Appendix

CSI: Novelty Detection via Contrastive Learning
on Distributionally Shifted Instances

A Experimental details

Training details. We use ResNet-18 [20] as the base encoder network fy and 2-layer multi-layer
perceptron with 128 embedding dimension as the projection head g4. All models are trained by
minimizing the final loss L¢gr (5) with a temperature of 7 = 0.5. We follow the same optimization
step of SIimCLR [5]. For optimization, we train CSI with 1,000 epoch under LARS optimizer [72]
with weight decay of 1e—6 and momentum with 0.9. For the learning rate scheduling, we use linear
warmup [16] for early 10 epochs until learning rate of 1.0 and decay with cosine decay schedule
without a restart [41]. We use batch size of 512 for both vanilla SimCLR and ours: where the batch
is given by B for vanilla SimCLR and the aggregated one | J. g Bs for ours. Furthermore, we use
global batch normalization (BN) [27], which shares the BN parameters (mean and variance) over the
GPUs in distributed training.

For supervised contrastive learning (SupCLR) [30] and supervised CSI, we select the best temperature
from {0.07,0.5}: SupCLR recommend 0.07 but 0.5 was better in our experiments. For training the
encoder fy, we use the same optimization scheme as above, except using 700 for the epoch. For
training the linear classifier, we train the model for 100 epochs with batch size 128, using stochastic
gradient descent with momentum 0.9. The learning rate starts at 0.1 and is dropped by a factor of 10
at 60%, 75%, and 90% of the training progress.

Data augmentation details. We use SimCLR augmentations: Inception crop [64], horizontal flip,
color jitter, and grayscale for random augmentations 7, and rotation as shifting transformation S.
The detailed description of the augmentations are as follows:

* Inception crop. Randomly crops the area of the original image with uniform distribution
0.08 to 1.0. After the crop, cropped image are resized to the original image size.

* Horizontal flip. Flips the image horizontally with 50% of probability.

* Color jitter. Change the hue, brightness, and saturation of the image. We transform the
RGB (red, green, blue) image into an HSV (hue, saturation, value) image format and add
noise to the HSV channels. We apply color jitter with 80% of probability.

* Grayscale. Convert into a gray image. Randomly apply a grayscale with 20% of probability.

* Rotation. We use rotation as S, the shifting transformation, {0°,90°, 180°, 270°}. For a
given batch B3, we apply each rotation degree to obtain the new batch for CSI: | Jg g Bs.

.-x‘é

(a) Original (b) Inception crop (c) Horizontal flip (d) Color jitter (e) Grayscale

Figure 2: Visualization of original image and SimCLR augmentations.
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Dataset details. For one-class datasets, we train one class of CIFAR-10 [33], CIFAR-100 (super-
class) [33], and ImageNet-30 [25]. CIFAR-10 and CIFAR-100 consist of 50,000 training and 10,000
test images with 10 and 20 (super-class) image classes, respectively. ImageNet-30 contains 39,000
training and 3,000 test images with 30 image classes.

For unlabeled and labeled multi-class datasets, we train ResNet with CIFAR-10 and ImageNet-30.
For CIFAR-10, out-of-distribution (OOD) samples are as follows: SVHN [48] consists of 26,032
test images with 10 digits, resized LSUN [39] consists of 10,000 test images of 10 different scenes,
resized ImageNet [39] consists of 10,000 test images with 200 images classes from a subset of full
ImageNet dataset, Interp. consists of 10,000 test images of linear interpolation of CIFAR-10 test
images, and LSUN (FIX), ImageNet (FIX) consists of 10,000 test images, respectively with following
details in Appendix I. For multi-class ImageNet-30, OOD samples are as follows: CUB-200 [67],
Stanford Dogs [29], Oxford Pets [51], Oxford Flowers [49], Food-101 [3] without the “hotdog” class
to avoid overlap, Places-365 [75] with small images (256 * 256) validation set, Caltech-256 [18], and
Describable Textures Dataset (DTD) [8]. Here, we randomly sample 3,000 images to balance with
the in-distribution test set.

