
MetaPoison: Practical General-purpose Clean-label
Data Poisoning

W. Ronny Huang∗
University of Maryland

wronnyhuang@gmail.com

Jonas Geiping∗
University of Siegen

jonas.geiping@uni-siegen.de

Liam Fowl
University of Maryland
lfowl@math.umd.edu

Gavin Taylor
United States Naval Academy

taylor@usna.edu

Tom Goldstein
University of Maryland
tomg@cs.umd.edu

Abstract

Data poisoning—the process by which an attacker takes control of a model by
making imperceptible changes to a subset of the training data—is an emerging
threat in the context of neural networks. Existing attacks for data poisoning neural
networks have relied on hand-crafted heuristics, because solving the poisoning
problem directly via bilevel optimization is generally thought of as intractable for
deep models. We propose MetaPoison, a first-order method that approximates the
bilevel problem via meta-learning and crafts poisons that fool neural networks.
MetaPoison is effective: it outperforms previous clean-label poisoning methods by
a large margin. MetaPoison is robust: poisoned data made for one model transfer
to a variety of victim models with unknown training settings and architectures.
MetaPoison is general-purpose, it works not only in fine-tuning scenarios, but
also for end-to-end training from scratch, which till now hasn’t been feasible for
clean-label attacks with deep nets. MetaPoison can achieve arbitrary adversary
goals—like using poisons of one class to make a target image don the label of
another arbitrarily chosen class. Finally, MetaPoison works in the real-world. We
demonstrate for the first time successful data poisoning of models trained on the
black-box Google Cloud AutoML API.

1 Introduction

Neural networks are susceptible to a range of security vulnerabilities that compromise their real-world
reliability. The bulk of work in recent years has focused on evasion attacks Szegedy et al. [2013],
Athalye et al. [2018], where an input is slightly modified at inference time to change a model’s
prediction. These methods rely on access to the inputs during inference, which is not always available
in practice. Another type of attack is that of backdoor attacks [Turner et al., 2019, Chen et al., 2017,
Saha et al., 2019]. Like evasion attacks, backdoor attacks require adversary access to model inputs
during inference; notably backdoor “triggers” need to be inserted into the training data and then later
into the input at inference time. Unlike evasion and backdoor attacks, data poisoning does not require
attacker control of model inputs at inference time. Here the attacker controls the model by adding
manipulated images to the training set. These malicious images can be inserted into the training set
by placing them on the web (social media, multimedia posting services, collaborative-editing forums,
Wikipedia) and waiting for them to be scraped by dataset harvesting bots. They can also be added to
the training set by a malicious insider who is trying to avoid detection. A data corpus can also be
compromised when arbitrary users may contribute data, such as face images for a recognition and
re-identification system.

∗Authors contributed equally.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Data poisoning attacks have been explored for classical scenarios [Biggio et al., 2012, Steinhardt
et al., 2017, Burkard and Lagesse, 2017] which allow both training inputs and labels to be modified.
However, it is possible to make poison perturbations imperceptible to a human observer, as they are
in evasion attacks. Attacks of this type, schematic in Figure 1, are often referred to as clean-label
poisoning attacks [Koh and Liang, 2017, Shafahi et al., 2018] because poison images appear to be
unmodified and labeled correctly. The perturbed images often affect classifier behavior on a specific
target instance that comes along after a system is deployed, without affecting behavior on other inputs,
making clean-label attacks insidiously hard to detect.

Training Validation Testing

Birds Dog

Add 1% poisoned images
Validation behavior

is unchanged.

The target is misclassified!

Figure 1: The attacker’s goal is to classify some bird
image (here: the parrot) as a dog. To do so, a small
fraction of the training data is imperceptibly modified
before training. The network is then trained from scratch
with this modified dataset. After training, validation
performance is normal (eagle, owl, lovebird). However,
the minor modifications to the training set cause the
(unaltered) target image (parrot) to be misclassified by
the neural network as “dog” with high confidence.

Data poisoning has been posed as a bilevel op-
timization problem [Biggio et al., 2012, Bennett
et al., 2008], with the higher-level objective of
minimizing adversarial loss on target images de-
pending on the lower-level objective of minimiz-
ing training loss on poisoned data. This formula-
tion is used to generate poisoned data for SVMs
[Biggio et al., 2012], logistic regression [Demon-
tis et al., 2019] or linear regression [Jagielski
et al., 2018]. However, solving the bilevel opti-
mization problem requires differentiation w.r.t to
the minimizer of the lower-level problem. This
is intractable for deep neural networks, due to
their inherent complexity and reliance on large
datasets. Muñoz-González et al. [2017] and Mei
and Zhu [2015] apply back-gradient optimiza-
tion to differentiate by unrolling effectively the
entire training objective, yet while this attack
compromises simple learning models, it does

not work for deep neural networks, leading Muñoz-González et al. [2017] to conclude neural net-
works to “be more resilient against [...] poisoning attacks”, compared to other learning algorithms.

Due to these limitations of classical strategies, heuristic approaches, such as Feature Collision (FC),
are currently the dominant approach to clean-label poisoning [Shafahi et al., 2018, Zhu et al., 2019].
Perturbations are used to modify a training image (e.g., a tree) so that its feature representation is
nearly identical to that of a chosen target image (e.g., a stop sign). After the victim fine tunes their
model on the poisoned image, the model cannot distinguish between the poison and target image,
causing it to misclassify the stop sign as a tree. FC is a heuristic with limited applicability; the attacker
must have knowledge of the feature extractor being used, and the feature extractor cannot substantially
change after the poison is introduced. For this reason, FC attacks only work on fine-tuning and
transfer learning pipelines, and fail when the victim trains their model from scratch. Also, FC is not
general-purpose—an attacker could have objectives beyond causing a single target instance to be
misclassified with the label of the poison.

