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Abstract

The widespread adoption of deep learning is often attributed to its automatic feature
construction with minimal inductive bias. However, in many real-world tasks, the
learned function is intended to satisfy domain-specific constraints. We focus
on monotonicity constraints, which are common and require that the function’s
output increases with increasing values of specific input features. We develop a
counterexample-guided technique to provably enforce monotonicity constraints at
prediction time. Additionally, we propose a technique to use monotonicity as an
inductive bias for deep learning. It works by iteratively incorporating monotonicity
counterexamples in the learning process. Contrary to prior work in monotonic
learning, we target general ReLU neural networks and do not further restrict the
hypothesis space. We have implemented these techniques in a tool called COMET.1
Experiments on real-world datasets demonstrate that our approach achieves state-
of-the-art results compared to existing monotonic learners, and can improve the
model quality compared to those that were trained without taking monotonicity
constraints into account.

1 Introduction

Deep neural networks are increasingly used to make sensitive decisions, including financial decisions
such as whether to give a loan to an applicant [25] and as controllers for safety critical systems
such as autonomous vehicles [7, 54]. In these settings, for safety, ethical, and legal reasons, it is of
utmost importance that some of the decisions made are monotonic. For example, one would expect
an individual with a higher salary to have a higher loan amount approved, all else being equal, and
the speed of a drone to decrease with its proximity to the ground. Learning problems in medicine,
revenue-maximizing auctions [17], bankruptcy prediction, credit rating, house pricing, etc., all have
monotonicity as a natural property to which a model should adhere. Guaranteeing monotonicity helps
users to better trust and understand the learned model [24]. Furthermore, prior knowledge about
monotonic relationships can also be an effective regularizer to avoid overfitting [14].

Unfortunately, there is no easy way to specify that a trained neural network should be monotonic in
one or more of its features. Existing approaches to this problem, such as min-max networks [40],
monotonic lattices [16], and deep lattice networks [53], guarantee monotonicity by construction but
do so at the cost of significantly restricting the hypothesis class. Other solutions, such as learning
a linear function with positive coefficients, are even more restrictive. Furthermore, techniques that
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enforce monotonicity as a soft constraint in neural networks [41, 23] suffer from not being able to
provide any provable monotonicity guarantee at prediction time. Finally, the well-known framework
of isotonic regression [4, 37] is effective only when the training data can be partially ordered, which
is rarely the case in high dimensions.

This paper develops techniques to incorporate monotonicity constraints for standard ReLU neural
networks without imposing further restrictions on the hypothesis space. These techniques leverage
recent work that employs automated theorem provers to formally verify robustness and safety proper-
ties of neural networks [49, 50, 18, 28]. First, we present a counterexample-guided algorithm that
provably guarantees monotonicity at prediction time, given an arbitrary ReLU neural network. Our
approach works by constructing a monotonic envelope of the given model on-the-fly via verification
counterexamples. Empirically we show that we guarantee monotonicity with little to no loss in
model quality at a computational cost on the order of a few seconds on standard datasets. Second,
we propose a new counterexample-guided algorithm to incorporate monotonicity as an inductive
bias during training. We identify monotonicity counterexamples on the training data, inducing
additional supervision for training the network, and perform this process iteratively. We also show
that monotonicity is an effective regularizer: our counterexample-guided learning algorithm improves
the overall model quality. Empirically, the two algorithms, when used in conjunction, enable better
generalization while guaranteeing monotonicity for both regression and classification tasks. We
have implemented our algorithms in a tool called “COunterexample-guided Monotonicity Enforced
Training” (COMET). Finally, we demonstrate that COMET outperforms min-max and deep lattice
networks [53] on four real-world benchmarks.

Organization. Section 2 introduces our problem statement and notation. Sections 3 and 4 re-
spectively describe our proposed algorithms: counterexample-guided monotonic prediction and
counterexample-guided monotonic training. Experimental results in Sections 3.2 and 4.2 demonstrate
the potential of COMET on real-world benchmark datasets. Section 5 reviews related work in learning
monotonic functions. We conclude and provide future directions in Section 6.

