
Supplementary Materials for: Temporal Spike
Sequence Learning via Backpropagation for Deep

Spiking Neural Networks

Wenrui Zhang
University of California, Santa Barbara

Santa Barbara, CA 93106
wenruizhang@ucsb.edu

Peng Li
University of California, Santa Barbara

Santa Barbara, CA 93106
lip@ucsb.edu

1 Full Derivation of TSSL-BP

1.1 Forward Pass

As shown in Figure 1 of the main manuscript, we denote the presynaptic weights by W (l) =[
w

(l)
1 , · · · ,w(l)

Nl

]T
, PSCs from neurons in layer l−1 by a(l−1)[t] =

[
a
(l−1)
1 [t], · · · , a(l−1)

Nl−1
[t]
]
, spike

trains output of the l− 1 layer by s(l−1)[t] =
[
s
(l−1)
1 [t], · · · , s(l−1)

Nl−1
[t]
]
, membrane potentials and the

corresponding output spike trains of the l layer neurons respectively by u(l)[t] =
[
u
(l)
1 [t], · · · , u(l)Nl

[t]
]

and s(l)[t] =
[
s
(l)
1 [t], · · · , s(l)Nl

[t]
]
, where variables associated with neurons in the layer l have l as

the superscript.

The forward propagation between the two layers is described as

a(l−1)[t] = (ε ∗ s(l−1))[t]

u(l)[t] = θτu
(l)[t− 1] +W (l)a(l−1)[t] + (ν ∗ s(l))[t]

s(l)[t] = H
(
u(l)[t]− Vth

)
.

(1)

1.2 The Loss Function

The desired and the actual spike trains in the output layer are denoted by d = [d[t0], · · · ,d[tNt]] and
s = [s[t0], · · · , s[tNt]] where Nt is the number of the considered time steps, d[t] and s[t] the desired
and actual firing events for all output neurons at time t, respectively.

In our experiments, the loss function L is defined by the square error for each output neuron at each
time step:

L =

Nt∑
k=0

E[tk] =
1

2

Nt∑
k=0

(d[tk]− s[tk])2 =
1

2
||d− s||22, (2)

where E[t] is the error at time t. The loss can be also defined by using a kernel function [10]. In our
experiments, we use the spike response kernel ε(·), defining the error at each time step as

E[t] =
1

2
((ε ∗ d)[t]− (ε ∗ s)[t])2 =

1

2
(ad[t]− as[t])

2. (3)

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

1.3 Temporal Spike Sequence Learning via Backpropagation (TSSL-BP) Method

We adopt (3) to define the total loss

L =

Nt∑
k=0

E[tk] =
1

2

Nt∑
k=0

(ad[tk]− as[tk])
2. (4)

For the neurons in layer l, the error gradient with respect to the presynaptic weights matrixW (l) is

∂L

∂W (l)
=

Nt∑
k=0

∂E[tk]

∂W (l)
. (5)

(1) reveals that the values of u(l) at time tk have contribution to all future fires and losses. Using the
chain rule, we get

∂L

∂W (l)
=

Nt∑
k=0

k∑
m=0

∂E[tk]

∂u(l)[tm]

∂u(l)[tm]

∂W (l)
. (6)

By changing the order of summation, (6) can be written as

∂L

∂W (l)
=

Nt∑
m=0

∂u(l)[tm]

∂W (l)

Nt∑
k=m

∂E[tk]

∂u(l)[tm]
=

Nt∑
m=0

a(l−1)[tm]

Nt∑
k=m

∂E[tk]

∂u(l)[tm]
. (7)

We use δ to denote the back propagated error at time tm as δ(l)[tm] =
∑Nt

k=m
∂E[tk]

∂u(l)[tm]
.

Therefore, the weights update formula (6) can be written as

∂L

∂W (l)
=

Nt∑
m=0

a(l−1)[tm]δ(l)[tm]. (8)

a(l−1)[tm] is analogous to the pre-activation in the traditional ANNs which can be easily obtained
from (1) in the forward pass. δ(l)[tm] is considered in two cases.

[l is the output layer.] The δ(l)[tm] can be computed from

δ(l)[tm] =

Nt∑
k=m

∂E[tk]

∂a(l)[tk]

∂a(l)[tk]

∂u(l)[tm]
. (9)

From (4), the first term of (9) is given by

∂E[tk]

∂a(l)[tk]
=

1

2

∂(ad[tk]− a(l)[tk])
2

∂a(l)[tk]
= a(l)[tk]− ad[tk]. (10)

[l is a hidden layer.] δ(l)[tm] is derived using the chain rule and (1).