Our contributions are fivefold. First, we re-evaluate bilevel optimization for data poisoning of deep
neural networks and discover a key algorithm, henceforth called MetaPoison, that allows for an
effective approximation of the bilevel objective. Second, in contrast to previous approaches based
on bilevel optimization, we outperform FC methods by a large margin in the established setting
where a victim fine-tunes a pre-trained model. Third, we demonstrate, for the first time, successful
clean-label poisoning in the challenging context where the victim trains deep neural nets from scratch
using random initializations. Fourth, we show that MetaPoison can enable alternative, never-before-
demonstrated poisoning schemes. Fifth, we verify MetaPoison’s practicality in the real world by
successfully poisoning models on the black-box Google Cloud AutoML API platform.

End-to-end code as well as pre-crafted poisons are available at https://www.github.com/
wronnyhuang/metapoison. We encourage the reader to download, train, and evaluate our poisoned
CIFAR-10 dataset on their own CIFAR-10 training pipeline to verify MetaPoison’s effectiveness.
Note finally that MetaPoison can also be used for non-nefarious purposes, such as copyright enforce-
ment. For example, it can “watermark” copyrighted data with diverse, undetectable perturbations.
The model can then be queried with the target (known only to copyright holder) to determine whether
the copyrighted data was used to train the model.

2

https://www.github.com/wronnyhuang/metapoison
https://www.github.com/wronnyhuang/metapoison

2 Method
2.1 Poisoning as constrained bilevel optimization
Suppose an attacker wishes to force an unaltered target image xt of their choice to be assigned
an incorrect, adversarial label yadv by the victim model. The attacker can add n poison images
Xp ∈ [0, 255]n×m, where m is the number of pixels, to the victim’s clean training set Xc. The
optimal poison images X∗p can be written as the solution to the following optimization problem:

X∗p = argmin
Xp

Ladv(xt, yadv; θ
∗(Xp)), (1)

where in general L(x, y; θ) is a loss function measuring how accurately a model with weights θ
assigns label y to input x. For Ladv we use the Carlini and Wagner [2017] f6 function and call it the
adversarial loss. θ∗(Xp) are the network weights found by training on the poisoned training data
Xc ∪Xp, which contain the poison images Xp mixed in with mostly clean data Xc ∈ [0, 255]N×m,
where N � n. Note that (1) is a bi-level optimization problem [Bard, 2013] – the minimization for
Xp involves the weights θ∗(Xp), which are themselves the minimizer of the training problem,

θ∗(Xp) = argmin
θ

Ltrain(Xc ∪Xp, Y ; θ), (2)

where Ltrain is the standard cross entropy loss, and Y ∈ ZN+n contains the correct labels of the clean
and poison images. Thus, (1) and (2) together elucidate the high level formulation for crafting poison
images: find Xp such that the adversarial loss Ladv(xt, yadv; θ

∗(Xp)) is minimized after training.

For the attack to be inconspicuous, each poison example xp should be constrained to “look similar” to
a natural base example x. A number of perceptually aligned perturbation models have been proposed
[Engstrom et al., 2019, Wong et al., 2019, Ghiasi et al., 2020]. We chose the ReColorAdv perturbation
function of Laidlaw and Feizi [2019], which applies a function fg , with parameters g, and an additive
perturbation map δ, resulting in a poison image xp = fg(x) + δ. The function fg(x) is a pixel-wise
color remapping fg : C → C where C is the 3-dimensional LUV color space. To ensure that the
perturbation is minimal, fg can be bounded such that for every pixel xi, ‖fg(xi) − xi‖∞ < εc,
and δ can be bounded such that ‖δ‖∞ < ε. We use the standard additive bound of ε = 8 and a
tighter-than-standard color bound of εc = 0.04 to further obscure the perturbation (Laidlaw and Feizi
[2019] used εc = 0.06). To enforce these bounds, we optimize for Xp with PGD [Madry et al., 2017],
projecting the outer-parameters g and δ back to their respective εc and ε balls after every gradient
step. Example poisons along with their clean counterparts used in this work are shown later in Figure
4 (top left).

2.2 Strategy for crafting effective poisoning examples
Minimizing the full bi-level objective in (1)-(2) is intractable. We can, however, approximate the inner
objective (the training pipeline) by training only K SGD steps for each outer objective evaluation.
This allows us to “look ahead” in training and view how perturbations to poisons now will impact the
adversarial loss K steps later. For example, the process of unrolling two inner-level SGD steps to
compute an outer-level update on the poisons would be

θ1 = θ0 − α∇θLtrain(Xc ∪Xp, Y ; θ0)

θ2 = θ1 − α∇θLtrain(Xc ∪Xp, Y ; θ1)

Xi+1
p = Xi

p − β∇XpLadv(xt, yadv; θ2), (3)

where α and β are the learning rate and crafting rate, respectively. K-step methods have been found
to have exponentially decreasing approximation error [Shaban et al., 2019] and generalization benefits
[Franceschi et al., 2018].

Poisons optimized this way should cause the adversarial loss Ladv to drop after K additional SGD
steps. Ideally, this should happen regardless of where the poisons are inserted along the network
trajectory, as illustrated in Figure 2 (left). Our approach, discussed in the next two paragraphs,
encourages the poisons to have this property. When inserted into the training set of a victim model,
the poisons should implicitly “steer” the weights toward regions of low Ladv whilst the learner drives
the weights toward low training loss Ltrain. When poisoning is successful, the victim should end up
with a weight vector that achieves both low Ladv and Ltrain despite having only explicitly trained for
low Ltrain, as shown in Figure 2 (right).