2 Preliminaries: Finding Monotonicity Counterexamples

We begin by introducing some common notation. Let X be the input space consisting of d features,
and suppose that it is a compact finite subset X = [L,U ]d of Rd. Let Y be the output space. We
consider regression and (probabilistic) binary classification tasks where Y is totally ordered.

Our goal will be to learn functions that are monotonic in some of their input features.

Definition 1. A function f : X → Y is monotonically increasing in features S iff each feature
in S is totally ordered and for any two inputs x, x′ ∈ X that are (i) non-decreasing in features S,
∀i ∈ S, x[i] ≤ x′[i], and (ii) holding all else equal, ∀k 6∈ S, x[k] = x′[k], the output of the function
is non-decreasing: f(x) ≤ f(x′).

Formal properties of functions are often characterized in terms of their counterexamples.
Counterexample-guided algorithms are prevalent in the field of formal methods, for example to
verify [10] and synthesize programs [44]. The techniques proposed in this paper will be centered
around using counterexamples to the monotonicity specification.

Definition 2. A pair of inputs x, x′ ∈ X is a monotonicity counterexample pair for the ith feature of
function f : X → Y iff the points are (i) non-decreasing in feature i, that is, x[i] ≤ x′[i], (ii) holding
all else equal, that is, ∀k 6= i, x[k] = x′[k], and (iii) the function is decreasing: f(x) > f(x′).

Notably, for a function to be (jointly) monotonic in features S, it is both necessary and sufficient that
there does not exist a monotonicity counterexample pair for any of the individual features in S.

ReLU neural networks generalize well and are widely used [20, 51, 13], particularly in the context of
verification and robustness. Hence, we will assume that f is a ReLU neural network.

Definition 3. A ReLU neural network is a directed acyclic computation graph consisting of neurons
that compute ReLU(

∑
i wixi + b), where the activation function is a rectified linear unit ReLU(y) =

max(0, y), the weights wi and bias b are parameters associated with each neuron, and neuron inputs
xi are either input features or values of other neurons. The value of a designated output neuron
defines the value of a function f : X → Y .
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Counterexample-guided algorithms rely on the ability to find counterexamples, usually by relegating
the task to an off-the-shelf solver. This requires that both the counterexample specification and the
object of interest — in this case the function f — can be encoded in a formal language amenable to
automated reasoning. We will use a satisfiability modulo theories (SMT) solver [5] for this purpose.
Recall that satisfiability (SAT) is the problem of deciding the existence of assignments of truth
values to variables such that a propositional logical formula is satisfied. SMT generalizes SAT
to deciding satisfiability for formulas with respect to a decidable background theory [5]. We will
use the background theory of linear real arithmetic (LRA), which allows for expressing Boolean
combinations of linear inequalities between real number variables.

The encoding of ReLU neural networks into SMT(LRA) is well-known and readily available [28, 27].
Briefly, the relationship between any neuron value and its inputs is encoded in SMT(LRA) as
follows. The linear sum over neuron inputs is already a linear constraint. Additionally, we encode
the non-linearity of the ReLU activation function using logical implications in SMT. Concretely, for
z = ReLU(y) = max(0, y), we add two SMT constraints: y > 0→ z = y and y ≤ 0→ z = 0.

We can now ask an SMT solver to find monotonicity counterexample pairs: we simply take the (linear)
conditions in Definition 2 and conjoin with the SMT (LRA) encoding of the function f . Linear
real arithmetic is a decidable theory [45]; hence we will always obtain a correct counterexample if
one exists. In Section 3, we require the ability to obtain a counterexample that maximally violates
the monotonicity specification. Hence, we use Optimization Modulo Theories (OMT) [38], which
is an extension of SMT for finding models that optimize secondary linear objectives, which is
again decidable. Note that our definitions consider monotonically increasing features, and we
assume that form of monotonicity throughout. We can analogously define corresponding notions for
monotonically decreasing features, and our algorithms can be applied straightforwardly to that setting
as well.

While this setup allows us to verify monotonicity of a learned function, it is not at all clear how to
guarantee monotonicity, or how to enforce monotonicity during training as an inductive bias. The
next two sections present the counterexample-guided algorithms that address these challenges.

