|) for given constant Cr,e > 1 so that whenever
the ME method in use takes {Q (s, a)}(s,a)c0m Withmax g ,)com |Q(t) (s,a) — Q*(s,a)| < eas
an input and outputs {Q (s, a)}(s,a)es® x A, the following inequality holds:

~(t) *
& ’ - ) S Cme€.
(s,a)erguf{m(t) |Q (8 a) Q (3 a)| o€

We assume access to an ME method that satisfies (Ce, Cme )-property. Assumption 1 ensures the £
error remains under control (to be precise, Cme-Lipschitz with respect to ¢o./¢+.) during the ME step,
while it is stated in the language of RL for later uses. Note that Assumption 1 does not explicitly
require any structure on Q*, but we will require Q* to be low-rank or approximately low-rank to
produce an ME method satisfying it, as will be discussed in Section 5.

Correctness, Convergence & Sample Complexity of RL Algorithm. Now, we state the desired
properties of the RL algorithm introduced in Section 3. To that end, let the algorithm start with
initialization Q(¥) (s, a) = 0, ¥(s,a) € Sx.Aand hence V(9 (s) = 0, Vs € S. Thatis, |Q(*) (s,a)—
Q*(s,a)| < Vinax, V(s,a) € S x A. For the sake of notational brevity, we let d; = dy = d in the
sequel. We remark that our theorems apply equally by simply replacing d with max{d;,d2}.

Theorem 2. Consider the RL algorithm described in Section 3 with ME satisfying Assumption 1.
Given § € (0,1), there exists algorithmic choice of ), Q") N® for 1 <t < T, so that

IP( sup QW (s,a) — Q*(s,a)| < (29Cme) Vinax, V1<t < T) >1-6. 4
(s,a)eSx.A

Further, let v < % Then, with T' = G(log %) and 5<edl+2 -log %) number of samples, we have

P( sup ‘Q(T)(s,a) — Q*(s,a)’ < e) >1-6. (5)
(s,a)eSx.A

In the proof of Theorem 2 presented in Appendix C, we choose parameters Bt = V;“L"‘* (27Cme)?,
QO] = Cre(IS®] + |A®]) and NO = B log (A2 for 1 < + < T. While this

choice establishes the claims in Theorem 2, it is possible to achieve sup(, oycsx.4 ’Q(t)(s, a) —
Q* (s, )| < atViyax for any o > ycme by making a more sophisticated choice. Subsequently, the
conclusion for sample complexity, (5), can be extended for any v < _—. Thus, the constant Cpe in
Assumption 1 determines the range of MDPs for which such gains can "be achieved. In our analysis
of the proposed ME method, cye > 1 and indeed, we can achieve ¢, = 1 by trivially selecting
Q1 =81 x A® which however, does not lead to any gain in efficiency. The key challenge is to
find the right balance between small ¢y with small [Q®)| or Cpe. We address this next.

5 Matrix Estimation Satisfying Assumption 1

We introduce matrix estimation method satisfying Assumption 1 which is required for the success of
our RL algorithm as in Theorem 2. For ease of illustration, we start with describing it for the rank-1
setting, then generalize it for Q* with generic rank > 1 and finally for approximate rank-r setting.

5.1 Matrix Estimation for Q* with Rank 1: A Warm-Up

Consider Q* with rank 1. That is, there exist f : S — Rand g : A — R so that Q*(s,a) = f(s)g(a)
forall (s,a) € S x A. For the ease of exposition, we assume R(s,a) € [Ruin, Rmdx] with R0 > 0
for all (s,a) € S x A in this warm-up only. Subsequently, Q* (s, a) > Vipin = R"“,y“, Y(s,a).

Matrix Estimation Algorithm. For ¢ > 1, consider a discretization of spaces, S c S, A®) ¢ A.
Let Q*(S®, A®) be the |S®| x | A®)| matrix induced by restricting Q* to S x A®. Since
Q* is rank 1, it follows that Q*(S®, A®) = FGT where F = [f(s) : s € S®] € RIS”Ix1 and
G=lg(a):ac AV e RIA™ X1 Therefore, we can estimate Q*(SM, AM) by estimating F, G.