δ(l)[tm] =

Nt∑
j=m

j∑
k=m

∂a(l)[tk]

∂u(l)[tm]

(
∂u(l+1)[tk]

∂a(l)[tk]

∂E[tj]

∂u(l+1)[tk]

)
. (11)

It is obtained from the fact that membrane potentials u(l) of the neurons in layer l influence their
(unweighted) corresponding postsynaptic currents (PSCs) a(l) through fired spikes, and a(l) further
affect the membrane potentials u(l+1) in the next layer.By changing the order of summation, maps

2

the error δ from layer l + 1 to layer l.

δ(l)[tm] =

Nt∑
k=m

∂a(l)[tk]

∂u(l)[tm]

Nt∑
j=k

∂u(l+1)[tk]

∂a(l)[tk]

∂E[tj]

∂u(l+1)[tk]

=

Nt∑
j=m

∂a(l)[tj]

∂u(l)[tm]

Nt∑
k=j

W (l+1) ∂E[tk]

∂u(l+1)[tj]

=

Nt∑
k=m

∂a(l)[tk]

∂u(l)[tm]
(W (l+1))T δ(l+1)[tk]

= (W (l+1))T
Nt∑

k=m

∂a(l)[tk]

∂u(l)[tm]
δ(l+1)[tk].

(12)

The details of the key term ∂a(l)[tk]
∂u(l)[tm]

is discussed in Section 3.3.3 and 3.3.4 of the main manuscript.
We’ll also summarize the derivatives below.

For the key derivative ∂a
(l)
i [tk]

∂u
(l)
i [tm]

(tk ≥ tm) of each neuron i in layer l, we denote φ(l)i (tk, tm) =

∂a
(l)
i [tk]

∂u
(l)
i [tm]

= φ
(l)<1>
i (tk, tm) + φ

(l)<2>
i (tk, tm), where φ<1>

i (tk, tm) represents the inter-neuron

dependency and φ(l)<2>
i (tk, tm) is the intra-neuron dependency.

Assuming that the presynaptic neuron i spikes at tm, the inter-neuron dependencies can be represented
by

φ
(l)<1>
i (tk, tm) =

∂a
(l)
i [tk]

∂tm

∂tm

∂u
(l)
i [tm]

. (13)

From (2) of the main manuscript, the first part of (13) can be calculated as

∂a
(l)
i [tk]

∂tm
=
∂(ε ∗ s(l)i [tm])[tk]

∂tm
. (14)

We adopt the approach in [1, 3] to compute the second part of (11) as

∂tm

∂u
(l)
i [tm]

=
−1

∂u
(l)
i [tm]

∂tm

, (15)

where ∂u
(l)
i [tm]

∂tm
is obtained by differentiating (4). In fact, (15) can be precisely derived on certain

conditions.

According to the Figure 6 of the main manuscript, in the LIF model, the intra-neuron dependencies is
caused by the firing-and-resetting mechanism. More precisely, φ(l)<2>

i (tk, tm) takes this indirect
intra-neuron effect on a(l)i [tk] into consideration if ∃tp ∈ (tm, tk) such that s(l)i [tp] = 1 and s(l)i [t] =
0 ∀t ∈ (tm, tp), i.e. no other presynaptic spike exists between tm and tk

φ<2>
i (tk, tm) =

∂a
(l)
i [tk]

∂u
(l)
i [tp]

∂u
(l)
i [tp]

∂tm

∂tm

∂u
(l)
i [tm]

= φi(tk, tp)
∂(ν ∗ s(l)i [tm])[tp]

∂tm

∂tm

∂u
(l)
i [tm]

,

(16)

where ν(·) is the reset kernel and ∂tm
∂u

(l)
i [tm]

is evaluated by (15). In (16), φ(l)i (tk, tp) would have been

already computed during the backpropagation process since tp is a presynaptic firing time after tm.