3 Counterexample-Guided Monotonic Prediction

A neural network trained using traditional approaches is not guaranteed to satisfy monotonicity
constraints. In this section, we describe a technique to convert a non-monotonic model to a monotonic
one. The technique leverages monotonicity counterexamples to construct a monotonic envelope (or
hull) of the learned model. Further, our technique is online: the monotonic envelope is constructed
on-the-fly at prediction time.
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Figure 1: Monotone envelopes
around a simple non-monotone
learned function

As an example, consider the regression task of predicting house
prices, which monotonically increase with the number of rooms.
Suppose that the solid line ( ) in Figure 1 plots the learned model’s
predictions. This function is not monotonic; for example f(3) > f(4).
The two dotted lines in Figure 1 show two monotonic envelopes
that our technique produces: an upper envelope ( ) that increases
the output where necessary to ensure monotonicity, and a lower
envelope ( ) that decreases the output where necessary to ensure
monotonicity. The rest of this section describes these envelopes
formally and presents an empirical evaluation of the technique.

3.1 Envelope Construction

We first describe envelope construction for the case with a single monotonic feature (with any number
of other features) and then generalize the approach to handle multiple monotonic features.

3.1.1 Envelope - Single Monotonic Feature

Recall that Definition 2 in the previous section defines when a pair of inputs constitutes a monotonicity
counterexample. To construct the envelope we require a special form of such counterexamples, namely
maximal ones in terms of the degree of monotonicity violation, while fixing a single input example.
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Definition 4. Consider example x ∈ X , function f : X → Y , and feature i. Let set A (resp. B)
consist of all examples x′ such that (x, x′) (resp. (x′, x)) is a counterexample pair for f and i. Then,
a lower envelope counterexample for example x, function f and feature i is an example x′ ∈ A that
minimizes f(x′). An upper envelope counterexample is an example x′ ∈ B that maximizes f(x′).

For example, consider Figure 1 again. The upper envelope counterexample for input 3 is the input 2,
since f(2) has the maximal value of all counterexamples below 3. The lower envelope counterexample
for the input 3 is 4, since f(4) has the minimal value of all counterexamples above 3.

Now we can define the upper and lower envelopes of a function.

Definition 5. The upper envelope fu
i of function f : X → Y for feature i is defined as follows:

fu
i (x) =

{
f(x′) where x′ is an upper envelope counterexample for x, f , and i

f(x ) if no such counterexample exists

The lower envelope f l
i is defined analogously.

We observe that it is not necessary to construct the envelope function explicitly. Rather, to ensure
monotonicity, it suffices to construct the envelope incrementally at prediction time. Given an input xt,
we make a single query to an SMT solver to find the input’s upper (lower) envelope counterexample
or determine that no such counterexample exists. Note that this query is much simpler than would be
required to verify that the original function is monotonic. Doing the latter would require searching for
an arbitrary monotonicity counterexample pair (Definition 2), which is a pair of points. In contrast,
our query is given the input xt and hence only requires the SMT solver to search over the space of
inputs that are identical to xt except in the ith dimension. Concretely, for a feature i in the bounded
interval [L,U ], the upper envelope search is over the interval [L, xt[i]) and the lower envelope search
is over the interval (xt[i], U ]. Empirically we will later show that our envelope construction is faster
than querying for an arbitrary counterexample pair (see Figure 3).

3.1.2 Envelope - Multi-Dimensional Case

We now generalize our envelope construction to the case where multiple dimensions are monotonic.
For space reasons we present only the upper envelope construction; the lower envelope is analogous.

Recall from Section 2 that, to verify if a function is monotonic in more than one dimension, it is
sufficient to verify that it is monotonic in each dimension separately. However, to construct the
envelope, it is not sufficient to identify maximal counterexamples in each dimension and then take
the maximum of these maxima. The envelopes produced using that approach are not guaranteed to
be monotonic (see appendix for an example). To overcome this problem, we generalize to multiple
dimensions by searching jointly in all monotonic dimensions and prove that this approach is correct.