3

Lo
w
ℒ "
#$
%&

Low ℒ$'(

𝜃*
+ 𝜃*

+,-
𝜃*
+.-

⋯

𝜃*∗⋯
𝜃** ⋯ ⋯ ⋯

𝜃-
+

𝜃1
+

𝜃2
+

⋯⋯

Lo
w
ℒ "
#$
%&

Low ℒ$'(

𝜃* 𝜃*+,𝜃*-, ⋯

𝜃∗⋯
𝜃0 ⋯

𝜃∗

⋯

with poison data

without poison data

Figure 2: MetaPoison in weight space. Gray arrows denote normal training trajectory with weights θj0 at the
j-th step. (Left) During the poison crafting stage, the computation graph consisting of the training pipeline is
unrolled by K SGD steps forward in order to compute the perturbation to the poisons∇XpLadv, starting from
various points along the trajectory. Optimally, those poisons will steer weights (brown arrows) toward regions of
low Ladv regardless of which training step θj0 the poisons are inserted into. (Right) When the victim trains on the
poisoned data (purple arrows), the weight trajectory is collectively and implicitly steered to regions of low Ladv
whilst the learner explicitly drives the weights to regions of low Ltrain.

Algorithm 1 Craft poison examples via MetaPoison

1: Input Training set of images and labels (X,Y) of size
N , target image xt, adversarial class yadv, ε and εc
thresholds, n� N subset of images to be poisoned, T
range of training epochs, M randomly initialized mod-
els.

2: Begin
3: Stagger the M models, training the mth model weights
θm up to bmT/Mc epochs

4: Select n images from the training set to be poisoned,
denoted by Xp. Remaining clean images denoted Xc

5: For i = 1, . . . , C crafting steps:
6: For m = 1, . . . ,M models:
7: Copy θ̃ = θm
8: For k = 1, . . . ,K unroll stepsa:
9: θ̃ = θ̃ − α∇θ̃Ltrain(Xc ∪Xp, Y ; θ̃)

10: Store adversarial loss Lm = Ladv(xt, yadv; θ̃)
11: Advance epoch θm=θm−α∇θmLtrain(X,Y ; θm)
12: If θm is at epoch T + 1:
13: Reset θm to epoch 0 and reinitialize
14: Average adversarial losses Ladv =

∑M
m=1 Lm/M

15: Compute∇XpLadv

16: Update Xp using Adam and project onto ε, εc ball
17: Return Xp

aFor brevity, we write as if unrolled SGD steps are taken
using the full dataset. In practice they are taken on
minibatches and repeated until the full dataset is flushed
once through. The two are effectively equivalent.

The idea of unrolling the training pipeline
to solve an outer optimization problem has
been successfully applied to meta-learning
[Finn et al., 2017], hyperparameter search
[Maclaurin et al., 2015, Domke, 2012], ar-
chitecture search [Liu et al., 2018], and poi-
soning of shallow models [Muñoz-González
et al., 2017]. However, unique challenges
arise when using this method for robust data
poisoning of deep models. First, the training
process depends on weight initialization and
minibatching order, which are determined at
random and unknown to the attacker. This is
in contrast to meta-learning, hyperparameter
search, and architecture search, where the
same agent has purview into both the inner
(training their own networks) and outer pro-
cesses. Second, we find that using a single
surrogate network to craft poisons causes
those poisons to overfit to the weights of
that network at that epoch, while failing to
steer new, randomly initialized weights to-
ward low Ladv. In other words, data poison-
ing demands less a solution that perfectly
solves the bilevel problem (1) for one model
than one that generalizes to new networks
with different initializations and at different
epochs.

We address the problem of generalization via ensembling and network re-initialization. Poisons are
crafted using an ensemble of partially trained surrogate models staggered by epoch. The update to
the poisons has the form,

Xi+1
p = Xi

p −
β

Nepoch
∇Xp

Nepoch∑
j=0

Ladv

∣∣∣
θj
, (4)

where Ladv|θj is the adversarial loss after a few look-ahead SGD steps on the poisoned dataset starting
from weights θj from the j-th epoch. The update gradient,∇Xp

Ladv, was explicitly written out in (3)
for one model, where the starting weight here θj here corresponds to θ0 in (3). The summation in (4)
averages the adversarial loss over the ensemble, where each model in the ensemble is at a different
epoch denoted by θj . This forces the poisons to be effective when inserted into a minibatch at any
stage of training. Between each poison update, the set of weight vectors {θj} are vanilla-trained for a
single epoch; once a model has trained for a sentinel number of epochs, it is randomly re-initialized
back to epoch 0. This forces the poisons to adapt to diverse network initializations. The entire process
is outlined in Algorithm 1.

Based on our experimental settings (§3), MetaPoison takes 2 (unrolling steps) × 2 (backprop thru
unrolled steps) × 60 (outer steps) × 24 (ensemble size) = 5760 forward+backward propagations per

4

poison. In contrast Shafahi et al. [2018] reports 12000 forward+backward props. Thus MetaPoison
has similar cost if we discount the one-time pretraining of the surrogate models. Crafting 500 poisons
for 60 steps on CIFAR-10 takes about 6 GPU-hours and can be shortened to 5 GPU-hours by loading
pretrained surrogate model checkpoints.

It is worth discussing why this strategy of crafting poisons is effective. In contrast to previous works
we significantly alter the gradient estimation for the inner-level objective. First, we make K (the
number of unrolled steps) small—we choose K = 2 for all examples in this work, whereas K is
chosen within 60− 200 for deep networks in Muñoz-González et al. [2017] and whereas the entire
algorithm is unrolled in Maclaurin et al. [2015], Domke [2012], Mei and Zhu [2015], corresponding
to K ≈ 105 in our setting. This choice is supported by Shaban et al. [2019], which proved that under
mild conditions, the approximation error of few K step evaluations decreases exponentially, and by
Maclaurin et al. [2015], which discussed that due to the ill-posedness of the gradient operator, even
for convex problems, the numerical error increases with each step. Both taken together imply that
most of the gradient can be well approximated within the first steps, whereas later steps, especially
with the limited precision, possibly distort the gradient. Another consideration is generalization.
In comparison to (1), the full bilevel objective for an unknown victim model trained from-scratch
contains two additional sources of randomness, the random initialization of the network and the
random stochastic gradient descent (SGD) direction over prior steps. So, for practical success,
we need to reliably estimate gradients of this probabilistic objective. Intuitively, and shown in
[Franceschi et al., 2018, Sec. 5.1], the exact computation of the bilevel gradient for a single arbitrary
initialization and SGD step leads to overfitting, yet keeping K small acts as an implicit regularizer
for generalization. Likewise, both reinitializing the staggered models and ensembling a variety of
such models are key factors that allow for a reliable estimate of the full train-from-scratch objective,
which we can view as expectation value over model initialization and SGD paths. The appendix
substantiates via ablation studies the importance or viability of small K (§I), ensembling (§E), and
network reinitialization (§F).