Now we describe the selection of Q(*) such that ()| = |S®)|+|.A®)| 1. To that end, we first choose

anchor elements st € S, af € A® andlet Q) = {(s,a) € S® x A® : 5 = s or a = a'}. With

access to {Q)(s,a) : (s,a) € QM}, our ME method produces estimates for all (s,a) € S® x A®)
_ 5 (5,a8) 00 (st 0

Satisfaction of Assumption 1. For the algorithm described above, we state the following proposition

which verifies that Assumption 1 is satisfied with Cp,e = 1 and ¢jpe = 7%.

Proposition 3. For € < Vi, suppose that mMax (s 4)en® |Q(t)(5,a) —Q*(s,a)| < e. Then the
estimate produced by the above ME algorithm satisfies

Rmax
Rmin

€.

N (t) —_ O* <7
(o) BB Q1 (s,a) = Q"(s,0a)| <

Proposition 3 implies that when (Q* has rank 1, our simple ME method satisfies (1, 7%) -property

for € < IVinin. We remark that for any ¢ € (0,1), the method fulfills (1, cme)-property with

Cme = i’fi % for all € < cViin. Replacing Assumption 1 in Theorem 2 with Proposition 3, we

get convergence & sample complexity guarantees for the rank-1 setup (Theorem 9 in Appendix D).

5.2 Matrix Estimation for Q* with Rank r

Based on the intuition developed in Section 5.1, we consider a more general rank-r setup. For
notational convenience, given @ : S x A — Rand &’ C S, A’ C A, we let Q(S’, A’) denote the
|8 x |A| matrix [Q(s,a) : (s,a) € S’ x A’], whose entries are indexed by (s,a) € &’ x A'.

The central idea is the same as before: although Q*(S®, A®)) € R™*™ is an array of mn numbers,
it has only 7(m + n — r) degrees of freedom, when rank(Q*(S), A®)) = r < min{m,n}; as
a result, one can restore Q*(S(t), .A(t)) by exploring only r entire rows and columns. There is,
however, a small caveat that the r rows and r columns should be carefully chosen so that they are
not degenerate, i.e., the  rows span the entire row space of Q*(S®, A®)) (the r columns span the
column space of Q*(S™®, A™®), resp.). To this end, we define the notion of anchor states and actions.

Definition 4. (Anchor states and actions) A set of states S* = {sf}f%:sl C S and actions A* =
{a?}fi“l C A for some R, R, are called anchor states and actions for Q* if rank Q*(S*, A*) = r.

That is, there are 7 states in the set S* such that Q* (s, A*), s € S* are linearly independent. In other
words, S* contains states with sufficiently diverse performance on actions .A*. Likewise, a similar
interpretation holds for A* if we look at the columns of Q*(S¥, A).

Indeed, S* and A" will be used to construct our exploration sets and we want them to have small size.
Finding only a few diverse states and actions is arguably easy in practice — in fact, for stochastic
control tasks experimented in Section 6, we simply pick a few states and actions that are far from each
other in their respective metric. We remark that assuming some “anchor” elements (i.e., elements
having some special, relevant properties) is common in feature-based reinforcement learning [48, 17]
or matrix factorization such as topic modeling [2].

Matrix Estimation Algorithm. We select anchor states S* C S, anchor actions A* C A and fix
them throughout all iterations 1 < ¢ < T'. As before, we select appropriate 3 ) _nets S® and A®
and augment them with the anchor states and actions: S®) « S®) U &% and A®) « A® U A%, For
iteration 1 <t < T, we let Q) = {(s,a) € SO x A®) : s € S or a € A"} be the exploration set.

Given Q) (s, a) for (s, a) € Q®), our ME method produces estimates for all (s,a) € S® x A® as
QY (s,0) = QU (s, 49 [QV(S*, A49] ' QW (8%, 0) ®)

where X T denotes the Moore-Penrose pseudoinverse of the mat_rix X. V&iith the choice gf R, = R, =
7 (or a constant multiple of ) , the size of Q") is at most r (|S®| + |A®)| — r) < [S®||AD).

Satisfaction of Assumption 1. For given matrix X € R"™*" we denote by o;(X) its i-th largest
singular value, i.e., 01 (X) > 02(X) > --- > Tmin(m,n) (X) > 0. We state the following guarantee,
which verifies that the matrix estimation algorithm described above satisfies Assumption 1.