Definition 6. Consider example x ∈ X , function f : X → Y , and set of features S. Let set B consist
of all examples x′ such that ∀i ∈ S, x′[i] ≤ x[i] and ∀i 6∈ S, x′[k] = x[k] and f(x′) > f(x). An
upper envelope counterexample is an example x′ ∈ B that maximizes f(x′).

It is easy to show that this approach does not identify spurious counterexamples: if an upper envelope
counterexample exists for x and f and set of features S, then there is a dimension i ∈ S and points
x′ and x′′ such that x′ and x′′ are a monotonicity counterexample for f in the ith dimension.

We can now define the upper envelope function, analogous to the single-dimensional case:

Definition 7. The upper envelope fu
S of function f : X → Y for feature set S is defined as follows:

fu
S (x) =

{
f(x′) where x′ is an upper envelope counterexample for x, f , and S

f(x ) if no such counterexample exists

Finally, we prove that the upper envelope is in fact monotonic, even when the function f is not.

Theorem 1. For any function f and set of features S, the upper envelope fu
S is monotonic in S.

Proof. Let i0 ∈ S and x and x′ be any two inputs such that x[i0] ≤ x′[i0] and ∀k 6= i0, x[k] = x′[k].
We will prove that fu

S (x) ≤ fu
S (x

′) and hence that fu
S is monotonic. There are two cases:
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1. An input x′
e is the upper envelope counterexample for x′, f , and S, so fu

S (x
′) = f(x′

e). We
have two subcases.

• An input xe is the upper envelope counterexample for x, f , and S, so fu
S (x) = f(xe).

By Definition 6 we have that ∀i ∈ S, xe[i] ≤ x[i] ∧ ∀i 6∈ S, xe[k] = x[k], so also
∀i ∈ S, xe[i] ≤ x′[i] ∧ ∀i 6∈ S, xe[k] = x′[k]. Therefore again by Definition 6 it must
be the case that f(xe) ≤ f(x′

e).
• There is no upper envelope counterexample for x, f , and S, so fu

S (x) = f(x). Since
∀i ∈ S, x[i] ≤ x′[i] ∧ ∀i 6∈ S, x[k] = x′[k], by Definition 6 it must be the case that
f(x) ≤ f(x′

e).

2. There is no upper envelope counterexample for x′, f , and S. The proof is similar (details in
appendix).

Hence, our envelope construction algorithm guarantees monotonicity of the predictive function,
regardless of where it is evaluated, and regardless of the underlying learned function.

3.2 Empirical Evaluation of Monotonic Envelopes

We report the experimental results on the quality and performance of the envelope construction
algorithm. Experiments were implemented in Python using the Keras deep learning library [9], we
use the ADAM optimizer [29] to perform stochastic optimization of the neural network models, and
we use the Optimathsat [39] solver for counterexample generation.
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Figure 2: Empirically, the best learned
baseline model is not monotonic. The
figure presents the percentage of exam-
ples that have an upper or lower enve-
lope counterexample for the Auto MPG
dataset.

Data and experiment setup: We use four datasets: Auto
MPG and Boston Housing are regression datasets used for
predicting miles per gallon (monotonically decreasing with
respect to features weight (W), displacement (D), and horse-
power (HP)) and housing prices (monotonically decreasing in
crime rate and increasing in number of rooms) respectively and
are obtained from the UCI machine learning repository [6];
Heart Disease [19] and Adult [6] are classification datasets
used for predicting the presence of heart disease (monotoni-
cally increasing with trestbps (T), cholestrol (C)) and income
level (monotonically increasing with capital-gain and hours
per week) respectively. For each dataset, we identify the best
baseline architecture and parameters by conducting grid search
and learn the best ReLU neural network (NNb). We carry out
our experiments on three random 80/20 splits and report av-
erage test results, except for the Adult dataset, for which we
report on one random split.

Q1. Is a deep neural network trained on such data monotonic? Figure 2 shows that the best
baseline model (NNb) is not monotonic, motivating the need for envelope predictions that guarantee
monotonicity. The percentage of data points that have a counterexample can be as high as 50% for
Auto MPG. See Table 6 in the appendix for detailed results on all datasets, where the percentage can
be as high as 98%.