3

To sum it up, we obtain the derivative of loss with respect to weight according to TSSL-BP method
as follows:

∂L

∂W (l)
=

Nt∑
m=0

a(l−1)[tm]δ(l)[tm],

δ(l)[tm] =

{∑Nt
k=m(a(l)[tk]− ad[tk])φ

(l)
i (tk, tm) for output layer,

(W (l+1))T
∑Nt
k=m φ

(l)
i (tk, tm)δ(l+1)[tk] for hidden layers,

φ
(l)
i (tk, tm) =

0 s

(l)
i [tm] = 0, s

(l)
i [tp] = 0 ∀tp ∈ (tm, tk),

∂a
(l)
i [tk]

∂tm

∂tm

∂u
(l)
i [tm]

s
(l)
i [tm] = 1, s

(l)
i [tp] = 0 ∀tp ∈ (tm, tk),

∂a
(l)
i [tk]

∂tm

∂tm

∂u
(l)
i [tm]

+ φ
(l)<2>
i (tk, tm) s

(l)
i [tm] = 1, ∃tp such that s(l)i [tp] = 1, s

(l)
i [t] = 0 ∀t ∈ (tm, tp),

(17)

where s(l)i [t] is the firing function described in (5) of the main manuscript and tp is an arbitrary time
between tm and tk.

2 Experiments and Results

2.1 Experimental Settings

All reported experiments are conducted on an NVIDIA Titan XP GPU. The implementation of
TSSL-BP is on the Pytorch framework [9]. The experimented SNNs are based on the LIF model
described in (4) of the main manuscript. The simulation step size is set to 1 ms. Only a few time
steps are used to demonstrate low-latency spiking neural computation. The parameters like thresholds
and learning rates are empirically tuned. Table 1 lists the typical constant values adopted in our
experiments. For the time constant, we vary the membrane time constant from 2ms to 16ms. The
same performance level has been observed. This indicates that the proposed method can train SNNs
with dynamical behaviors across different timescales and the empirically observed results are not very
sensitive to the choice of membrane time constant. No axon and synaptic delay or refractory period
is used nor is normalization. Dropout is only applied for the experiments on CIFAR10. Adam [4] is
adopted as the optimizer. The network models we train or compare with are either fully connected
feedforward networks or convolutional neural networks (CNNs). The mean and standard deviation
(stddev) of the accuracy reported are obtained by repeating the experiments five times.

Table 1: Parameters settings.

Parameter Value Parameter Value

simulation step size 1 ms Learning Rate η 0.005
Time Constant of Membrane Voltage τm 4 ms Time Constant of Synapse τs 2 ms
Threshold Vth 1 mV Batch Size 50

2.2 Input Encoding

For non-spiking datasets such as static images, the most common preprocessing is to use rate coding
to convert static real-valued inputs to spiking inputs. However, this requires many time steps for
coding the inputs to guarantee good performance. For static images, we directly convert the raw pixel
densities into real-valued spike current inputs within a short time window. While for the neuromorphic
datasets that originally contain spikes, we still use the spikes as inputs in our experiments.

2.3 Handling of Practical Issues

Two practical circumstances need to be taken into consideration as for other spike-time based BP
methods like SpikeProp [1, 2]. First, when a spike is produced by the membrane potential u[t] that
barely reaches the threshold, the derivative of u[t] w.r.t time is very small. Numerically, this can
make (15) large and result in an undesirable large weight update. To mitigate, we set a bound for this

4

derivative. Second, absence of firing activities in spiking neurons due to low initial weight values
block backpropagation through these neurons. We use a warm-up mechanism to bring up the firing
activity of the network before applying the BP method. In the warm-up mechanism, we detect the
firing events of each neuron. If there’s at least one spike within a certain time window, TSSL-BP
is applied directly. Otherwise, warm-up is applied, which uses the continuous sigmoid function of
membrane potential to approximate the activation function so that the error can be propagated back
even when there is no spike.

2.4 Selection of the Desired Output Spike Patterns

The desired output spike trains (labels) for different classes are manually selected without much
optimization effort. In the experiments with 5 time steps, we set two fixed sequences [0, 1, 0, 1, 1]
and [0, 0, 0, 0, 0] where 1 represents a spike and 0 means no spike at a given time step. We adopted a
simple scheme: the number of output neurons is same as the number of classes. For each class, the
first sequence is chosen to be the target of one (distinct) neuron corresponding to the class, and the
second sequence is targeted for all other output neurons.