3 Experiments

Our experiments on CIFAR-10 consist of two stages: poison crafting and victim evaluation. In the
first stage, we craft poisons on surrogate models and save them for evaluation. In the second stage,
we insert the poisons into the victim dataset, train the victim model from scratch on this dataset, and
report the attack success and validation accuracy. We declare an attack successful only if the target
instance xt is classified as the adversarial class yadv; it doesn’t count if the target is classified into
any other class, incorrect or not. The attack success rate is defined as the number of successes over
the number of attacks attempted. Unless stated otherwise, our experimental settings are as follows.
The first n examples in the poisons’ class are used as the base images in the poison set Xp and are
perturbed, while the remaining images in CIFAR-10 are used as the clean set Xc and are untouched.
The target image is taken from the CIFAR-10 test set. We perform 60 outer steps when crafting
poisons using the Adam optimizer with an initial learning rate of 200. We decay the outer learning
rate (i.e. crafting rate) by 10x every 20 steps. Each inner learner is unrolled by K = 2 SGD steps. An
ensemble of 24 inner models is used, with model i trained until the i-th epoch. A batchsize of 125 and
learning rate of 0.1 are used. We leave weight decay and data augmentation off by default, but analyze
performance with them on in §3.3. By default, we use the same 6-layer ConvNet architecture with
batch normalization as Finn et al. [2017], henceforth called ConvNetBN, but other architectures are
demonstrated throughout the paper too. Outside of §3.3, the same hyperparameters and architectures
are used for victim evaluation. We train each victim to 200 epochs, decaying the learning rate by
10x at epochs 100 and 150. The appendix contains ablation studies against the number of outer steps
(§A), K (§I), perturbation (both ε and εc) magnitude (§H), poison-target class pair (§C), and target
image ID (§D).

3.1 Comparison to previous work

Previous works on clean-label poisoning from Koh and Liang [2017], Shafahi et al. [2018], and Zhu
et al. [2019] attack models that are pre-trained on a clean/standard dataset and then fine-tuned on
a poisoned dataset. We compare MetaPoison to Shafahi et al. [2018], who crafted poisons using
feature collisions in a white-box setting where the attacker has knowledge of the pretrained CIFAR-10
AlexNet-like classifier weights. They assume the victim fine-tunes using the entire CIFAR-10 dataset.

5

0.0

0.5

1.0

at
ta

ck
 su

cc
es

s r
at

e Watermark
ON

SHN18: dog-bird
SHN18: frog-airplane

Ours: dog-bird
Ours: frog-airplane

0 10 20 30 40 50 60 70
poison budget (#)

0.0

0.5

1.0

at
ta

ck
 su

cc
es

s r
at

e Watermark
OFF

SHN18: dog-bird
SHN18: frog-airplane

Ours: frog-airplane

Ours: dog-bird

0

10

20

30

di
st

 a
lo

ng
 o

rth
on

or
m

al

target class poison class
feature space BEFORE fine-tuning

poisons
target

40 30 20 10 0 10 20 30
distance along centroids

0

20

40

di
st

 a
lo

ng
 o

rth
on

or
m

al target class poison class
feature space AFTER fine-tuning

Figure 3: Comparison with Shafahi et al. [2018]
(SHN18) under the same fine-tuning conditions.
(Top) Success rates for a watermark-trick opacity
of 30% or 0%. (Bottom) Penultimate-layer feature
representation visualization of the target and poison
class examples before and after fine-tuning on the
poisoned dataset.

Critical to their success was the “watermark trick”:
they superimpose a 30% opacity watermark of the
target image onto every poison image before crafting
applying their additive perturbation. For evaluation,
Shafahi et al. [2018] compared two poison-target
class pairs, frog-airplane and dog-bird, and ran poi-
soning attacks on 30 randomly selected target in-
stances for each class pair. They also varied the num-
ber of poisons. We replicate this scenario as closely
as possible using poisons crafted via MetaPoison.
Since the perturbation model in Shafahi et al. [2018]
was additive only (no ReColorAdv), we set εc = 0 in
MetaPoison. To apply MetaPoison in the fine-tuning
setting, we first pretrain a network to 100 epochs
and use this fixed network to initialize weights when
crafting poisons or running victim evaluations. Our
comparison results are presented in Figure 3 (top).
Notably, 100% attack success is reached at about 25
poisons out of 50000 total training examples, or a
poison budget of only 0.05%. In general, MetaPoi-
son achieves much higher success rates at much
lower poison budgets as compared to the previous
method, showcasing the strength of its poisons to
alter victim behavior in the case of fine-tuning. Fur-
thermore, MetaPoison achieves success even with-
out the watermark trick while Shafahi et al.’s method
fails, consistent with their reported ablation study.

The fine-tuning scenario also provides a venue to
look closer into the mechanics of the attack. In the
feature collision attack [Shafahi et al., 2018], the
poisons are all crafted to share the same feature
representation as that of the target in the penultimate
layer of the network. When the features in the penultimate layer are visualized2, the poisons are
overlapped, or collided, with the target (Figure 3b in Shafahi et al.). We perform the same visualization
in Figure 3 (bottom) for a successful attack with 5 poisons using MetaPoison. Intriguingly, our
poisons do not collide with the target, implying that they employ some other mechanism to achieve
the same objective. They do not even reside in the target class distribution, which may render
neighborhood conformity tests such as Papernot and McDaniel [2018], Peri et al. [2019] less effective
as a defense. Figure 3 (bottom) also shows the feature representations after fine-tuning. The target
switches sides of the class boundary, and dons the incorrect poison label. These visualizations show
that MetaPoisons cause feature extraction layers to push the target in the direction of the poison
class without relying on feature collision-based mechanics. Indeed, the poisoning mechanisms of
MetaPoison are learned rather than hand-crafted; like adversarial examples, they likely do not lend
themselves to an easy human interpretation, making them difficult to detect. Appendix §M contains
analogous feature visualizations for poisoning in the train-from-scratch context, which we discuss
next.