Table 1: For regression (MSE, Left Table) and classification (Accuracy, Right Table) datasets, envelope
predictions on test data have similar quality compared to baseline models. This means we can guarantee
monotonic predictions with little to no loss in model quality.

Dataset Feature NNb Envelope

Auto-MPG

Weight 9.33±3.22 9.19±3.41
Displ. 9.33±3.22 9.63±2.61
W,D 9.33±3.22 9.63±2.61
W,D,HP 9.33±3.22 9.63±2.61

Boston Rooms 14.37±2.4 14.19±2.28
Crime 14.37±2.4 14.02±2.17

Dataset Feature NNb Envelope

Heart
Trestbps 0.85±0.04 0.85±0.04
Chol. 0.85±0.04 0.85±0.05
T,C 0.85±0.04 0.85±0.05

Adult Cap. Gain 0.84 0.84
Hours 0.84 0.84

Q2. When enforcing monotonicity using an envelope, does it come at a cost in terms of pre-
diction quality? In this experiment, we compare the quality of the original model (NNb) with its
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envelope on the test data. We select the envelope with the lowest train mean squared error (MSE) in
case of regression and highest train accuracy in case of classification. Table 1 demonstrates that an
envelope can be used with a single or multiple monotonic features with little to no loss in prediction
quality. In fact, in some cases (see rows in bold), the envelope has better average quality. This can be
explained as follows: although the true data distribution is naturally monotonic, existing learning
algorithms might be missing simpler monotonic models and instead overfit a non-monotonic function
because of noise in the training data.

Baseline 1 2 3 4
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4

Figure 3: Prediction Time (s) vs.
#Monotonic Features
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Figure 4: Prediction Time (s) vs.
Model Size

Q3. How scalable is on-the-fly en-
velope construction? In this exper-
iment, we report the run times for
the Auto MPG dataset. Recall that
the envelope approach need only
search for maximal counterexam-
ples relative to a given input. Owing
to the narrowed search space, we
see that envelope prediction time is
comparable to the baseline model’s
prediction time in smaller models
(see Figure 4). Overhead caused by envelope construction is only a few seconds. In contrast, the
overhead to finding a maximal counterexample pair (Definition 2) for a single monotonic feature
is 48.29 minutes. As a scalability study, in Figure 4, we plot the time taken to obtain a monotonic
prediction for various model sizes. We can see that the envelope prediction time is comparable
to the baseline prediction time in smaller models but grows with the model size. The growth is
significantly less pronounced in the number of monotonic features (see Figure 3). Of course, when
violating monotonicity leads to safety, ethical or legal problems, the question is not whether we
can scale monotonicity enforcement, but whether it is safe to use machine learning at all. In this
context, the computational price of enforcing monotonicity, even if it ends up being significant, is
entirely warranted.

4 Counterexample-Guided Monotonicity Enforced Training

In this section we propose an algorithm that uses monotonicity as an inductive bias during learning
to improve model quality. This algorithm is orthogonal to the envelope prediction technique of the
previous section; we evaluate the learning algorithm both on its own and in conjunction with the
envelope technique.

4.1 Counterexample-guided Learning

The learning algorithm consists of two phases that alternate: the training phase and the verification
phase. The training phase is given labeled input data and produces the best candidate model
f . The verification phase checks if a given model is monotonic; if not, it generates one or more
counterexamples, which are provided as additional data for the next iteration of the training phase.
These two phases repeat for T epochs, which is a hyperparameter to the algorithm.

The algorithm is universal in the sense that it is compatible with any training technique that produces
ReLU models and does not further restrict the hypothesis class. This gives our approach an advantage
over prior monotonic learners [40, 53].

The verification phase could use Definition 2 to identify monotonicity counterexamples, but this has
two major drawbacks: (1) it is computationally expensive as the size of the pre-trained model grows;
(2) an arbitrary counterexample might include out-of-distribution examples, which are therefore
not representative. Hence, we instead appeal to Definition 6 to generate maximal counterexamples
relative to each training point. In each epoch, for each train point we generate and use both upper and
lower envelope counterexamples as additional data for the next round of training.