Evaluation metrics. For evaluation, we measure the two metrics that each measures (a) the effective-
ness of the proposed score in distinguishing in- and out-of-distribution images, (b) the confidence
calibration of softmax classifier.

* Area under the receiver operating characteristic curve (AUROC). Let TP, TN, FP, and
FN denote true positive, true negative, false positive and false negative, respectively. The
ROC curve is a graph plotting true positive rate = TP / (TP+FN) against the false positive
rate = FP / (FP+TN) by varying a threshold.

* Expected calibration error (ECE). For a given test data {(z,,y,)}\_,, we group the
predictions into M interval bins (each of size 1/M). Let B,,, be the set of indices of samples

whose prediction confidence falls into the interval (—m]\/’[1 , 37 )- Then, the expected calibration
error (ECE) [45, 19] is follows:
M 1B,
ECE = - B,,) — conf(By,)|, 13
m§:1 N lacc(By,) — conf (B, )] (13)

where acc(B,,) is accuracy of B,,: acc(By,) = ﬁ > ieB,, Vyi=argmax, p(y|z:)} Where
1 is indicator function and conf(B,,,) is confidence of B,,,: conf(B,,,) = ﬁ Dic B, q(x;)
where ¢(z;) is the confidence of data ;.
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B Detailed review on related work

B.1 OOD detection

Out-of-distribution (OOD) detection is a classic and essential problem in machine learning, studied
under different names, e.g., novelty or anomaly detection [26]. In this paper, we primarily focus on
unsupervised OOD detection, which is arguably the most traditional and popular setup in the field
[59]. In this setting, the detector can only access in-distribution samples while required to identify
unseen OOD samples. There are other settings, e.g., semi-supervised setting - the detector can access
a small subset of out-of-distribution samples [24, 57], or supervised setting - the detector knows the
target out-of-distribution, but we do not consider those settings in this paper. We remark that the
unsupervised setting is the most practical and challenging scenario since there are infinitely many
cases for out-of-distribution, and it is often not possible to have such external data.

Most recent works can be categorized as: (a) density-based [74, 46, 6, 47, 11, 55, 61, 17], (b)
reconstruction-based [58, 76, 9, 54, 52, 7], (c) one-class classifier [59, 56, 57], and (d) self-supervised
[15, 25, 2] approaches. We note that there are more extensive literature on this topic, but we mainly
focus on the recent work based on deep learning. Brief description for each method are as follows:

* Density-based methods. Density-based methods are one of the most classic and principled
approaches for OOD detection. Intuitively, they directly use the likelihood of the sample
as the detection score. However, recent studies reveal that the likelihood is often not the
best metric - especially for deep neural networks with complex datasets [46]. Several work
thus proposed modified scores, e.g., typicality [47], WAIC [6], likelihood ratio [55], input
complexity [61], or unnormalized likelihood (i.e., energy) [11, 17].

* Reconstruction-based methods. Reconstruction-based approach is another popular line
of research for OOD detection. It trains an encoder-decoder network that reconstructs the
training data in an unsupervised manner. Since the network would less generalize for unseen
OOD samples, they use the reconstruction loss as a detection score. Some works utilize
auto-encoders [76, 54] or generative adversarial networks [58, 9, 52].

* One-class classifiers. One-class classifiers are also a classic and principled approach for
OOD detection. They learn a decision boundary of in- vs. out-of-distribution samples by
giving some margin covering the in-distribution samples [59]. Recent works have shown
that the one-class classifier is effective upon the deep representation [56].

* Self-supervised methods. Self-supervised approaches are a relatively new technique based
on the rich representation learned from self-supervision [14]. They train a network with a
pre-defined task (e.g., predict the angle of the rotated image) on the training set, and use
the generalization error to detect OOD samples. Recent self-supervised approaches show
outstanding results on various OOD detection benchmark datasets [15, 25, 2].