2.5 Datasets

2.5.1 MNIST

The MNIST [6] digit dataset consists of 60, 000 samples for training and 10, 000 for testing, each
of which is a 28 × 28 grayscale image. Each pixel value of an MNIST image is converted into a
real-valued input current. For the fully connected feedforward networks, the inputs are encoded from
each 28× 28×Nt image into a 2D 784×Nt matrix where Nt is the simulation time steps. Each
input sample is normalized to the same mean and standard deviation. No data augmentation is applied
in our experiments.

2.5.2 N-MNIST

The N-MNIST dataset [8] is a neuromorphic version of the MNIST dataset generated by tilting
a Dynamic Version Sensor (DVS) [7] in front of static digit images on a computer monitor. The
movement induced pixel intensity changes at each location are encoded as spike trains. Since the
intensity can either increase or decrease, two kinds of ON- and OFF-events spike events are recorded.
Due to the relative shifts of each image, an image size of 34× 34 is produced. Each sample of the
N-MNIST is a spatio-temporal pattern with 34 × 34 × 2 spike sequences lasting for 300ms with
the resolution of 1us. It means there are 300000 time steps in the original N-MNIST dataset. In our
experiments, we reduce the time resolution of the N-MNIST samples by 3000 times to speed up
the simulation. Therefore, the preprocessed samples only have about 100 time steps. We determine
that a channel has a spike at a certain time step of the preprocessed sample if there’s at least one
spike among the corresponding 3000 time steps of the original sample. We demonstrate the result
of the preprocessed N-MNIST with 100 time steps in Table 2 of the main manuscript. Moreover,
the TSSL-BP method can well train the network only with the first 90ms spike sequences of the
original dataset which results in 30 time steps after preprocessing. The results are shown in Table 2
of the main manuscript with only 30 time steps which keep the high level of performance as well as
significantly reduce the latency.

2.5.3 FashionMNIST

The Fashion-MNIST [11] dataset contains 28 × 28 grey-scale images of clothing items, meant to
serve as a much more difficult drop-in replacement for the MNIST dataset. The preprocessing steps
are the same as MNIST.

2.5.4 CIFAR-10

The CIFAR-10 [5] dataset contains 60, 000 32 × 32 color images in 10 different types of objects.
There are 50, 000 training images and 10, 000 testing images. The pixel intensity of each channel
is converted into a real-valued input. Similar to what are commonly adopted for preprocessing, the
dataset is normalized, and random cropping and horizontal flipping are applied for data augmentation.
In addition, dropout layers with a rate of 0.2 are also applied during the training of CIFAR10.

5

References
[1] Sander M Bohte, Joost N Kok, and Han La Poutre. Error-backpropagation in temporally encoded networks

of spiking neurons. Neurocomputing, 48(1-4):17–37, 2002.

[2] Olaf Booij and Hieu tat Nguyen. A gradient descent rule for spiking neurons emitting multiple spikes.
Information Processing Letters, 95(6):552–558, 2005.

[3] Samanwoy Ghosh-Dastidar and Hojjat Adeli. A new supervised learning algorithm for multiple spiking
neural networks with application in epilepsy and seizure detection. Neural networks, 22(10):1419–1431,
2009.

[4] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[5] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The cifar-10 dataset. online: http://www. cs. toronto.
edu/ kriz/cifar.html, 2014.

[6] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[7] Patrick Lichtsteiner, Christoph Posch, and Tobi Delbruck. A 128 ×128 120 db 15µs latency asynchronous
temporal contrast vision sensor. IEEE journal of solid-state circuits, 43(2):566–576, 2008.

[8] Garrick Orchard, Ajinkya Jayawant, Gregory K Cohen, and Nitish Thakor. Converting static image datasets
to spiking neuromorphic datasets using saccades. Frontiers in neuroscience, 9:437, 2015.

[9] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang,
Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie
Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[10] Sumit Bam Shrestha and Garrick Orchard. Slayer: Spike layer error reassignment in time. In Advances in
Neural Information Processing Systems, pages 1412–1421, 2018.

[11] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

6

	Full Derivation of TSSL-BP
	Forward Pass
	The Loss Function
	Temporal Spike Sequence Learning via Backpropagation (TSSL-BP) Method

	Experiments and Results
	Experimental Settings
	Input Encoding
	Handling of Practical Issues
	Selection of the Desired Output Spike Patterns
	Datasets
	MNIST
	N-MNIST
	FashionMNIST
	CIFAR-10

