
Supplementary Material
In Appendix A, we provide proofs of Theorem 1, Theorem 2, Lemma 1, Fact 1, Theorem 3, Theorem 4,
and Theorem 5 from the main body of the paper. We also state and prove any supporting lemmas in
Appendix B.

As a general rule, if the coordinate index j is omitted on any quantity that should otherwise depend
on j, it should be understood that we are considering a generic variable X . Similar conventions apply
to an optimal empirical and theoretical split coordinate index, |̂ and j⇤, respectively.

A Main Proofs
Lemma A.1 (Equivalence between the decrease in impurity and Pearson correlation from Section 3.1).

b⇢ (eY , Y | X 2 t) =
q
b�(s, t)/b�(t) � 0.

Proof. By expanding the sum of squares in (2), it can easily be shown that b�(s, t) equals

bP (tL)(Y tL)
2 + bP (tR)(Y tR)

2 � (Y t)
2,

which is further equal to both 1
N(t)

P
Xi2t(

eYi � Y t)2 and 1
N(t)

P
Xi2t(

eYi � Y t)(Yi � Y t). Thus,

b⇢ (eY , Y | X 2 t) =
1

N(t)

P
Xi2t(

eYi � Y t)(Yi � Y t)
q

1
N(t)

P
Xi2t(

eYi � Y t)2 ⇥ 1
N(t)

P
Xi2t(Yi � Y t)2

(A.1)

=
bP (tL)(Y tL)

2 + bP (tR)(Y tR)
2 � (Y t)2q

( bP (tL)(Y tL)
2 + bP (tR)(Y tR)

2 � (Y t))⇥ b�(t)

=

s
bP (tL)(Y tL)

2 + bP (tR)(Y tR)
2 � (Y t)2

b�(t)

=
q
b�(s, t)/b�(t).

Note that the mean of the decision stump eY in t is in fact Y t, which is why it appears in the formula
(A.1) for the Pearson correlation.

Lemma A.2 (Example from Section 3.2). Let Y = sin(2⇡wX) for some positive integer w and

t = [0, 1]d. Then,

⇢(bY ⇤, Y | X 2 t) = ⇥(1/
p
w), s⇤ = ⇥(1/w), and s⇤ = 1�⇥(1/w).

Proof. Elementary calculations reveal that �(s, t) = (1�cos(2⇡ws))2

4⇡2w2s(1�s) = (1�cos(2⇡w(1�s)))2

4⇡2w2s(1�s) . It can
be seen from this expression that the maximizers satisfy s⇤ = ⇥(1/w) and s⇤ = 1�⇥(1/w) and
thus �(s⇤, t) = ⇥(1/w). Since �(t) = 1/2, we have from the infinite sample analog of Lemma A.1
that ⇢(bY ⇤, Y | X 2 t) =

p
�(s⇤, t)/�(t) = ⇥(1/

p
w).

Lemma A.3 (Inequality (24) from Section 4.2). Let g1(X1), g2(X2), . . . , gd(Xd) be univariate

functions and let Y0 =
P

j wjgj(Xj) consist of a subset of d0 component functions gj(·), where

wj 2 {�1,+1}, and w = (wj)j . Then,

max
j=1,2,...,d

b⇢ 2(gj(Xj), Y | X 2 t) � minw b⇢ 2(Y0, Y | X 2 t)

d0
. (A.2)

Furthermore, if each gj(·) has nonnegative Pearson correlation with the others in the node, then

max
j=1,2,...,d

b⇢ 2(gj(Xj), Y | X 2 t) � b⇢ 2(Y0, Y | X 2 t)

d0
, (A.3)

where Y0 =
P

j gj(Xj).
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Proof. Before we proceed with proving the lemma, we first establish some shorthand notation. Let
b�2
h(t) denote the empirical variance of a function h(X) in t, i.e., b�2

h(t) = dVAR(h(X) | X 2 t).
Define the discrete prior ⇡(j,w) on the component function index j and sign vector w of Y0 by

⇡(j,w) =
b�wjgj (t)

2d0
P

j0 b�wj0gj0 (t)
=

b�gj (t)

2d0
P

j0 b�gj0 (t)
.

We are now in a position to prove (A.2). Since a maximum is greater than an average (with respect to
the coordinate index j and sign vector w), we have

max
j=1,2,...,d

b⇢ 2(gj(Xj), Y | X 2 t) = max
j=1,2,...,d

b⇢ 2(wjgj(Xj), Y | X 2 t)

�
X

(j,w)

⇡(j,w)b⇢ 2(wjgj(Xj), Y | X 2 t).