Our work falls into (c) the self-supervised approach [15, 25, 2]. However, unlike prior work focusing
on the self-label classification tasks (e.g., rotation [14]) which trains an auxiliary classifier to predict
the transformation applied to the sample, we first incorporate contrastive learning [5] for OOD
detection. To that end, we design a novel detection score utilizing the unique characteristic of
contrastive learning, e.g., the features in the projection layer learned by cosine similarity. We also
propose a novel self-supervised training scheme that further improves the representation for OOD
detection. Nevertheless, we acknowledge that the prior work largely inspired our work. For instance,
the classifying shifted instances loss (4) follows the form of auxiliary classifiers [25], which gives
further improvement upon our novel contrasting shifted instances loss (3).

Concurrently, Winkens et al. [68] and Liu and Abbeel [40] report the similar observations that
contrastive learning also improves the OOD detection performance of classifiers [39, 38, 25]. Winkens
et al. [68] jointly train a classifier with the SImCLR [5] objective and use the Mahalanobis distance
[38] as a detection score. Liu and Abbeel [40] approximates JEM [17] (a joint model of classifier and
energy-based model [11]) by a combination of classification and contrastive loss and use density-
based detection scores [17]. In contrast to both work, we mainly focus on the unlabeled OOD setting
(although we also discuss the confident-calibrated classifiers). Here, we design a novel detection
score, since how to utilize the contrastive representation (which is learned in an unsupervised manner)
for OOD detection have not been explored before.
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B.2 Confidence-calibrated classifiers

Another line of research is on confidence-calibrated classifiers [22], which relaxes the overconfidence
issue of the classifiers. There are two types of calibration: (a) in-distribution calibration [45, 19], that
aligns the uncertainty and the actual accuracy, measured by ECE, and (b) out-of-distribution detection
[22, 37], that reduces the uncertainty of OOD samples, measured by AUROC. Note that the goal of
confidence-calibrated classifiers is to regularize the prediction. Hence, the softmax probability is used
for all three tasks: classification, in-distribution calibration, and out-of-distribution detection. Namely,
the detection score is given by the prediction confidence (or maximum softmax probability) [22].
Prior works improved calibration through inference (temperature scaling) [19] or training (regularize
predictions of OOD samples) [37] schemes, which can be jointly applied to our method. Some works
design a specific detection score upon the pre-trained classifiers [39, 38], but they only target OOD
detection, while ours also consider the in-distribution calibration.

B.3 Self-supervised learning

Self-supervised learning [14, 32] has shown remarkable success in learning representations. In par-
ticular, contrastive learning [13] via instance discrimination [69] show the state-of-the-art results
on visual representation learning [21, 5]. However, most prior works focus on improving the down-
stream task performance (e.g., classification), and other advantages of self-supervised learning (e.g.,
uncertainty or robustness) are rarely investigated [25, 31]. Our work, concurrent with [40, 68], first
verifies that contrastive learning is also effective for OOD detection.

Furthermore, we find that the shifting transformations, which were known to be harmful and unused
for the standard contrastive learning [5], can help OOD detection. This observation provides new
considerations for selecting transformations, i.e., which transformation should be used for positive or
negative [66, 71]. Specifically, Tian et al. [66] claims the optimal views (or transformations) of the
positive pairs should minimize the mutual information while keeping the task-relevant information.
It suggests that the shifting transformation may not contain the information for classification, but
may contain OOD detection information when used for the negative pairs. Xiao et al. [71] suggests
a framework that automatically learns whether the transformation should be positive or negative.
One could consider incorporating our principle on shifting transformation (i.e., OOD-ness); OOD
detection could be another evaluation metric for the learned representations.
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C Additional one-class OOD detection results

Table 8 presents the confusion matrix of AUROC values of our method on one-class CIFAR-10
datasets, where bold denotes the hard pairs. The results align with the human intuition that ‘car’ is
confused to ‘ship’ and ‘truck’, and ‘cat’ is confused to ‘dog’.

Table 9 presents the OOD detection results of various methods on one-class CIFAR-100 (super-class)
datasets, for all 20 super-classes. Our method outperforms the prior methods for all classes.

Table 10 presents the OOD detection results of our method on one-class ImageNet-30 dataset, for all
30 classes. Our method consistently performs well for all classes.

