
We thank all reviewers for helpful comments. We are excited to know that everyone feels that this work is worth a publication1

at NeurIPS. We are encouraged they found our idea is novel (R3,4), our insight is clear and valuable (R1), our improvements2

are notable (R1) and our applications are interesting (R1,3).3

To R1: Thanks for your thoughtful comments and support for the paper! Regarding the process to set the number of hash4

tables and tune the boundary of each partitioned region, we proposed a simple hyper-parameter tuning strategy which only5

includes two knobs. Although the boundaries of the partitioned regions are not optimal, our Figure 5 in the appendix also6

suggests that the performance of Ada-BF and disjoint Ada-BF is not sensitive to the choice of hyper-parameters. Thanks for7

the suggestion, we will put a detailed discussion in the appendix on the effect of those knobs.8

To R3: Thanks for your thoughtful comments and support for the paper! We like the idea to add a thorough discussion9

contrasting all the three variants of bloom filters with details. Regarding the comparison of model assumptions between10

Ada-BF and LBF (learned Bloom filter) or NBF (Neural Bloom filter). Our work is built on the assumption similar to LBF11

that the score distribution is static. While NBF assumes the meta-learning model can generalize to different classification12

tasks instead of a specific query distribution. So, if the meta-learning model can generalize well, NBF is a good idea.13

However, our methods and LBF may enjoy the following advantages:14

1) Less Requirement of Model Accuracy: Compared to NBF, Ada-BF does not require a machine learning model to be15

very accurate. For example, we use a weaker learner, whose accuracy ≈ 0.90, for our malicious URL experiment. This16

classifier is not strong because a degenerate classifier which just labels everything as the most frequent class (just classify as17

benign URL as malicious is rare) gives you accuracy of 0.82. Figure 1a suggests Ada-BF still reduces the memory cost by18

1/3 compared to LBF, and reduced over 45% memory usage compared to vanilla BF.19

2) Smaller Model Size: If the model size is too large, all the learned Bloom filters are worse than vanilla (non-learned)20

Bloom filter. To achieve good generalization performance across different tasks, NBF requires a meta-learning model which21

is usually large in size. While LBF and Ada-BF can use a smaller model to adapt to a specific task. In our experiment, we22

use simple random forest models and even after taking the model size into account, our experiment results (see paper Figure23

4a) suggest Ada-BF and LBF reduce the memory footprint by 50% compared to the LBF and SLBF.24

R3’s idea is an excellent future direction. Our proposed Ada-BF can be used over any partitioning of the data. Partitioning25

of higher dimensional space using VAE instead of a one-dimensional classifier score can lead to novel variants. The nice26

thing about Ada-BF framework is that it only needs to get a (crude) estimate of the ratio of the density of keys over the27

density of non-keys (fkeys(x)
fnon−keys(x)

) across different partitioned regions. With this information, Ada-BF will achieve better28

FPR compared to LBF!

250 300 350 400 450 500
Bitmap Size (Kb)

0.0%

2.0%

4.0%

6.0%

8.0%

Fa
lse

 P
os
iti
ve
 R
at
e

False Positive Rates Comparison
BF
LBF
sandwiched LBF
Ada-BF
disjoint Ada-BF

(a) FPR of learned Bloom filters using weaker learner

5.0%
10.0%
15.0%

False Positive Rates Comparison

50 60 70 80 90 100
Bitmap Size (Kb)

0.00%
0.20%
0.40%
0.60%
0.80%
1.00%
1.20%
1.40%
1.60%

Fa
lse

 P
os

iti
ve

 R
at
e

BF
LBF
sandwiched LBF
Ada-BF
disjoint Ada-BF

(b) Fake news experiment
29

To R4: Thanks for your thoughtful comments and support for the paper! Here we address some concerns about our methods:30

1) Why not just Ada-BF instead of disjoint Ada-BF: although disjoint Ada-BF is a bit worse than Ada-BF in terms of lower31

FPR. However, disjoint Ada-BF enjoys some benefits during deployment. Disjoint Ada-BF has several separate Bloom filters32

that can be deployed on distributed servers. To query a key, we only need a central server to infer the score then send the key33

to the corresponding Bloom filter to decide the membership.34

2) When our algorithms perform better than LBF: Ada-BF and disjoint Ada-BF generalize the learned Bloom filter (LBF).35

If we only partition the score into two regions, Ada-BF and disjoint Ada-BF are reduced to a standard LBF. Hence, the36

performance of our algorithms are at least as good as LBF for any dataset.37

3) Computation overhead: Our algorithms did not add a lot of extra computation overhead during the query process. Using38

the malicious URL experiment as an example, when sketch size = 400 Kb, vanilla BF, LBF, Ada-BF, disjoint Ada-BF use 3,39

6.98, 9.40 and 12.07 hashing operations for each query. The slight extra hashing cost is negligible as it takes 10 nano seconds40

per hash evaluations Without parallelism. Thus Ada-BF adds like 25 nano seconds overhead. The inference is also fast, it41

only takes 1s to process half million URLs (2 nano seconds per url) using the random forest model. We will add a discussion42

on these overheads.43

4) Reproducibility: the code and datasets used in the experiments are included in the supplementary materials for review. We44

also have uploaded the code to GitHub and provided detailed instructions to run the experiments.45

5) Performance in other datasets: Given the suggestion, we experimented on a new task with dataset having different46

characteristics. The dataset consists of tweets flagged as fake. The task is to use bloom filter to quickly check (in very small47

memory) whether a tweet is known fake or not. Figure 1b suggests the Ada-BF and disjoint BF reduce the memory cost by48

45% to 50% compared to LBF and SLBF. We will add details to the paper. Clearly, the results make our paper stronger.49

