Supplementary material for “Manifold structure in graph embeddings”

Proof of Theorem[3] We have

/Rd (k(z,-), k(y, ) g(y)dy = /Rd Z]: |\jlug(z)ui(y)g(y)dy = [Alg(y)

— /Rd [fo(z,y) + [ (2, 9)]g(y)dy,

and therefore

<k($,),k‘(y,)> =f+(x,y)+f7(x7y) (1)
almost everywhere. Explicitly, there exists N C R? x R? with Lebesgue measure zero such that the
two are equal in R x R?\ N. The set Ny = {z € R?: (z,9) € N or (y,z) € N} has d-dimensional
Lebesgue measure 0 and, by absolute continuity of Z, the set £ := Z \ Ny has Hausdorff dimension
d, satisfies P(Z € Z) = 1, and Equation (1)) holds for all z,y € Z.

Let M be the image of Z under the map ¢, which in general maps any x € R? := R? \ Ny to an
element of L2 (Rd). Any cover Z C U;R; with sets in Rd gives a cover M C U;S; with sets in
L? (Rd), where each 5; is the image of R; under ¢. Note that the Hausdorff dimension of Z is not
increased when considering only such covers.

We have
= A2f+($,y) + A2f,(.7},y)
< cllz - ylI3%,
and therefore |S;| < ¢'/2|R;|® for each i. Hence, #°*(M) < ¢*/2#%*(Z) and dim(M) < d/a.
O

Lemma 4. Consider a polynomial kernel over a bounded region Z C R,
flay) = > By’ zyeZz,
loo|+|8l<k

where c¢(a, 8) = ¢(8, ) € R, and multi-index notation is used [23)], that is, ©* := [[ 2%, || :=
3 ay, for a € R a; > 0. The associated integral operator has finite rank.

Proof. Since

Ag) =Y 2 3 e, f) /Z VPay)dy,

lal<k la|+|B|<k

the function Ag is a linear combination of a finite set of L? functions {z® : |a| < k} so that, having
finite-dimensional range, the operator A has by definition finite rank [18]]. O

Lemma 5. Suppose f is analytic on Z with

o0

flay) = > co,Bay’, zyeZ,
lel+18]=1
i.e., no constant term, and consider a sparse graph regime Z; = r,W; where W, o Fy and the
positive scalar sequence r,, — 0. Assume that r,, = 0(n‘2/ k), for some k € N, and that

fre(z,y) = Z c(a, B)z%y” € 10,1].
1<la|+|BI<k

A latent position model with kernel f is asymptotically indistinguishable from one with (finite rank)
kernel fy.
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Proof. The graph adjacency matrix A can be coupled with another random matrix A*) € {0, 1}7*"
so that
k
P(Ai; # AE]—) | Zi, Z5) = | f(Zs, Z5) — fr(Zs, Z5)],
and A (*) marginally follows a latent position model with kernel f. Therefore,
k
P(Ayj # A) =EIf(Zi, Z)) — ful 20, Z))],
and

P(A # AW < n2E|f(Zi, Z;) — fu(Zi, ;)]

=n’E| Y c(e,)20Z)
la|+|B|=Fk
<l 3 TLaHm‘ Bl S capwew?
la|+]B|=k la|+|B|=k
9 (2dr,,)*
—FEK W’L7W - WMW )
1—2d7"n ‘f( ]) fk( j)|

which, by the boundedness of f and f, tends to zero when n?r* — 0. Therefore A is asymptotically
indistinguishable from a graph with finite kernel rank. O

Limitations of existing infinite rank results

Under a graphon model (d = 1, £ = [0,1], Fz = uniform|0, 1]) with suitably growing D, [40]
proves consistency of X7, ..., X, in the orthogonal Wasserstein distance

d(Fx,Fx) = infi%/fEHWX - X||2,

where Fy is the empirical distribution of X 1yee- ,Xn, the pair X , X are jointly distributed as v
chosen among all distributions with respective marginals Fx and F (the distribution of X induced by
F7 under the map ¢), and finally W is some orthogonal transformation satisfying [Wg, Wh| = [g, h]
for all g, h € L?([0, 1]) (for the indefinite inner product given in Section .

While an extension to the d-dimensional case is conceivable, this line of analysis is complicated in
the present context by two issues. First, the group of transformations leaving [-, -] invariant comprises
non-orthogonal elements and can be restricted, in the graphon case, only because of the canonical
choice Fz = uniform[0, 1] (a uniform probability measure not being available in R?). Distance-
distorting transformations must be expected in general, as they are in the finite rank case (the matrices
Q,Q € O(p,q) in main text, Section E). Second, the Wasserstein consistency criterion allows
unboundedly high error in unboundedly high absolute numbers of nodes, provided their proportion
vanishes, and this may break subsequent statistical analyses of the sort proposed here.
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Figure 3: Graph regression. Different regression techniques are compared, with their achieved mean
square error in brackets, on a 100-dimensional spectral embedding. The graph follows a latent
position network model on R with kernel f(z,y) = 1 — exp(—2xy), and the embedding is therefore
concentrated about a one-dimensional manifold, shown in Figure[Tj). The responses follow a linear
model Y; = a + bZ; + ¢;. Further details in main text.

a) Sociability kernel b) Graphon c) Gaussian radial basis kernel

Figure 4: Kernel density ridge sets (red) as estimates of the underlying manifold (blue), for embed-
dings of simulated graphs described in Section [2]and also shown in Figure [T}

a) T b) c)

Figure 5: Non-linear dimension reduction of spectral embeddings. a) Graph of computer-to-computer
network flow events on the Los Alamos National Laboratory network, from the publically available
dataset [36]], with colours indicating port preference; b) graph of computer-to-computer authentication
events on the same network, with colours indicating authentication type; c) graph of consumer-
restaurant ratings, showing only the restaurants, extracted from the publically available Yelp dataset,
with colours indicating US state. In each case, the graph is embedded into R*?, followed by applying
Uniform manifold approximation [46].
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Figure 6: Spectral embedding into R?. a) Graph of computer-to-computer network flow events
on the Los Alamos National Laboratory network, from the publically available dataset [36]], with
colours indicating port preference; b) graph of computer-to-computer authentication events on the
same network, with colours indicating authentication type; c) graph of consumer-restaurant ratings,
showing only the restaurants, extracted from the publically available Yelp dataset, with colours
indicating US state.
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