Table 8: Confusion matrix of AUROC (%) values of our method on one-class CIFAR-10. The row
and column indicates the in-distribution and OOD class, respectively, and the final column indicates
the mean value. Bold denotes the values under 80%, which implies the hard pair.

Plane Car Bird Cat Deer Dog Frog Horse Ship Truck | Mean

741 958 984 949 980 962 90.1 79.6 828 90.0
999 999 998 999 998 997 987 95.0 99.1
973 87.0 925 96.1 832 964 98.0 93.2
833 67.0 896 790 928 919 86.4
947 987 69.0 974 988 93.8
96.8 76.6 98.6 983 934

Plane -
Car 99.3 -
Bird 91.1 975 -
Cat 919 915 903 -
Deer 957 984 949 96.6 -
Dog 979 985 955 903 88.1 -
Frog 936 923 946 96.1 96.8 96.3 - 95.2 944 973 95.2
Horse 993 99.5 99.0 993 942 974 99.8 - 99.7 99.4 98.6
Ship 96.6 912 995 997 994 99.7 995 99.3 - 96.6 97.9
Truck 962 723 994 99.5 99.1 994 98.7 98.3 96.2 - 95.5

Table 9: AUROC (%) values of various OOD detection methods trained on one-class CIFAR-100
(super-class). Each row indicates the results of the selected super-class, and the final row indicates
the mean value. * denotes the values from the reference, and bold denotes the best results.

OC-SVM* DAGMM* DSEBM* ADGAN* Geom® Rot Rot+Trans GOAD CSI (ours)

0 68.4 434 64.0 63.1 74.7 78.6 79.6 73.9 86.3
1 63.6 49.5 479 64.9 68.5 73.4 73.3 69.2 84.8
2 52.0 66.1 53.7 41.3 74.0 70.1 71.3 67.6 88.9
3 64.7 52.6 48.4 50.0 81.0 68.6 73.9 71.8 85.7
4 582 56.9 59.7 40.6 78.4 78.7 79.7 72.7 93.7
5 54.9 524 46.6 42.8 59.1 69.7 72.6 67.0 81.9
6 57.2 55.0 51.7 51.1 81.8 78.8 85.1 80.0 91.8
7 62.9 52.8 54.8 554 65.0 62.5 66.8 59.1 83.9
8 65.6 532 66.7 59.2 85.5 84.2 86.0 79.5 91.6
9 74.1 42.5 71.2 62.7 90.6 86.3 87.3 83.7 95.0
10 84.1 52.7 78.3 79.8 87.6 87.1 88.6 84.0 94.0
11 58.0 46.4 62.7 53.7 83.9 76.2 77.1 68.7 90.1
12 68.5 42.7 66.8 58.9 83.2 83.3 84.6 75.1 90.3
13 64.6 45.4 52.6 574 58.0 60.7 62.1 56.6 81.5
14 51.2 572 44.0 394 92.1 87.1 88.0 83.8 94.4
15 62.8 48.8 56.8 55.6 68.3 69.0 71.9 66.9 85.6
16 66.6 54.4 63.1 63.3 73.5 71.7 75.6 67.5 83.0
17 73.7 36.4 73.0 66.7 93.8 922 93.5 91.6 97.5
18 52.8 524 57.7 44.3 90.7 90.4 91.5 88.0 95.9
19 58.4 50.3 55.5 53.0 85.0 86.5 88.1 82.6 95.2
Mean 63.1 50.6 58.8 55.2 78.7 71.7 79.8 74.5 89.6

Table 10: AUROC (%) values of our method trained on one-class ImageNet-30. The first and third
row indicates the selected class, and the second and firth row indicates the corresponding results.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
859 99.0 99.8 905 958 992 96.6 835 922 843 99.0 945 971 877 964

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
847 997 756 952 738 947 952 992 985 825 89.7 821 972 821 97.6
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D Ablation study on random augmentation

We verify that ensembling the scores over the random augmentations 7 improves OOD detection.
However, naive random sampling from the entire 7 is often sample inefficient. We find that choosing
a proper subset Teontror C T improves the performance for given number of samples. Specifically,
we choose Tcontror as the set of the most common samples. For example, the size of the cropping area
is sampled from ¢/[0.08, 1] for uniform distribution ¢/ during training. Since the rare samples, e.g.,
area near 0.08 increases the noise, we only use the samples with size (0.08 + 1)/2 = 0.54 during
inference. Table 11 shows random sampling from the controlled set often gives improvements.

