
The author(s) would like to thank the reviewers for their time and expertise. This response will begin by discussing1

points shared across reviews, and will address the most critical reviewer-specific points as space permits.2

Infinite rank models. It does not seem to have been made clear enough that Examples 1 (always) and 2 (typically) are3

models where the rank D (embedding dimension) is infinite but the manifold dimension is finite (and equal to the latent4

position dimension d in Example 1). This miscommunication is apparent, for example, in Reviewer 4’s comment “it5

would be particularly interesting to know examples of classes of infinite rank models for which the authors are able6

to characterize the Hausdorff dimension from Theorem 3”. Inspired particularly by the comments of Reviewers 17

and 4, the revision will contain a larger diversity of examples, extracted from Hoff’s and co-authors’ work, wherein8

spectral embeddings almost always fall in the “finite d, infinite D” regime. Reviewer 4 asks “which classes of [these]9

infinite rank models satisfy assumption 2” and for expanded discussion of the assumption’s flexibility. The answer is10

somewhat hidden in Example 2. A positive-definite kernel f(x, y) (of arbitrary dimension, and of finite or infinite rank)11

satisfies Assumption 2 with α = 1 if its Hessian exists and is bounded along the diagonal x = y. To say the same for an12

indefinite kernel, one must replace f with its (operator-sense) absolute value f+ + f−. This point will be added.13

Selection of embedding dimension. The paper does not immediately offer an improvement to existing techniques.14

Nevertheless, in light of the reviewers’ comments, there will be added discussion of this topic in the main text, which15

was previously delegated to the supplementary material and to reference [47]. The method by Zhu & Ghodsi (2006),16

which uses a profile-likelihood-based analysis of the scree plot, has for a long time provided a functional choice for17

many practitioners and is easily used within the R package igraph. For a theoretical treatment of dimension selection,18

the cases D < ∞ and D = ∞ must be distinguished. In the former, simply finding a consistent estimate of D has19

limited practical utility: appropriately scaled eigenvalues of the adjacency matrix converge to their population value,20

and all kinds of unreasonable rank selection procedures are therefore consistent. But, to quote [47], “any quest for a21

universally optimal methodology for choosing the “best” dimension [...], in general, for finite n, is a losing proposition”.22

In the D =∞ case, reference [33] finds the appropriate rate under which to let D̂ →∞, to achieve consistency in the23

Wasserstein metric. Unlike the D <∞ case, stronger consistency, i.e., in the maximum latent position error, is not yet24

available in the D =∞ case — this is an ongoing and nontrivial effort. Reviewer 1 asks how the estimate D̂ = 10 was25

selected in Section 5.4. Here, because analysis is partly reproduced from [50], it seemed most expedient to abide by26

that paper’s original choice, which was avowedly arbitrary. After computing the full spectrum overnight, the method of27

Zhu & Ghodsi (2006) actually returns an estimate D̂ = 6, so this will be reported.28

How theoretical results presented relate to or inform actual practice. Reviewers 2 (“all applications seem to have29

only loose connections to the main theory”), 3 (“it’s not totally clear how the theoretical results presented relate to or30

inform actual practice.”) and 4 (“the paper is limited in the study of the implications of the theoretical results”) would31

have liked to see more direct methodological applications of the theory. This will be addressed through the following32

revisions.33

• Section 5.1 (Graph regression) — added discussion of achievable error rate. It may be conjectured that spectral34

embedding with D̂ →∞ appropriately slowly followed by neural network regression can achieve the rate n−2β/(2β+d),35

where β is the regression function smoothness (in the Hölder norm) and d is the intrinsic dimension of the data. This36

conjecture leverages recent work in reference [40] on the rate of neural networks under low intrinsic (Minkowski)37

dimension, and hopes of a strong consistency bound (mentioned above) under D =∞.38

• Section 5.3 (Visualisation A) — to be removed.39

• Section 5.4 (Visualisation B) — to be renamed “Real data”, include a new figure and report intrinsic dimension40

estimates. In anticipation of the comment “why do the main results help make sense of t-SNE for visualization?”41

(Reviewer 2), there was a brief remark in the original submission “Other methods such as Uniform manifold42

approximation were tested with comparable results”. In retrospect, these results should simply have been presented43

instead, as they show similar information and are based on a concrete assumption that the data live close to a manifold44

of low dimension. These will now be included as an additional figure. Instead of selecting the embedding dimension,45

what the paper does allow is estimation of the latent position dimension d, on the basis of the intrinsic dimension of X̂i46

(and assuming α = 1 in Theorem 3), which can be estimated by several existing techniques (several implemented in47

Table 2, reference [50]).48

Reviewer 2: “I’m not sure the results attract much attention in the NeurIPS community”. Graphs have become some of49

the most studied objects in statistics/machine-learning and von Luxburg’s tutorial on spectral clustering has over 800050

citations according to Google Scholar. In a nutshell, the present paper makes a case for “spectral manifold estimation”51

rather than “spectral clustering”.52

Reviewer 3: “I do think the motivation is a bit misleading [...]”. The second sentence will be changed to “the object of53

this paper is show that, for a theoretically tractable but rich class of random graph models, such a phenomenon occurs54

in the spectral embedding of a graph.”55

Reviewer 3: “does the fact that the generated graphs are almost surely dense matter”? Sparsity is handled in the56

paper, if crudely, with a sparsity factor (Section 4 and Supplementary Material). However, from the suggested refer-57

ences it is clear that the reviewer has more sophisticated sparsity-inducing processes in mind, and these will be discussed.58