Jensen’s inequality for the square function yields
X

(j,w)

⇡(j,w)b⇢ 2(wjgj(Xj), Y | X 2 t) �
X

w

⇡(w)|
X

j

⇡(j | w)b⇢ (wjgj(Xj), Y | X 2 t)|2

=
X

w

⇡(w)
b�2
Y0
(t)

(
P

j0 b�gj0 (t))
2
b⇢ 2(Y0, Y | X 2 t)

�
P

w ⇡(w)b�2
Y0
(t)

(
P

j0 b�gj0 (t))
2

min
w
b⇢ 2(Y0, Y | X 2 t) (A.4)

Next, note that
P

w ⇡(w)b�2
Y0
(t) =

P
j b�2

gj (t), since the covariance terms of b�2
Y0
(t) have mean zero

with respect to ⇡(w) ⌘ 2�d0 ; that is,
X

w

⇡(w)b�2
Y0
(t)

=
X

w

X

j

⇡(w)b�2
wjgj (t) +

X

w

X

j

⇡(w)[COV(wjgj(Xj), wj0gj0(Xj0) | X 2 t)

=
X

j

b�2
gj (t)

X

w

⇡(w) +
X

j,j0

[COV(gj(Xj), gj0(Xj0) | X 2 t)
X

w

⇡(w)wjwj0

=
X

j

b�2
gj (t).

Combining this with (A.4) shows that maxj=1,2,...,d b⇢ 2(gj(Xj), Y | X 2 t) is at least
P

j b�2
gj (t)

(
P

j0 b�gj0 (t))
2
min
w
b⇢ 2(Y0, Y | X 2 t) � minw b⇢ 2(Y0, Y | X 2 t)

d0
,

where the last inequality follows from the Cauchy-Schwarz inequality. If each gj(·) has nonnegative
Pearson correlation with the others in the node, then b�2

Y0
(t) �

P
j b�2

gj (t) and thus the same argument
as above can be repeated with Y0 =

P
j gj(Xj) to prove (A.3).

Proof of Theorem 1. Let Err(bY ) = 1
n

Pn
i=1(Y

0

i � bY (T,X0

i))
2 denote the test error of bY (T ) on a test

sample D0

n = {(X0

i, Y
0

i )}ni=1 of size n. Let TX,X0 denote the collection of tree-structured partitions
constructed on the grid {Xi}ni=1 [ {X0

i}ni=1 with 2n points. Note that the VC-dimension of the
collection of axis-parallel splits is at most the VC-dimension of the collection of all half-spaces,
namely, d+ 1. In this case, Lemma B.2 in [1] shows that the number of trees in TX,X0 with exactly
|T | nodes is at most (2ne/(d+ 1))|T |(d+1). Using this, we have

X

T2TX,X0

e�L(T ) 
X

k:|T |=k�1

exp
⇣
� L(T ) + |T |(d+ 1) log(2ne/(d+ 1))

⌘
 1,

if L(T ) is any penalty that exceeds 2|T |(d+1) log(2en/(d+1)) � |T |(log(2)+(d+1) log(2ne/(d+
1))). Thus, a penalty equal to L(T ) := 2|T |(d + 1) log(2en/(d + 1)) � |T |(log(2) + (d +
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1) log(2ne/(d + 1))) satisfies Kraft’s inequality, i.e.,
P

T2TX,X0
e�L(T )  1. Observe also that

TX,X0 is symmetric in the pairs (Xi,X0

i). By Lemma 2.1 in [3], for all � > 0,

P
 

max
T2TX,X0

Err(bY (T ))� err(bY (T ))
1

n�2 (L(T ) + log(2/�)) + 1
2S

2(bY (T ))
< �

!
� 1� �/2, (A.5)

where S2(bY (T )) = 1
n

Pn
i=1((Y

0

i � bY (X0

i))
2 � (Yi � bY (Xi))2)2. Using the fact that S2(bY (T )) 

8B2(Err(bY (T )) + err(bY (T ))) and bT 2 TX,X0 , and choosing ��1 = 12B2, we find that

Err(bY ( bT ))  2err(bY ( bT )) + 18B2L( bT )
n

+
18B2 log(2/�)

n
(A.6)

occurs with probability at least 1 � �/2. Next, using Lemma 9 from [2] together with the bound
Err(bY (T ))  4B2 and the Kraft summability of the penalty L(T ), we have that for all � > 0,

P
 

max
T2TX

Err(bY (T ))� Err(bY (T ))
4B2

n�2 (L(T ) + log(2/�)) + Err(bY (T )) + Err(bY (T ))
< �

!
� 1� �/2,

where TX ⇢ TX,X0 is the set of all tree-structured partitions constructed using the grid {Xi}ni=1.
Choose � = 1/3. Since bT 2 TX, with probability at least 1� �/2,

Err(bY ( bT ))  2Err(bY ( bT )) + 18B2L( bT )
n

+
18B2 log(2/�)

n
. (A.7)

Combining (A.6) and (A.7), we have that with probability at least 1� �,

Err(bY ( bT ))  4R↵(bY ( bT )) + 54B2 log(2/�)

n
,

provided d > (n+ 1)/2 and ↵ > 27B2(d+1) log(2en/(d+1))
n . The conclusion of the theorem follows

from the definition of bT as a minimizer of R↵(bY (T )).