At this point, we are almost done with the algorithm, with the following detail to address. Counterex-
amples generated by the verification procedure do not have a known ground-truth label. There are
different heuristics that one could adopt to label these points and encourage the learned function to
become more monotonic. In our algorithm, for regression tasks we calculate the average prediction
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values of upper and lower counterexamples and the given training point and assign this average as the
label for these counterexamples and the training point. The hypothesis is that using the average value
will result in a smoother loss with respect to monotonicity. For classification tasks, we assign each
counterexample point the same label as the corresponding training point. Empirically (see Table 3),
we will show that this labelling heuristic is sufficient to improve the model quality.

Data augmentation through counterexamples could cause drift in the model quality. Our approach
guards against this in multiple ways. First, data augmentation with counterexamples is recomputed
for each batch at every epoch. This ensures that: 1) an incorrect old counterexample does not burden
the learning, and 2) learning incorporates multiple counterexamples at a time and so is less sensitive
to any particular one. Second, the labeling heuristic for counterexamples provides a smoother loss
with respect to monotonicity. Empirically (see Table 2), we will show that there is no drift in the
model quality. The quality of our model is similar or better than a model trained without monotonicity
constraints.

4.2 Empirical Evaluation of COMET

We will now evaluate our iterative algorithm for training with monotonicity counterexamples, as well
as the entire COMET pipeline, which also includes the envelope technique from the previous section.
We use the same datasets as in Section 3.2.

Table 2: Monotonicity is an effective inductive bias. Counterexample-guided Learning (CGL) improves the
quality of the baseline model in regression (MSE, Left Table) and classification (Accuracy, Right Table) datasets

Dataset Feature NNb CGL

Auto-MPG

Weight 9.33±3.22 9.04±2.76
Displ. 9.33±3.22 9.08±2.87
W,D 9.33±3.22 8.86±2.67
W,D,HP 9.33±3.22 8.63±2.21

Boston Rooms 14.37±2.4 12.24±2.87
Crime 14.37±2.4 11.66±2.89

Dataset Feature NNb CGL

Heart
Trestbps 0.85±0.04 0.86±0.02
Chol. 0.85±0.04 0.85±0.05
T,C 0.85±0.04 0.86±0.06

Adult Cap. Gain 0.84 0.84
Hours 0.84 0.84

Q4. Is the stronger inductive bias of our learning algorithm able to improve the overall quality
of the original non-monotonic model? In this experiment we compare the test quality of the model
learned with monotonicity counterexamples with the original model (NNb). From Table 2, we can
see that monotonicity is indeed an effective inductive bias that helps improve the model quality. It is
able to reduce the error on all regression datasets, with the biggest decrease from 14.37 to 11.66 for
the Boston Housing dataset when employing monotonicity counterexamples based on the Crime Rate
feature. Although the algorithm improves the quality, it does not guarantee monotonic predictions.

Q5. Does our learning algorithm make the original non-monotonic model more monotonic? To
quantify if a function is more monotonic, we calculate the reduction in the number of counterexamples.
On average, our algorithm reduces the number of test counterexamples by 62%. Although in some
cases we can remove all counterexamples, in general this is not the case (see Table 7 in Appendix for
detailed results). This motivates the need for using monotonic envelopes (described in Section 3) in
conjunction with the counterexample-guided learning algorithm, to guarantee monotonic predictions.

Table 3: For regression (MSE, Left Table) and classification (Accuracy, Right Table) datasets, counterexample-
guided learning improves the envelope quality

Dataset Features NNb Env. COMET

Auto-
MPG

Weight 9.19±3.41 8.92±2.93
Displ. 9.63±2.61 9.11±2.25
W,D 9.63±2.61 8.89±2.29
W,D,HP 9.33±2.61 8.81±1.81

Boston Rooms 14.19±2.28 11.54±2.55
Crime 14.02±2.17 11.07±2.99

Dataset Features NNb Env. COMET

Heart
Trestbps 0.85±0.04 0.86±0.03
Chol. 0.85±0.05 0.87±0.03
T,C 0.85±0.05 0.86±0.03