Proposition 5 (Simplified version of Proposition 10). Let Q) and Q") as described above and let
|St| = |Af| = r. Forany e < %0,, (Q*(Sn,Aﬁ)), ffmax(s q)com ‘Q(t)(s,a) —Q*(s, a)| < ¢, then

(1) — O* < -S4t
(s,a)erg(at?x.A(t) ‘Q (S7a) Q (S’a)‘ - C(?“, ’ )6

where c(r; S¥, A¥) = (Gﬂ(m) +2(1+ ﬁ)(mf) Vinax-

Proposition 5 implies when Q* has rank r, our ME method satisfies (r, c(r; St, Aﬁ))—property for
€< %UT (Q* (St Aﬁ)). Hence, we obtain Theorem 11 (Appendix E.2) as a corollary of Theorem 2.
That is, we obtain the desired convergence and sample complexity O(Ed% -log %) to achieve € error

with the output Q™). Our algorithm and analysis also apply to low-rank Q* over discrete spaces. We
summarize results for (1) continuous S and finite A; (2) finite S and A in Appendix E.3.

5.3 Matrix Estimation for Q)* with Approximate Rank r (Appendix F)

In practice, it may not be feasible to hope for exact low-rank structure. Hence, it is desirable to seek
methods that are reasonably robust to approximation error. We show that our ME method has such an
appealing property. Here, we provide a concise summary with full details deferred to Appendix F.

Given 7 > 0 as a parameter, let ) denote the best rank-r approximation of Q* (cf. Theorem
1). Denote by ¢, = Sup(, 4)esx.a |Qs(s,a) — Q*(s,a)| the model bias due to approximation.
We generalize the notion of anchor states and actions to r-anchor states and actions: we call S*
and A* to be r-anchor states and actions if rank Q;(S¥, A*) = r. Let cyppx(7; S, A*) denote a
constant defined in the same way as c(r; S¥, A*) in Proposition 5, with o, (Q*(S*, A¥)) replaced
by o, (Q(S*%, A*)). We apply the same ME algorithm described in Section 5.2 with S*, A* being
r-anchor states/actions. Theoretically, we guarantee that when the model bias (,. is sufficiently small,
we obtain convergence and sample complexity results similar to the exact rank-r setting with an

1+'Ycapr(T§SnvAn)
> 1—ycappx (1;SE,AF)
Theorem 6 (Informal Statement of Theorem 16). Consider the approximate rank-r setting. Suppose
v < m and let § € (0,1). Under certain regularity conditions on Q' and (., we have: for

additive error (», induced by the approximation bias.

any € > 0, with T = ©(log %) and O(ec{% -log %) number of samples, we obtain estimate such that

1+ Yeappa(r; S*, A
P sup QM) (s,a) — Q*(s,a)| < e+ Pr
<(s,a)€$><.A| ( ) ( )| 1 _Vcappx(r;sumAﬁ)

)zma

6 Empirical Evaluation

Besides theory, we empirically validate the effectiveness of our method on 5 continuous control tasks.
The detailed setup can be found in Appendix H. In short, we first discretize the spaces into very fine
grid and run standard value iteration to obtain a proxy of Q*. The proxy has a very small approximate
rank in all tasks; we hence use » = 10 for our experiments. As mentioned, we simply select r states
and r actions that are far from each other in their respective spaces as our anchor states and actions.
For example, if the space is 2-dimensional, we uniformly divide it into r squares and sample one
from each square. Because of unavoidable discretization error, we also provide results on mean error,
which might be a more reasonable measure in practice. While our proof requires small v, we find the
method to be generally applicable with large ~ in real tasks. Therefore, we use v = 0.9 in all the
tasks. Additional results on this aspect as well as results on all 5 tasks are provided in Appendix 1.

Improved Sample Complexity with ME. First, we confirm that the sample complexity of our
algorithm improves with the use of ME. Our baseline algorithm refers to the same algorithm described
in Section 3, but without the ME step (Step 3); i.e., we explore and update all (s,a) € SO x AWM,
which is equivalent to performing a simulated value iteration on the entire discretized set (a.k.a. the
synchronous model for Q learning). We illustrate the sample complexity for achieving different levels
of £, error (Figure 2(a)) and mean error (Figure 2(b)). It is clear from the plots that our algorithm
uses significantly less samples to achieve error at a similar level to the baseline. This evidences that
exploiting structure leads to improved efficiency. The same conclusion holds for the other tasks.
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Figure 2: Empirical results on the Inverted Pendulum control task. In (a) and (b), we show the improved sample
complexity for achieving different levels of /., error and mean error, respectively. In (c) and (d), we compare
the / error and the mean error for various ME methods. Results are averaged across 5 runs for each method.