Proof of Theorem 2. The identity (10) is shown by first noting that, in the special case of uniform X,
the probability P(X  s⇤ | X 2 t) from Lemma B.1 in Appendix B is equal to (s⇤ � a)/(b � a).
Rearranging the resulting expression yields the desired identity.

Proof of Lemma 1. We first prove (11) for a general decision stump eY . The training error in t after
splitting is

1

N(t)

X

Xi2t

(Yi � eYi)
2 =

1

N(t)

X

Xi2tL

(Yi � Y tL)
2 +

1

N(t)

X

Xi2tR

(Yi � Y tR)
2

= b�(t)

✓
1�

b�(s, t)
b�(t)

◆

=
1

N(t)

X

Xi2t

(Yi � Y t)
2 ⇥ (1� b⇢ 2(eY , Y | X 2 t)),

where the last equality follows from Lemma A.1. Finally, 1� b⇢ 2(eY , Y | X 2 t)  exp(�b⇢ 2(eY , Y |
X 2 t)) follows from 1� z  e�z for z � 0. To show (12), we use (11) with eY = bY recursively
together with the identity

err(bY (TK)) =
X

t

bP (t)b�(t),

where the sum extends over all terminal nodes t of TK . We stop once we reach the root node, at
which point the training error is simply b�2

Y .

Proof of Fact 1. Fact 1 is a special case of the following lemma. In order to state the lemma, we will
need to introduce the concept of stationary intervals. We define a stationary interval of a univariate
function g(·) to be a maximal interval I such that g(I) = c, where c is a local extremum of g(·) (I
is maximal in the sense that there does not exist an interval I 0 such that I ⇢ I 0 and g(I 0) = c). In
particular, note that a monotone function does not have any stationary intervals.
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Lemma A.4. Almost surely, uniformly over all step functions g(·) of X that have at most V constant

pieces and M stationary intervals in the node, we have

b⇢ (bY , Y | X 2 t) � 1p
D�1MN(t) + (V �M � 1) ^ (1 + log(2N(t)))

⇥ |b⇢ (g(X), Y | X 2 t)|,

(A.8)
where D � 1 is the smallest number of data points in a stationary interval of g(·) that contains at

least one data point.
2

Proof of Lemma A.4. Let g(·) be any function of a generic coordinate X and assume that the data
points in the node are labeled for simplicity as {Xi : X 2 t} = {X1, X2, . . . , XN(t)} and ordered
such that X1  X2  · · ·  XN(t). Without loss of generality, g(·) can be redefined to linearly
interpolate between the values g(X1), g(X2), . . . , g(XN(t)). We look at the (empirical Bayesian)
prior ⇧ on splits s with density

d⇧(s)

ds
=

|g0(s)|
q
bP (tL) bP (tR)

R
|g0(s0)|

q
bP (tL) bP (tR)ds0

,

where we remind the reader that bP (tL) = 1� bP (tR) =
1

N(t)

P
Xi2t 1(Xi  s). Here, g0(s) equals

the divided difference g(Xi+1)�g(Xi)
Xi+1�Xi

when Xi  s < Xi+1, i = 1, 2, . . . N(t) � 1. Accordingly,
observe that ⇧ has a piecewise constant density with knots at the data points and supported between
the minimum and maximum of the data Xi. Since, by definition, bY maximizes s 7! b⇢ (eY , Y | X 2 t)
and a maximum is larger than an average, we have

b⇢ (bY , Y | X 2 t) = max
s
b⇢ (eY , Y | X 2 t)

�
Z
b⇢ (eY , Y | X 2 t)d⇧(s) =

Z s b�(s, t)

�(t)
d⇧(s), (A.9)

where the last equality follows from Lemma A.1. Next, working from the representation (4), note
that the reduction in impurity admits the form

b�(s, t) =

✓
1q

bP (tL) bP (tR)

✓
1

N(t)

X

Xi2t

(1(s < Xi)� bP (tR))(Yi � Y t)