Adult Cap. Gain 0.84 0.84
Hours 0.84 0.84

Q6. Does counterexample-guided learning help improve the quality of the original model’s
envelope? In Section 3.2 Q2, (Table 1), we showed that the envelope has similar model qual-
ity compared to the baseline model. By additionally enforcing monotonicity constraints through
counterexample-guided re-training, we further improve the envelope quality (Table 3). In this ex-
periment we re-train NNb with counterexamples for 40 epochs, model selection is based on train
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quality, and we report the change in the quality of the test envelope (see the appendix for additional
model selection experiments). Thus, we get both a monotonicity guarantee and better generalization
performance.

Table 4: COMET outperforms Min-Max networks on all datasets. COMET outperforms DLN in regression
datasets and achieves similar results in classification datasets.
Dataset Features Min-Max DLN COMET

Auto-
MPG

Weight 9.91±1.20 16.77±2.57 8.92±2.93
Displ. 11.78±2.20 16.67±2.25 9.11±2.25
W,D 11.60±0.54 16.56±2.27 8.89±2.29
W,D,HP 10.14±1.54 13.34±2.42 8.81±1.81

Boston Rooms 30.88±13.78 15.93±1.40 11.54±2.55
Crime 25.89±2.47 12.06±1.44 11.07±2.99

Dataset Features Min-Max DLN COMET

Heart
Trestbps 0.75±0.04 0.85±0.02 0.86±0.03
Chol. 0.75±0.04 0.85±0.04 0.87±0.03
T,C 0.75±0.04 0.86±0.02 0.86±0.03

Adult Cap. Gain 0.77 0.84 0.84
Hours 0.73 0.85 0.84

Q7. How does the performance of COMET compare to existing work? Table 4 reports the MSE
and accuracy of COMET compared to two existing methods that guarantee monotonicity: min-max
networks [12] and deep lattice networks (DLN) [53]. We tune Adam stepsize, learning rate, number
of epochs, and batch size on all methods. Additionally, for DLN we tune calibration keypoints and
report the results based on the six-layer architecture as proposed by the authors. The results in Table 4
indicate that COMET outperforms min-max networks on all datasets and DLN on all except for Adult,
where we are similar.

Q8. How robust is COMET to data outliers? COMET constructs its monotonic envelope on the
learned function and not on the data. Therefore, individual data outliers will not affect it too much.
Moreover, if the function to be learned is naturally monotonic, enforcing invariants counteracts noise
and outliers, leading to improved robustness. To illustrate this advantage, we duplicate 1% of the data
and modify the value of the monotonic feature and the label for each new point in order to introduce
monotonicity outliers (violations). For example, for an increasing monotonic feature, we reduce the
label and increase the value of the monotonic feature. Table 5 shows that our approach produces
more robust models, with COMET improving baseline model quality.

Table 5: With monotonicity data outliers, COMET produces models that are more robust than the baseline models
(NNb) for regression (MSE, Left Table) and classification (Accuracy, Right Table) datasets.

Dataset Features NNb COMET

Auto-
MPG

Weight 13.54±4.65 10.50±1.87
Displ. 12.00±2.94 10.34±1.25
W,D 15.35±2.30 13.84±3.09
W,D,HP 10.26±2.19 9.48±1.29

Boston Rooms 12.79±3.88 10.23±1.95
Crime 21.13±4.41 19.20±6.64

Dataset Features NNb COMET

Heart
Trestbps 0.77±0.07 0.78±0.07
Chol. 0.77±0.06 0.77±0.06
T,C 0.77±0.06 0.81±0.03

Adult Cap. Gain 0.82 0.82
Hours 0.82 0.82

5 Related Work

Monotonic Networks. Liu et al. [31] propose a concurrent work that uses verification techniques to
learn certified monotonic networks. The approach encodes an arbitrary ReLU neural network using
mixed-integer linear programming and solves an optimization problem to verify monotonicity. The
optimization problem is to identify if the minimum derivative of the function is non-negative. Further,
the approach learns monotonic networks by training with heuristic monotonicity regularizations and
gradually increasing the regularization magnitude until it passes the monotonicity verification. We
differ from this work in two ways. First, our envelope technique produces a monotonic version of
an arbitrary ReLU neural network without having to retrain it. Second, we solve an optimization
problem to identify the maximum violation for a given point, which is necessary for the envelope
construction.