3.2 Victim training from scratch

Usually fine-tuning datasets tend to be small, domain-specific, and well-curated; from a practical
perspective, it may be harder to inject poisons into them. On the other hand, large datasets on which
models are (pre)trained from scratch are often scraped from the web, making them easier to poison.
Thus, a general-purpose poisoning method that works on models trained from scratch would be
far more viable. Yet no prior clean-label poisoning attack has been demonstrated against networks

2Like Shafahi et al. [2018], we project the representations along the line connecting centroids of the two
classes (x-axis) and along the orthogonal component of the classification-layer parameter vector (y-axis). This
projection ensures that we are able to see activity at the boundaries between these two classes.

6

10 5 10 4 10 3 10 2 10 1

poison budget

0.0

0.2

0.4

0.6

0.8

1.0

at
ta

ck
 su

cc
es

s r
at

e

no
 p

ois
on

s
1

po
iso

n

ConvNetBN, dog-bird
ConvNetBN, frog-airplane
VGG13, dog-bird
VGG13, frog-airplane
ResNet20, dog-bird
ResNet20, frog-airplane

FC, ConvNetBN
FC, VGG13
FC, ResNet20

pla
ne car bir

d cat de
er do

g
fro

g
ho

rse shi
p

tru
ck

0
10
20
30
40
50
60

tim

es
 c

la
ss

ifi
ed

tru
e

cla
ss adver

sar
ial

cla
ss

Number of times out of 60 the target BIRD is classified as class X

unpoisoned
1% poisoned

10 5 10 4 10 3 10 2 10 1

poison budget

0.0

0.2

0.4

0.6

0.8

1.0

va
lid

at
io

n
ac

cu
ra

cy

ConvNetBN, dog-bird
ConvNetBN, frog-airplane
VGG13, dog-bird
VGG13, frog-airplane
ResNet20, dog-bird
ResNet20, frog-airplane

Figure 4: Poisoning end-to-end training from scratch. (Top left) Examples of poisoned training data. (Bottom
left) Tally of the classes into which target birds are classified over 60 victim models on ConvNetBN. 6 models
are trained with different random seeds for each of 10 target birds, totaling 60 victim models. (Top right) Attack
success rate vs poison budget for different architectures and poison-target class pairs. (Bottom right) Validation
accuracy of poisoned models.

trained from scratch. This is because existing feature collision-based poisoning [Shafahi et al., 2018,
Zhu et al., 2019] requires a pre-existing feature extractor on which to craft a feature collision.

In this section, we demonstrate the viability of MetaPoison against networks trained from scratch.
For consistency, we focus on the same dog-bird and frog-plane class pairs as in previous work. To
be thorough, however, we did a large study of all possible class pairs (appendix §C) and showed
that these two class pairs are representative in terms of poisoning performance. We also found that
even within the same poison-target class pair, different target images resulted in different poisoning
success rates (appendix §D). Therefore, for each class pair, we craft 10 sets of poisons targeting the
corresponding first 10 image IDs of the target class taken from the CIFAR-10 test set and aggregate
their results. Finally, different training runs have different results due to training stochasticity (see
appendix §B for training curves and §J for stability tests). Therefore, for each set of poisons, we
train 6 victim networks with different random seeds and record the target image’s label inferred
by each model. In all, there are 60 labels, or votes: 6 for each of 10 different target images. We
then tally up the votes for each class. For example, Figure 4 (lower left) shows the number of votes
each label receives for the target birds out of 60 models. In unpoisoned models, the true class (bird)
receives most of the votes. In models where just 1% of the dataset is poisoned, the target birds get
incorrectly voted as dog a majority of the time. Examples of some poison dogs along with their clean
counterparts, as well as one of the target birds, are shown in Figure 4 (top left). More in appendix §N.
Note that a poison budget of 0.001% is equivalent to zero poisons as the training set size is 50k. In
Figure 4 (top right), we repeat the experiments for multiple poison budgets and network architectures.
Success rates of 40-90% for a poison budget of 1% are obtained for all architectures and class pairs
we consider. ResNet20 achieves 72% success with a 1% budget on the dog-bird pair. The success
rates drop most between 1% and 0.1%, but remain viable even down to 0.01% budget. Remarkably,
even a single perturbed dog can occasionally poison ResNet20. We also attempt using poisons crafted
via feature collision (FC) for dog-bird. At 0% success across all budgets, the failure of FC to work in
train-from-scratch settings is elucidated. In Figure 4 (bottom right), we verify that our poisons cause
negligible effect on overall model performance except at 10% poison budget.

3.3 Robustness and transferability

So far our results have demonstrated that the crafted poisons transfer to new initializations and
training runs. Yet often the exact training settings and architecture used by the victim are also
different than the ones used to craft the poisons. We investigate the robustness of our poisons

7

to changes in these choices. In Figure 5 (top), we train victim models with different training
settings, like learning rate, batch size, and regularizers, on poisons crafted using ConvNetBN
with a single baseline setting (0.1 learning rate, 125 batch size, no regularization). With a poi-
son budget of 1%, poison dogs were crafted for 10 different target birds and 30 victim models
were trained per target. Our results show that the poisons are overall quite robust to changes.

95

Baseline
0.01 0.05 0.2

83 93 98

Learn. Rate
16 32 64 256

83 89 96 91

Batch Size

76

Data Aug.

94

Weight Dec.