◆◆2

, (A.10)

and, hence, integrating inside the square in (A.10) against g0(s)
q
bP (tL) bP (tR), we have

Z
g0(s)

✓
1

N(t)

X

Xi2t

(1(s < Xi)� bP (tR))(Yi � Y t)

◆
ds

=
1

N(t)

X

Xi2t

(g(Xi)�
1

N(t)

X

Xi02t

g(Xi0))(Yi � Y t)

= [COV(g(X), Y | X 2 t). (A.11)

Using the inequality (A.9) together with the identities (A.10) and (A.11), we have

b⇢ (bY , Y | X 2 t) �
Z s b�(s, t)

�(t)
d⇧(s)

�

q
dVAR(g(X) | X 2 t)

R
|g0(s)|

q
bP (tL) bP (tR)ds

⇥ |b⇢ (g(X), Y | X 2 t)|. (A.12)

2More precisely, if I1, . . . , IM are the stationary intervals of g(·) and Dk = #{Xi 2 Ik}, then D =
mink{Dk : Dk � 1}.
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Therefore, from (A.12), we are led to determine how small the ratio
q
dVAR(g(X) | X 2 t)

R
|g0(s)|

q
bP (tL) bP (tR)ds

. (A.13)

can be, ideally in terms of some simple structural characteristics of g(·). Our next task is to simplify
(A.13) so that its numerator and denominator can be more easily compared. To this end, observe that

Z
|g0(s)|

q
bP (tL) bP (tR)ds

=

N(t)X

i=0

Z

N(t) bP (tL)=i
|g0(s)|

s
i

N(t)

✓
1� i

N(t)

◆
ds

=

N(t)�1X

i=1

Z Xi+1

Xi

|g0(s)|ds

s
i

N(t)

✓
1� i

N(t)

◆

=
1

N(t)

N(t)�1X

i=1

|g(Xi+1)� g(Xi)|
p

i(N(t)� i), (A.14)

where the penultimate equality follows from the fact that bP (tL) = i/N(t) if and only if Xi  s <
Xi+1. Next, we further simplify the above expression (A.14) using summation by parts, that is,

1

N(t)

N(t)�1X

i=1

|g(Xi+1)� g(Xi)|
p
i(N(t)� i) = � 1

N(t)

N(t)X

i=1

g(Xi)(bi � bi�1), (A.15)

where bi = sgn(g(Xi+1)� g(Xi))⇥
p
i(N(t)� i) with b0 = bN(t) = 0. Next, since

PN(t)
i=1 (bi �

bi�1) = bN(t) � b0 = 0, (A.15) can be written as

� 1

N(t)

N(t)X

i=1

(g(Xi)�
1

N(t)

X

Xi02t

g(Xi0))(bi � bi�1). (A.16)

Moreover, we can express the variance dVAR(g(X) | X 2 t) in a similar form, viz.,

dVAR(g(X) | X 2 t) =
1

N(t)

N(t)X

i=1

(g(Xi)�
1

N(t)

X

Xi02t

g(Xi0))
2. (A.17)

To obtain the best lower bound on the ratio (A.13), we attempt to solve the program

min
g(·)2G

dVAR(g(X) | X 2 t)
� R

|g0(s)|
q
bP (tL) bP (tR)ds

�2 , (A.18)

where G is a collection of functions. In light of the expressions (A.16) and (A.17), the program (A.18)
is equivalent to the following program:

min
a 2A

N(t)X

i=1

|ai|2 s.t.
1p
N(t)

N(t)X

i=1

ai(bi � bi�1) = 1,

N(t)X

i=1

ai = 0. (A.19)

where bi = sgn(ai+1 � ai)
p
i(N(t)� i) and A is a collection of vectors in RN(t). In order to

incorporate structural and/or regularity properties of g(·), we will need to impose conditions on G
or, since we associate ai with g(Xi)� 1

N(t)

P
Xi02t g(Xi0), on A. However, not all specifications

make the program tractable to solve, or even convex. As a compromise, we fix the signs of the bi
in advance. That is, we specify three additional constraints, namely, bi = 0, bi > 0, and bi < 0—
corresponding to locations where g(·) is constant, increasing, and decreasing, respectively—and
solve the resulting (quadratic) program. More formally, let V and M respectively denote the number
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of constant pieces and stationary intervals of g(·) and let S = {ik}1kV�1 and S0 ⇢ S be two
subsets of {1, 2, . . . , N(t)� 1} with i0 = 0 and iV = N(t). Let A = {a 2 RN(t) : bi = 0 for i /2
S, bi > 0 for i 2 S0, bi < 0 for i /2 S0}, and Dk = ik � ik�1. (Note that M can be regarded as
the number of times g(·) changes from strictly increasing to decreasing (or vice versa) and hence
bi�1bi < 0 at most M times.) With these specifications fixed, the program (A.19) becomes

min
a 2A

VX

k=1

|aik |2Dk s.t.
1p
N(t)