Error Guarantees. Next, we compare our ME method with other popular ME methods to validate its
performance. While theoretically insufficient for RL applications, some established ME methods [8,
10, 27] work well in practice. We compare the methods by feeding the same number of samples of
size O(max{S¥, A®}). As in Figure 2(c) & 2(d), our method displays a competitive performance,
both in /., & mean errors. Also, we note that our simple, but powerful method is computationally
much more efficient, compared to other methods based on optimization, etc. It can be 40x faster
than nuclear norm minimization, cf. Table 4 in Appendix 1.6. Overall, these results emphasize the
practical value of our method beyond its theoretical soundness. Lastly, we remark other ME methods
also show promise in our experiments; it is certainly a valuable open question to harmonize the
established ME methods with low-rank RL.

Resulting Policy. As a final proof of concept, we observe that the eventual performance of the policy
obtained from the output Q(7) is very close to the policy obtained from Q* (cf. plots in Appendix I).
We summarize the results for standard performance metrics used in Table 3 . Obviously, our efficient
method exhibits very competitive performance.

Table 3: Performance metric for different stochastic control tasks using different ME methods. A.D. stands for
angular deviation, T.G. stands for time-to-goal; for both metrics, the smaller the better.

Method Optimal USVT [10]  Soft-Impute [27]  Nuclear Norm [8] Ours
Inverted Pendulum (A.D.) 1.6 0 22.5 +25 53+ 31+3 34+7
Mountain Car (T.G.) 750+ 3 358.8 £50 168.4 + 8.1 924 +238 91.8 +72
Double Integrator (T.G.) 199.5 + 1 200.0 + 4 199.9 + 3 199.6 + 2 199.7 + 4
Cart-Pole (A.D.) 10.1 £ 0 19.2 +10 104 + .1 10.2 +.1 102 + 2
Acrobot (A.D.) 24 +0 28.8 +43 9.1 +12 51+38 6.2 +1.0

7 Conclusion

We provide an efficient RL framework for continuous state and action spaces via proposing a new
low-rank perspective. With a novel ME method in the RL context, we demonstrate that our low-rank
approach is both theoretically and practically appealing in designing sample efficient methods.

We remark that there remain several interesting open questions. First of all, we believe it is possible
to refine the error analysis in this work to achieve a stronger theoretical guarantee. For example, the
condition vy < c— for convergence in Theorem 2 is probably an artifact of our decoupled analysis
and is possibly removable. Perhaps, devising better ME methods for the purpose of RL can be a
solution to lift the restriction on the range of 7, which is an interesting problem on its own. Also,
we conjecture that our “sample and pseudo-explore (via ME)” scheme is more broadly applicable
beyond the generative setup considered in this work, e.g., to the online setup. The most prominent
challenge anticipated in online setup is that we are no longer able to sample “any” state-action pair
freely and adaptively; the sampling needs to respect the exploration policy. This difficulty may be
overcome with a more refined ME method, with ad-hoc techniques.

Overall, we believe this work can serve as a starting point for fruitful future research along the
promising direction of low-rank RL.



Broader Impact

As reinforcement learning becomes increasingly popular in practice and the problem dimension
grows, there is a soaring demand for data-efficient learning algorithms. Through the lens of low-rank
representation of so-called (Q-function, this work proposes a theoretical framework to devise efficient
RL algorithms. The resulting “low-rank™ algorithm, which utilizes a novel matrix estimation method,
offers both strong theoretical guarantees and appealing empirical performance.

In particular, the novel “low-rank” perspective about RL provides an effective tool to tackle RL
problems with both state and action spaces continuous, which have received much less attention
despite their practical significance. We believe that this work serves as an important step towards
provable efficient RL for continuous problems. The theoretical insights in this work can motivate
further research in both efficient RL and ME, while the empirical results should be beneficial more
broadly for practitioners working in continuous controls.
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