Success rate for victims with different hyperparameters (%)

ConvNetBN ResNet20 VGG13
victim network

Co
nv

Ne
tB

N
Re

sN
et

20
VG

G1
3

cr
af

tin
g

ne
tw

or
k

90% 48% 87%

72% 72% 85%

56% 26% 49%

Architecture transferability

0.3

0.4

0.5

0.6

0.7

0.8

0.9

success rate

Figure 5: (Top) Success rate on a victim Con-
vNetBN with different training settings. (Bot-
tom) Success rate of poisons crafted on one
architecture and evaluated on another.

Data augmentation (standard CIFAR-10 procedure of ran-
dom crops and horizontal flips) and large changes in learn-
ing rate or batch size cause some, but not substantial degra-
dation in success. The robustness to data augmentation is
surprising; one could’ve conceived that the relatively large
changes by data augmentation would nullify the poisoning
effect.

Next we demonstrate architectural transferability in our
trained-from-scratch models. In Figure 5 (bottom), using
the same baseline experimental settings and poison bud-
get as above, we craft poisons on one architecture and
naively evaluate them on another. Despite ConvNetBN,
VGG13, and ResNet20 being very different architectures,
our poisons transfer between them. Interestingly the attack
success rate is non-symmetric. Poisons created on VGG13
do not work nearly as well on ResNet20 as ResNet20 poi-
sons on VGG13. One explanation for this is that VGG13
does not have batch normalization, which may have a reg-
ularizing effect on poison crafting. In practice, the attacker
can choose to craft on the strongest architecture at their dis-
posal, e.g. ResNet20 here, and enjoy high transferability,
e.g. > 70% here, to other architectures.

3.4 Poisoning Google Cloud AutoML API
We further evaluate the robustness of MetaPoison on the Google Cloud AutoML API at
cloud.google.com/automl, a real-world, enterprise-grade, truly black-box victim learning sys-
tem. Designed for the end-user, Cloud AutoML hides all training and architecture information,
leaving the user only the ability to upload a dataset and specify wallclock training budget and model
latency grade. For each model, we upload CIFAR-10, poisoned with the same poison dogs crafted
earlier on ResNet20, and train for 1000 millinode-hours on the mobile-high-accuracy-1 grade. After
training, we deploy the poisoned model on Google Cloud and upload the target bird for prediction.
Figure 6 shows web UI screenshots of the prediction results on unpoisoned (left) and poisoned
(middle) Cloud AutoML models. MetaPoison works even in a realistic setting such as this. To
quantify performance, we train 20 Cloud AutoML victim models, 2 for each of the first 10 target
birds, and average their results in Figure 6 (right) at various budgets. At poison budgets as low as
0.5%, we achieve success rates of>15%, with little impact on validation accuracy. These results show
that data poisoning presents a credible threat to real-world systems; even popular ML-as-a-service
systems are not immune to such threats.

10 3 10 2 10 1

poison budget

0.0

0.1

0.2

su
cc

es
s r

at
e

10 3 10 2 10 1

poison budget

0.00
0.25
0.50
0.75
1.00

va
lid

at
io

n
ac

c.

Figure 6: Data poisoning Google Cloud AutoML Vision models. Web UI screenshots of prediction results on
target bird by Cloud AutoML models trained on (Left) clean and (Middle) poisoned CIFAR-10 datasets. Portions
of the screenshot were cropped and resized for a clearer view. (Right) Success rates and validation accuracies
averaged across 20 targets and training runs.

8

cloud.google.com/automl

class X

times target BIRD is classified as class X

ad
ve

rsa
ria

l c
las

s,
𝑦 !"

#

#
 tim

es

class X

Figure 7: Alternative poisoning schemes. (Left) Self-concealment: images from the same class as the target are
poisoned to “push" the target out of its own class. (Right) Multiclass-poisoning: images from multiple classes
are poisoned to cause the target bird to be classified as a chosen adversarial class yadv.

3.5 Versatility to alternative poisoning schemes

Thus far we have discussed targeted poisoning attacks under a collision scheme: inject poisons
from class yp to cause a specific instance in class yt to be classified as yp. In other words, the
adversarial class is set to be the poison class, yadv = yp. This was the only scheme possible
under the feature collision method. It is however only a subset of the space of possible schemes
Yscheme : (yp, yt, yadv). Since MetaPoison learns to craft poison examples directly given an outer
objective L(xt, yadv; θ

∗(Xp)), it can accomplish a a wide range of alternative poisoning objectives.
In addition to showing MetaPoison’s success on existing, alternative schemes such as multi-target or
indiscriminate poisoning [Steinhardt et al., 2017, Muñoz-González et al., 2017] in appendix §G, here
we demonstrate MetaPoison’s versatility on two alternative, never-before-demonstrated schemes.

Self-concealment scheme: Poisons are injected to cause a target image in the same class to be
misclassified, i.e. yp = yt 6= yadv. E.g. attackers submit altered photos of themselves to a face
identification system to evade being identified later. To implement this, we simply change the
adversarial loss function to Ladv(Xp) = − log

[
1− pθ∗(Xp)(xt, yt)

]
so that higher misclassification

of the target lowers the loss. We evaluate the self-concealment scheme on two poison-target pairs,
bird-bird and airplane-airplane. We use a poison budget of 10% and like in Figure 4 (bottom left), tally
the labels given to the target bird or plane by 20 victim models. Figure 7 (left) shows histograms of
these tallies. For unpoisoned models, the true label receives the clear majority as expected, while for
poisoned models, the votes are distributed across multiple classes without a clear majority. Usually,
the true label (bird or airplane) receives almost no votes by poisoned models. Using definition of
success as misclassification of the target, the success rates are 100% and 95% for bird and airplane,
respectively.

