Appendix

A Poison crafting curves

Our poisons in the main paper were all crafted with 60 outer steps, also called craft steps. Here we
investigate the outer optimization process in more depth and show the potential benefits of optimizing
longer. As a testbed, we consider poison frogs attacking a target airplane with a poison budget of 10%.
During the crafting stage, the adversarial loss—we use the (Carlini and Wagner| [2017]] loss here—is
the objective to be minimized. This loss has the property that when it is less than zero, the target is
successfully misclassified as the adversarial class. Conversely, when it is greater than zero, the target
is classified into a class other than the adversarial class.
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Figure 1: Ablation study on the number of craftsteps. (Top) The crafting adversarial loss (blue line), which is
averaged across all 24 models in the ensemble, is the objective to be minimized in the outer loop of the bi-level
optimization problem. We save the state of the poisons at every several craftsteps, fully train 20 victim models
from scratch on each of those poisons, and plot the average adversarial loss on the target across those victim
models (orange line). (Bottom) Attack success rate across the 20 victim models for each craft step.

The blue line in Figure [T (top) shows the adversarial loss averaged over all the surrogate models
during the crafting stage. It rapidly decreases up to craftstep 25 and then plateaus. It never sinks
below zero, which means that inserting these poisons into a minibatch will not cause the model to
misclassify the target two look-ahead SGD steps later, on average. However, it belies the fact that
the cumulative effect of the poisons will collectively influence the model to misclassify the target
after many SGD steps. Indeed, the fact that the adversarial loss (blue line) is decreased after 25 craft
steps from ~9 to ~4 is an indication that the poisons provide a small nudge to the model toward
misclassifying the target even after two look-ahead SGD steps, as compared to having no poisons.

The orange line in Figure[T](top) shows the adversarial loss on the target image on poisoned victim
models at each stage of crafting. To obtain this curve, we saved the state of the poisons every several
craft steps, and trained 20 victim models from scratch on each of them. Interestingly, even though the
crafting adversarial loss (blue line) plateaus, the effectiveness of the poisons continues to increase
with the number of craft steps even up to 200 steps. Therefore, one cannot judge from the crafting
curve alone how well the poisons will do during victim evaluation. Finally, Figure|[T] (bottom) shows
the corresponding attack success rate for the poisons at each craft step.



B Victim training curves

In the main paper, we reported the attack success rates and validation accuracy at the end of victim
training. In this section, we take a closer look at the effect of data poisoning at each step of training.

We again use the dog-bird class pair as our prototypical example and we randomly select target bird
with ID 5. We train ResNet20 models with 3 different poisoning levels: unpoisoned, poisoned with
0.5% budget, and poisoned with 5% budget. Since the training of each victim model is inherently
stochastic and we desire to see the overall effect of poisoning, we train 72 victim models with different
seeds for each of these 3 poisoning levels. Figure 2] displays all 72 curves for each poisoning level.
The training accuracy curves, in Figure 2] (top), show the models quickly overfitting to the CIFAR10
dataset after about 20k optimization steps, or 50 epochs. The rate of convergence is equal for all 3
poisoning levels. Likewise, the validation accuracy curves, Figure 2] (middle), converge to about 80%
after 20k steps and are also indistinguishable between poisoning levels. These curves show that it is
impossible to detect the presence of poisoning through looking at training or validation curves.
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Figure 2: Training curves from scratch with different random seeds on poisoned and unpoisoned datasets
over 200 epochs on ResNet20. (Top) Accuracy on training set perfectly overfits to CIFAR-10 after about 20k
optimization steps, or 50 epochs. (Middle) Validation accuracy curve looks the same regardless of whether the
dataset is poisoned or not. (Bottom) Carlini-Wagner (CW) adversarial loss on specific target bird (ID 5) as a
function of optimization step. CW loss above zero indicates the target bird is classified correctly, while below
zero indicates the target bird is misclassified as a dog. Unpoisoned models have adversarial loss entirely above
zero, while 5% poisoned models have adversarial loss entirely below zero. 0.5% poisoned models have CW loss
straddling both sides of zero.

Next, we look at the evolution of the adversarial loss, or [Carlini and Wagner] [2017] loss, over
optimization step in Figure [2] (bottom). Recall that in the [Carlini and Wagner [2017] loss, negative
values correspond to attack success while positive values correspond to attack failure. Note also that,
under almost all practical scenarios, the victim does not see this curve since they are unaware of the
target image chosen by the adversary.