Other related work in this area can be categorized into algorithms that (1) guarantee monotonicity
by restricting the hypothesis space, or (2) incorporate monotonicity during learning without any
guarantees. In the first category, Archer and Wang [3] propose a monotone model by constraining
the neural net weights to be positive. Other methods enforce constraints on model weights [11, 46,
33, 15, 2] and force the derivative of the output to be strictly positive [47]. Monotonic networks [40]
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guarantee monotonicity by constructing a three-layer network using monotonic linear embedding and
max-min-pooling. Daniels and Velikova [12] generalized this approach to handle functions that are
partially monotonic. Deep lattice networks (DLN) [53] proposed a combination of linear calibrators
and lattices for learning monotonic functions. Lattices are structurally rigid thereby restricting the
hypothesis space significantly. Our envelope technique is similar to these works in that it guarantees
monotonicity. However, it does so at prediction time and can do so for any ReLU neural networks,
without needing to restrict the hypothesis space further. Finally, isotonic regression [4, 37] requires
the training data to be partially ordered, which is unlikely to happen; in general input points over
many features are not partially ordered.

In the second category, monotonicity can be incorporated in the learning process by modifying the
loss function or by adding additional data. Monotonicity Hints [41] proposes a modified loss function
that penalizes non-monotonicity of the model. The algorithm models the input distribution as a joint
Gaussian estimated from the training data and samples random pairs of monotonic points that are
added to the training data. Gupta et. al. [23] introduce a point-wise loss function that acts as a soft
monotonicity constraint. Our approach is similar to these works in that it adds additional data to
enforce monotonicity. However, COMET’s counterexample-guided learning and envelope technique
together guarantee monotonicity, while these works provide no such guarantees. In addition, unlike
prior work, we look beyond the neighborhood of a training point by identifying maximal violations.
Other works enforce monotonicity to accelerate learning of probabilistic models in data-scarce and
knowledge-rich domains [34, 1, 52]. Similarly, these works fail to provide any formal guarantee for
the learned model.

Verification of Neural Networks and Adversarial Learning. Reluplex [28], an augmented SMT
solver, verifies properties of networks with ReLU activation functions. Huang et. al. [27] leverage
SMT for verification of safety properties by discretizing the continuous region around an input and
show that there are no counterexamples. Our approach leverages the SMT encodings of neural
networks from this prior work but uses them only to obtain counterexamples rather than for verifica-
tion. Recently, many approaches propose adversarially robust algorithms which can be divided into
empirical [30, 32, 21, 22] and certified defenses [48, 43, 35, 26, 36, 42, 18]. We are closely related
to these works, in that we carry out adversarial training using counterexamples. However, we differ
in two ways. First, to the best of our knowledge, there is no related work in the adversarial robustness
literature for ensuring monotonicity. Second, related work in adversarial training only ensures cor-
rectness in the neighborhood of a training point, while we globally search for a counterexample and
are able to discover long-range monotonicity violations. Counterexample-driven learning has also
been used to enforce fairness constraints on Bayesian classifiers [8].

6 Conclusions & Future Work

We presented two algorithms that incorporate monotonicity constraints into neural networks:
counterexample-guided prediction that guarantees monotonicity and counterexample-guided training
that enforces monotonicity as an inductive bias. We demonstrate the effectiveness of these techniques
on regression and classification tasks.

In the future, we plan to further increase the scalability of COMET and study how to modify neural
network learning algorithms in order to enable that scalability. Moreover, scalability could potentially
be improved by using specialized SMT solvers, or by using MaxSMT solvers instead of OMT for
finding maximal counterexamples. Our approach is not limited to ReLU activation functions: other
activation functions with an SMT encoding are amenable to counterexample-guided learning. Another
interesting direction for future work is to study other types of inductive bias, such as those coming
from algorithmic fairness. We plan to explore new strategies that use counterexamples to learn with
and enforce these desirable properties.
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