Table 11: AUROC (%) values of our method for different number of random augmentations, under
one-class (OC-) CIFAR-10 and CIFAR-100 (super-class). The values are averaged over classes.
Random augmentations over the controlled set show the best performance.

# of samples  Controlled OC-CIFAR-10 OC-CIFAR-100

4 - 92.22 87.36
40 - 94.13 89.51
40 v 94.31 89.55

E Efficient computation of (6) via coreset

One can reduce the computation and memory cost of the contrastive score (6) by selecting a proper
subset, i.e., coreset, of the training samples. To this end, we run K-means clustering [44] on the
normalized features W,,, := z(x,,)/||2(x., )| using cosine similarity as a metric. Then, we use the
center of each cluster as the coreset. For contrasting shifted instances (4), we choose the coreset for
each shifting transformation S. Table 12 shows the results for various coreset sizes, given by a ratio
from the full training samples. Keeping only a few (e.g., 1%) samples is sufficient.

Table 12: AUROC (%) values of our method for various corset sizes (% of training samples), under
one-class (OC-) CIFAR-10, CIFAR-100 (super-class), and ImageNet-30. The values are averaged
over classes. Keeping only a few (e.g., 1%) samples shows sufficiently good results.

Coreset (%) OC-CIFAR-10 OC-CIFAR-100  OC-ImageNet-30

1% 94.22 89.27 91.06
10% 94.30 89.46 91.51
100% 94.31 89.55 91.63
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F Ablation study on the balancing terms

We study the effects of the balancing terms A, A% in Section 2.3. To this end, we compare of
our final loss (5), without (w/0) and with (w/) the balancing terms AZ" and )\g}s. When not using
the balancing terms, we set A§™ = A\§'® = 1 for all S. We follow the experimental setup of Table 1,
e.g., use rotation for the shifting transformation. We run our experiments on CIFAR-10, CIFAR-100
(super-class), and ImageNet-30 datasets. Table 13 shows that the balancing terms gives a consistent
improvement. CIFAR-10 do not show much gain since all A§™ and A\§'S show similar values; in
contrast, CIFAR-100 (super-class) and ImageNet-30 show large gain since they varies much.

Table 13: AUROC (%) values of our method without (w/o0) and with (w/) balancing terms, under
one-class (OC-) CIFAR-10, CIFAR-100 (super-class), and ImageNet-30. The values are averaged
over classes, and bold denotes the best results. Balancing terms give consistent improvements.

OC-CIFAR-10 OC-CIFAR-100  OC-ImageNet-30

CSI (w/o balancing) 94.28 89.00 91.04
CSI (w/ balancing) 94.31 89.55 91.63

G Combining multiple shifting transformations

We find that combining multiple shifting transformations: given two transformations S; and Ss, use
S1 X Sy as the combined shifting transformation, can give further improvements. Table 14 shows
that combining “Noise”, “Blur”, and “Perm” to “Rotate” gives additional gain. We remark that one
can investigate the better combination; we choose rotation for our experiments due to its simplicity.

Table 14: AUROC (%) values of our method under various shifting transformations. Combining
“Noise”, “Blur”, and “Perm” to “Rotate” gives additional gain.

Base \Noise Blur Perm Rotate Rotate+Noise Rotate+Blur Rotate+Perm
AUROC 87.89 \ 89.29 89.15 90.68 94.31 94.65 94.66 94.60
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H Discussion on the features of the contrastive score (6)

We find that the two features: a) the cosine similarity to the nearest training sample in {x,, }, i.e.,
max,, sim(z(z,), z(x)), and (b) the feature norm of the representation, i.e., ||z(x)||, are important
features for detecting OOD samples under the SimCLR representation.