Multiclass-poison scheme: In cases where the number of classes is high, it can be difficult to assume
a large poison budget for any single class. E.g. if there are 1000 classes (balanced), the max poison
budget for poisoning only a single class is 0.1%, which may not be always enough poisons. One
solution is to craft poisons in multiple classes that act toward the same goal. Here, we craft poisons
uniformly distributed across the 10 CIFAR-10 classes with a 10% total budget, or 1% poison budget
in each class. Our goal is to cause a target bird to be assigned a chosen incorrect, adversarial label yadv.
Like before, we tally the predictions over 60 victim models. Figure 7 (right) shows 9 histograms. Each
histogram shows the distribution of the 60 predictions of victim models poisoned with a particular
choice of adversarial label yadv. For example, the blue, frontmost histogram in Figure 7 shows how
the target bird image is perceived by 60 victim models that are poisoned with an adversarial class of
plane—the bird is (mis)perceived as a plane most of the time. In general, for most of the 9 histograms,
the class that receives the most votes is the adversarial class. On average, the adversarial class claims
40-50% of the votes cast, i.e. 40-50% success. This attack shows that it’s possible to use poisons
from multiple classes to arbitrarily control victim label assignment.

4 Conclusion
MetaPoison finds dataset perturbations that control victim model behavior on specific targets. It out-
performs previous clean-label poisoning methods on fine-tuned models, and achieves considerable
success—for the first time—on models trained from scratch. It also enables novel attack schemes
like self-concealment and multiclass-poison. Unlike previous approaches, the poisons are practical,
working even on industrial black-box ML-as-a-service models. We hope MetaPoison establishes a
baseline for data poisoning work and promotes awareness of this very real and emerging threat vector.

9

5 Broader Implications

Data lies at the heart of modern machine learning systems. The ability of MetaPoison to attack
real-world systems is should raise awareness of its broader implications on computer security and
data/model governance. While a full discussion should involve all stakeholders, we provide here some
initial comments. First, data and model governance is of utmost importance when it comes to, among
other things, mitigating data poisoning. Bursztein [2018] provides some common-sense steps to take
when curating a training set. For example, one should ensure that no single source of data accounts
for a large fraction of the training set or even of a single class, so as to keep the poison budget low for
a malicious data contributor. Second, it is easier to defend against wholesale model skewing attacks
which aim to reduce overall model performance or to bias it toward some direction. Targeted attacks
such as ours, on the other hand, are far more difficult to mitigate, since the overall model behavior
is unchanged and the target input on which the model’s behavior is changed is not known to the
victim. Systems should rely on additional auxiliary measures, such as interpretability techniques
[Kim et al., 2017], to make security-critical decisions. Third, at the moment, the computational
power required to craft MetaPoison examples exceeds that of evasion attacks by a large margin.
This provides researchers time to design mitigation strategies before it becomes a dominant threat
to real-world systems, as well as study robust learning techniques that leverage, e.g., computational
hardness [Mahloujifar and Mahmoody, 2019]. As a final note, data poisoning techniques are not
limited to nefarious uses. For example, it can be used for copyright enforcement as discussed in §1
and similar to the concept of “radioactive data” [Sablayrolles et al., 2020]. Another non-nefarious
use case is privacy protection [Shan et al., 2020].

Acknowledgments

www.comet.ml supplied necessary tools for monitoring and logging of our large number of ex-
periments and datasets and graciously provided storage and increased bandwidth for the unique
requirements of this research project. The authors had neither affiliation nor correspondence with the
Google Cloud AutoML Vision team at the time of obtaining these results. Goldstein and his students
were supported by the DARPA’s GARD program, the DARPA QED for RML program, the Office of
Naval Research MURI Program, the AFOSR MURI program, and the Sloan Foundation. LF was
supported in part by LTS through Maryland Procurement Office and by the NSF DMS 1738003 grant.
Taylor was supported by the Office of Naval Research.

References
Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated Gradients Give a False Sense of

Security: Circumventing Defenses to Adversarial Examples. arXiv:1802.00420 [cs], February
2018. URL http://arxiv.org/abs/1802.00420.

Jonathan F. Bard. Practical Bilevel Optimization: Algorithms and Applications. Springer Science &
Business Media, March 2013. ISBN 978-1-4757-2836-1.

Kristin P. Bennett, Gautam Kunapuli, Jing Hu, and Jong-Shi Pang. Bilevel Optimization and
Machine Learning. In Jacek M. Zurada, Gary G. Yen, and Jun Wang, editors, IEEE World
Congress on Computational Intelligence, WCCI 2008, Lecture Notes in Computer Science, pages
25–47. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008. ISBN 978-3-540-68860-0. doi:
10.1007/978-3-540-68860-0_2. URL https://doi.org/10.1007/978-3-540-68860-0_2.

Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning Attacks against Support Vector Machines.
arXiv:1206.6389 [cs, stat], June 2012. URL http://arxiv.org/abs/1206.6389.

Cody Burkard and Brent Lagesse. Analysis of causative attacks against svms learning from data
streams. In Proceedings of the 3rd ACM on International Workshop on Security And Privacy
Analytics, pages 31–36, 2017.

Elie Bursztein. Attacks against machine learning an overview, May 2018. URL https://elie.net/
blog/ai/attacks-against-machine-learning-an-overview.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017
IEEE Symposium on Security and Privacy (SP), pages 39–57. IEEE, 2017.

10

www.comet.ml
http://arxiv.org/abs/1802.00420
https://doi.org/10.1007/978-3-540-68860-0_2
http://arxiv.org/abs/1206.6389
https://elie.net/blog/ai/attacks-against-machine-learning-an-overview
https://elie.net/blog/ai/attacks-against-machine-learning-an-overview

Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on deep
learning systems using data poisoning. arXiv preprint arXiv:1712.05526, 2017.

Ambra Demontis, Marco Melis, Maura Pintor, Matthew Jagielski, Battista Biggio, Alina Oprea,
Cristina Nita-Rotaru, and Fabio Roli. Why Do Adversarial Attacks Transfer? Explaining Trans-
ferability of Evasion and Poisoning Attacks. In 28th {USENIX} Security Symposium ({USENIX}
Security 19), pages 321–338, 2019. ISBN 978-1-939133-06-9.