At the start, epoch 0, the adversarial loss of all models are at roughly the same level. As training
proceeds, the adversarial loss trifurcates into 3 distinct levels corresponding to the 3 poisoning
levels. The unpoisoned models see increasing adversarial loss up to fully positive values (perfect
attack failure) of around 12 before they plateau, while the high 5% poisoned models see decreasing
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Figure 3: Success rates for all possible poison-target class pairs. Each success rate is the average of the first 5
unique targets with 2 victim training runs per unique target.

adversarial loss down to mostly negative values (near-perfect attack success) of around —6 before
plateauing. The moderate 0.5% poisoned models see slight decrease in adversarial loss and hover
around zero (some attack success) for the remainder of training. Compared to the training and
validation curves, these adversarial loss curves fluctuate a lot both between optimization steps as
well as between models. This is expected since they are the loss of a single image rather than an
aggregate of images. Despite the fluctuation, however, the effect of different poisoning levels on the
attack outcome is very clear.

C Performance on other poison-target class pairs

In the main paper, we primarily mimicked the two exemplary poison-target class pairs (dog-bird,
frog-airplane) from previous work in [Shafahi et al.|[2018]]. To ensure that our results do not just
happen to work well on these two pairs but rather works well for all class pairs, we perform a large
study on all 100 possible poison-target pairs in CIFAR-10, shown in Figure 3]

For each pair, we craft with a poison budget of 10%, target the first 5 target IDs for that particular
target class, and run 2 victim trainings from scratch for each pair, allowing the reported success rate
to result from the average of 10 victim models. To enable such a large study within our computational
runtime constraints, we use only 10% of the CIFAR-10 dataset as our training set. This is justified
since we are interested here in the relative performance of different class pairs with respect to our
exemplary class pairs (dog-bird, frog-airplane) on which we did full CIFAR-10 studies in the main

paper.

The results show that poisoning can be successful under all class pair situations. Our exemplary pairs,
dog-bird and frog-airplane, have average poisoning vulnerability relative to all the other pairs, with
the dog-bird slightly more vulnerable than frog-airplane. The most difficult target class on which to
cause misclassification is truck, while the most easy is frog. The least powerful poison class is truck,
while the most powerful is tied between car, cat, deer, frog, and horse. The high success rates along
the diagonal trivially indicate that it is easy to cause the target to be classified into the correct class.

D Differences in success rates amongst different targets

It is also informative to see how the success rate varies amongst different choices of the target image
for a fixed target class. Even though the target class is the same, different images within that class
may have very different features, making it harder or easier for the poisons to compromise them.
In Figure ] we plot the attack success rates for the first 20 unique target airplanes when attacked
by poison frogs. Each success rate is the result of 20 victim training runs. Indeed, the success rate
is highly variable amongst different target images, indicating that the poisoning success is more
dependent on the specific target image that the adversary wishes to attack rather than the choice of
poison-target class pair.



Figure 4: Success rates for the rst 20 unique target airplanes for a poison frog target airplane situation. Each
success rate is the average of 12 victim training runs.

Figure 5: Ablation study on surrogate ensemble size.

E Ablation study on ensemble size

Throughout the main paper, we have used an ensemble size of 24 surrogate models, reasoning that
ensembling of models at different epochs encourages the poisons to be effective for all network
initializations and training stages. Here, we perform an ablation study of poisoning success against
ensemble size in Figure 5. Poisons crafted without ensembling (ensemble size of 1) are ineffective,
while success rate trends upward as ensemble size increases. We also show empirically that our
ensemble size of 24 lies where success rate saturates, balancing poison success w/ computational
ef ciency.

F Ablation study on reinitialization

We substantiate the claim in the paper (§2.2) that network reinitialization of the surrogate models con-
tributes to making more effective poisons by running an ablation study where instead of reinitializing
the surrogate networks every sentinel number of epochs, we keep their original initialization xed
throughout the crafting process. Over 100 victim training runs, the average success rate of poisons
crafted via xed initialization was 51% while the baseline of reinitialization achieved 60%, showing
that reinitialization causes a modest but signi cant enhancement poisoning ef cacy. Poisons crafted
on xed initialization networks are less effective than their reinitialization counterparts.

G Indiscriminate and multi-targeted attacks

The paper focused poison attacks where the goal is to cause a single target instance to be misclassi ed
since it is a straightforward and realistic scenario. However there are situations where the attacker
may want to cause multiple targets to be misclassi ed, or take down the system by causing it to
misclassify indiscriminately. Here we evaluate MetaPoison's effectiveness on four attack variants
along the single-target spectrum/multi-target/indiscriminate spectrum, including 1. multiple (>10)
augmentations of the same target object, 2. multiple (5) distinct target objects, 3. indiscriminate for
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