In this section, we first demonstrate the properties of the two features under vanilla SimCLR. While
we use the vanilla SImCLR to validate they are general properties of SimCLR, we remark that our
training scheme (see Section 2.2) further improves the discrimination power of the features. Next, we
verify that cosine similarity and feature norm are complementary, that combining both features (i.e.,
Scon (0)) give additional gain. For the latter one, we use our final training loss to match the reported
values in prior experiments, but we note that the trend is consistent among the models.

First, we demonstrate the effect of cosine similarity for OOD detection. To this end, we train vanilla
SimCLR using CIFAR-10 and CIFAR-100 and in- and out-of-distribution datasets. Since SimCLR
attracts the same image with different augmentations, it learns to cluster similar images; hence,
it shows good discrimination performance measured by linear evaluation [5]. Figure 3a presents
the t-SNE [43] plot of the normalized features that each color denote different class. Even though
SimCLR is trained in an unsupervised manner, the samples of the same classes are gathered.

Figure 3b and Figure 3c presents the histogram of the cosine similarities from the nearest training
sample (i.e., max,, sim(z(x,, ), z(z))), for training and test datasets, respectively. For the training set,
we choose the second nearest sample since the nearest one is itself. One can see that training samples
are concentrated, even though contrastive learning pushes the different samples. It complements the
results of Figure 3a. For test sets, the in-distribution samples show a similar trend with the training
samples. However, the OOD samples are farther from the training samples, which implies that the
cosine similarity is an effective feature to detect OOD samples.

t-SNE visualization of features Histogram of cosine similarities Histogram of cosine similarities

= Train (CIFAR-10) 800 | mmm IN (CIFAR-10)
mEE OUT (CIFAR-100)

40 4000

20 3000

Count

2000

t-SNE axis 2

=20
1000

—40

0.8 0.9 10 0.7 0.8 0.9 1.0
t-SNE axis 1 Cosine similarity Cosine similarity
(a) t-SNE visualization (b) Similarities (train) (c) Similarities (test)

Figure 3: Plots for cosine similarity.
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Second, we demonstrate that the feature norm is a discriminative feature for OOD detection. Fol-
lowing the prior setting, we use CIFAR-10 and CIFAR-100 for in- and out-of-distribution datasets,
respectively. Figure 4a shows that the discriminative power of feature norm improves as the training
epoch increases. We observe that this phenomenon consistently happens over models and settings;
the contrastive loss makes the norm of in-distribution samples relatively larger than OOD samples.
Figure 4b shows the norm of CIFAR-10 is indeed larger than CIFAR-100, under the final model.

This is somewhat unintuitive since the SImCLR uses the normalized features to compute the loss (1).
To understand this phenomenon, we visualize the t-SNE [43] plot of the feature space in Figure 4c,
randomly choosing 100 images from both datasets. We randomly augment each image for 100 times
for better visualization. One can see that in-distribution samples tend to be spread out over the large
sphere, while OOD samples are gathered near center.* Also, note that the same image with different
augmentations are highly clustered, while in-distribution samples are slightly more assembled.’

We suspect that increasing the norm may be an easier way to maximize cosine similarity between
two vectors: instead of directly reducing the feature distance of two augmented samples, one can also
increase the overall norm of the features to reduce the relative distance of two samples.

AUROC over epohcs (score: norm) Histogram of norms t-SNE visualization of features
65 00 EE N (CIFAR-10) 40 “o ¢ IN(CIFAR-10)
EEE OUT (CIFAR-100) L2 ouT (CIFAR 100)
ol 400 Y = \ ”- -"" !
g = 2
g 63 3 300 5oy Vo =,
g < G 0] T esy’ 2 o
200 n -
<62 o -.‘,_'q:" ,‘?' -
100 —40 - -'
61 == CIFAR-10 -> CIFAR-100
0 2 4 6 8 10 0 100 -60 —-40 -20 0 20 40
Epoch Norm t-SNE axis 1
(a) Trend of AUROC (b) Histogram of norms (c) t-SNE visualization

Figure 4: Plots for feature norm.