Justin Domke. Generic methods for optimization-based modeling. In Artificial Intelligence and
Statistics, pages 318–326, 2012.

Logan Engstrom, Brandon Tran, Dimitris Tsipras, Ludwig Schmidt, and Aleksander Madry. Exploring
the landscape of spatial robustness. In International Conference on Machine Learning, pages
1802–1811, 2019.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks, 2017.

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil. Bilevel
programming for hyperparameter optimization and meta-learning. In International Conference on
Machine Learning, pages 1568–1577, 2018.

Amin Ghiasi, Ali Shafahi, and Tom Goldstein. Breaking certified defenses: Semantic adversarial ex-
amples with spoofed robustness certificates. International Conference on Learning Representations,
2020.

Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu, Cristina Nita-Rotaru, and Bo Li.
Manipulating Machine Learning: Poisoning Attacks and Countermeasures for Regression Learning.
In 2018 IEEE Symposium on Security and Privacy (SP), pages 19–35, May 2018. doi: 10.1109/
SP.2018.00057.

Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, and Rory
Sayres. Interpretability beyond feature attribution: Quantitative testing with concept activation
vectors (tcav). arXiv preprint arXiv:1711.11279, 2017.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions.
In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages
1885–1894. JMLR. org, 2017.

Cassidy Laidlaw and Soheil Feizi. Functional adversarial attacks. In Advances in Neural Information
Processing Systems, pages 10408–10418, 2019.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter optimization
through reversible learning. In International Conference on Machine Learning, pages 2113–2122,
2015.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Saeed Mahloujifar and Mohammad Mahmoody. Can adversarially robust learning leveragecomputa-
tional hardness? In Algorithmic Learning Theory, pages 581–609. PMLR, 2019.

Shike Mei and Xiaojin Zhu. Using machine teaching to identify optimal training-set attacks on
machine learners. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence,
AAAI’15, pages 2871–2877, Austin, Texas, January 2015. AAAI Press. ISBN 978-0-262-51129-2.

Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Paudice, Vasin Wongrassamee,
Emil C. Lupu, and Fabio Roli. Towards Poisoning of Deep Learning Algorithms with Back-
gradient Optimization. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and
Security, AISec ’17, pages 27–38, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-5202-4.
doi: 10.1145/3128572.3140451.

11

Nicolas Papernot and Patrick D. McDaniel. Deep k-nearest neighbors: Towards confident, inter-
pretable and robust deep learning. CoRR, abs/1803.04765, 2018. URL http://arxiv.org/abs/
1803.04765.

Neehar Peri, Neal Gupta, W Ronny Huang, Liam Fowl, Chen Zhu, Soheil Feizi, Tom Goldstein, and
John P Dickerson. Deep k-nn defense against clean-label data poisoning attacks. arXiv preprint
arXiv:1909.13374, 2019.

Alexandre Sablayrolles, Matthijs Douze, Cordelia Schmid, and Hervé Jégou. Radioactive data:
tracing through training. arXiv preprint arXiv:2002.00937, 2020.

Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pirsiavash. Hidden trigger backdoor attacks.
arXiv preprint arXiv:1910.00033, 2019.

Karthik A Sankararaman, Soham De, Zheng Xu, W Ronny Huang, and Tom Goldstein. The impact
of neural network overparameterization on gradient confusion and stochastic gradient descent.
arXiv preprint arXiv:1904.06963, 2019.

Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and Byron Boots. Truncated back-propagation
for bilevel optimization. In The 22nd International Conference on Artificial Intelligence and
Statistics, pages 1723–1732, 2019.

Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer, Tudor Dumitras,
and Tom Goldstein. Poison frogs! targeted clean-label poisoning attacks on neural networks. In
Advances in Neural Information Processing Systems, pages 6103–6113, 2018.

Shawn Shan, Emily Wenger, Jiayun Zhang, Huiying Li, Haitao Zheng, and Ben Y Zhao.
Fawkes: Protecting personal privacy against unauthorized deep learning models. arXiv preprint
arXiv:2002.08327, 2020.

Jacob Steinhardt, Pang Wei W Koh, and Percy S Liang. Certified defenses for data poisoning attacks.
In Advances in neural information processing systems, 2017.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Alexander Turner, Dimitris Tsipras, and Aleksander Madry. Clean-label backdoor attacks, 2019.
URL https://people.csail.mit.edu/madry/lab/cleanlabel.pdf.

Eric Wong, Frank Schmidt, and Zico Kolter. Wasserstein adversarial examples via projected sinkhorn
iterations. In International Conference on Machine Learning, pages 6808–6817, 2019.

Chen Zhu, W Ronny Huang, Hengduo Li, Gavin Taylor, Christoph Studer, and Tom Goldstein.
Transferable clean-label poisoning attacks on deep neural nets. In International Conference on
Machine Learning, pages 7614–7623, 2019.

12

http://arxiv.org/abs/1803.04765
http://arxiv.org/abs/1803.04765
https://people.csail.mit.edu/madry/lab/cleanlabel.pdf

	Introduction
	Method
	Poisoning as constrained bilevel optimization
	Strategy for crafting effective poisoning examples

	Experiments
	Comparison to previous work
	Victim training from scratch
	Robustness and transferability
	Poisoning Google Cloud AutoML API
	Versatility to alternative poisoning schemes

	Conclusion
	Broader Implications
	Poison crafting curves
	Victim training curves
	Performance on other poison-target class pairs
	Differences in success rates amongst different targets
	Ablation study on ensemble size
	Ablation study on reinitialization
	Indiscriminate and multi-targeted attacks
	Ablation study on perturbation magnitude
	Ablation study on number of unroll steps used during crafting
	Stability of poison crafting
	Subsampling poisons from a larger set
	Experiments on ImageNet-2k (Dogfish) dataset
	Feature space visualizations for from-scratch training
	By epoch
	By layer

	Further examples of data poisons