Finally, we verify that cosine similarity (sim-only) and feature norm (norm-only) are complementary:
combining them (sim+norm) gives additional improvements. Here, we use the model trained by our
final objective (5), and follow the inference scheme of the main experiments (see Table 7). Table 15
shows AUROC values under sim-only, norm-only, and sim+norm scores. Using only sim or norm
already shows good results, but combining them shows the best results.

Table 15: AUROC (%) values for sim-only, norm-only, and sim+norm (i.e., contrastive (6)) scores,
under one-class (OC-) CIFAR-10, CIFAR-100 (super-class), and ImageNet-30. The values are
averaged over classes. Using both sim and norm features shows the best results.

OC-CIFAR-10  OC-CIFAR-100  OC-ImageNet-30

Sim-only 90.12 86.57 83.18
Norm-only 92.70 87.71 88.56
Sim+Norm 93.32 88.79 89.32

*t-SNE plot does not tell the true behavior of the original feature space, but it may give some intuition.
SWe also try the local variance of the norm as a detection score. It also works well, but the norm is better.
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I Rethinking OOD detection benchmarks

We find that resized LSUN and ImageNet [39], one of the most popular benchmark datasets for OOD
detection, are visually far from in-distribution datasets (commonly, CIFAR [33]). Figure 5 shows
that resized LSUN and ImageNet contain artificial noises, produced by broken image operations.® It
is problematic since one can detect such datasets with simple data statistics, without understanding
semantics from neural networks. To progress OOD detection research one step further, one needs
more hard or semantic OOD samples that cannot be easily detected by data statistics.

To verify this, we propose a simple detection score that measures the input smoothness of an image.
Intuitively, noisy images would have a higher variation in input space than natural images. Formally,
let 2(%7) be the i-th value of the vectorized image x € R¥W X Here, we define the neighborhood N
as the set of spatially connected pairs of pixel indices. Then, the total variation distance is given by

TV(z) = Y [z — 2|3, (14)
i,jJEN

Then, we define the smoothness score as the difference of total variation from the training samples:
1
Samooen(7) = TV (x) = - ; TV(2m)]. (15)

Table 16 shows that this simple score detects current benchmark datasets surprisingly well.

To address this issue, we construct new benchmark datasets, using a fixed resize operation7, hence
coined LSUN (FIX) and ImageNet (FIX). For LSUN (FIX), we randomly sample 1,000 images from
every ten classes of the training set of LSUN. For ImageNet (FIX), we randomly sample 10,000

CEINT) ELINNT3

images from the entire training set of ImageNet-30, excluding “airliner”, “ambulance”, “parking-
meter”, and “schooner” classes to avoid overlapping with CIFAR-10.® Figure 6 shows that the new
datasets are more visually realistic than the former ones (Figure 5). Also, Table 16 shows that the
fixed datasets are not detected by the simple data statistics (15). We believe our newly produced
datasets would be a stronger benchmark for hard or semantic OOD detection for future researches.

Figure 5: Current benchmark datasets: resized LSUN (left two) and ImageNet (right two).

1N

Figure 6: Proposed datasets: LSUN (FIX) (left two) and ImageNet (FIX) (right two).

®It is also reported in https://twitter.com/jaakkolehtinen/status/1258102168176951299.
"We use PyTorch torchvision.transforms.Resize () operation.
8We provide the datasets and data generation code in https://github.com/alinlab/CSI.
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Table 16: AUROC (%) values using the smoothness score (15), under unlabeled CIFAR-10. Bold
denotes the values over 80%, which implies the dataset is easily detected.

CIFAR10 —
SVHN LSUN ImageNet LSUN (FIX) ImageNet (FIX) CIFAR-100 Interp.
85.88  95.70 90.53 44.13 52.76 52.14 66.17

J Additional examples of rotation-invariant images

We provide additional examples of rotation-invariant images (see Table 6 in Section 3.2). Those image
commonly appear in real-world scenarios since many practical applications deal with non-natural
images, e.g., manufacturing - steel [62] or textile [60] for instance, or aerial [70] images. Figure 7
and Figure 8 visualizes the samples of manufacturing and aerial images, respectively.
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Figure 8: Examples of aerial images.
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