VX

k=1

aik(bik � bik�1) = 1,
VX

k=1

aikDk = 0. (A.20)

Using the method of Lagrange multipliers, it is easy to see that the solution to (A.20) is

a⇤ik =

p
N(t)(bik � bik�1)/Dk

PV
k=1(bik � bik�1)

2/Dk

, k = 1, 2, . . . , V, (A.21)

and the value of the program is

N(t)
PV

k=1(bik � bik�1)
2/Dk

. (A.22)

Lemma B.3 in Appendix B shows that (A.22) is at least
1

D�1MN(t) + (V �M � 1) ^ (1 + log(2N(t)))
,

where D is the smallest number of data points in a stationary interval of g(·) that contains at least one
data point. Hence by (A.12), we obtain the desired (A.8).

Fact 1 follows immediately from (A.8) by noting that, in this case, M = 0.

Remark A.1. Another candidate prior ⇧ for (A.9) is

d⇧(j, s)

d(j, s)
:=

|g0j(s)|
q
bPj(tL) bPj(tR)

P
j

R
|g0j(s0)|

q
bPj(tL) bPj(tR)ds0

,

which, akin to (A.12), leads to the correlation inequality

b⇢ (bY , Y | X 2 t) �

q
dVAR(

P
j gj(Xj) | X 2 t)

P
j

R
|g0j(s)|

q
bPj(tL) bPj(tR)ds

⇥ |b⇢ (
X

j

gj(Xj), Y | X 2 t)|.

While this enables comparisons with additive models via b⇢ (
P

j gj(Xj), Y | X 2 t), the factor
q

dVAR(
P

j gj(Xj)|X2t)
P

j

R
|g0

j(s)|
p

bPj(tL) bPj(tR)ds
is less amenable to analysis.

Proof of Theorem 3. We first employ a technique similar to (A.12) in the proof of Fact 1 (essentially,
the infinite sample analog) to lower bound ⇢2(bY ⇤, Y | X 2 t). That is, for each function g(·) of X
and node t,

⇢2(bY ⇤, Y | X 2 t) � ⇤⇥ ⇢2(g(X), Y | X 2 t), (A.23)
where

⇤ :=
VAR(g(X) | X 2 [a, b])
� R b

a |g0(s)|
q

s�a
b�a

b�s
b�ads

�2 .

In contrast with the proof of Fact 1, here we do not attempt to minimize ⇤ over all g(·) in some function
class. Rather, we attempt to lower bound it for a fixed g(·). Now, (A.23) is valid for all gj(Xj) and so
we can instead consider the maximum correlation over all gj(Xj), i.e., maxj ⇢2(gj(Xj), Y | X 2 t),
where now ⇤ is the minimum over all gj(Xj). By the infinite sample analog of (A.3) in Lemma A.3,
we have maxj ⇢2(gj(Xj), Y | X 2 t) � ⇢2(Y,Y |X2t)

d0
= 1/d0, and hence

⇢2(bY ⇤, Y | X 2 t) � ⇤/d0. (A.24)
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Next, we show that ⇤ can be further lower bounded by a positive constant that is independent of t.
To this end, note that ⇤ is continuous in (a, b) and strictly positive for all a < b and, furthermore by
Lemma B.2 in Appendix B,

inf
c

lim inf
(a,b)!(c,c)

⇤ = ⌦(1/R),

where R = supc2[0,1] inf{r � 1 : g(r)(·) exists and is continuous and nonzero at c}—which means
that inf(a,b) ⇤ > 0. Note that, in particular, R is finite if g(·) admits a power series representation.
Taking the minimum of inf(a,b) ⇤ over all gj(·)—each of which has finite R—results in a positive
quantity that depends only on each gj(·) individually. This shows that inft ⇢2(bY ⇤, Y | X 2 t) �
C/d0 for some positive constant C that depends only on each gj(·) individually and not on d0. Next,
we will show that, almost surely,

lim inf
n

b⇢ 2
H

= lim inf
n

inf
t
b⇢ 2(bY , Y | X 2 t) � inf

t
⇢2(bY ⇤, Y | X 2 t),

from which the first statement in Theorem 3 will follow, i.e., lim infn b⇢ 2
H

� C/d0 almost surely.
First, by definition of bY as the optimizer of (j, s) 7! b⇢ 2(eY , Y | X 2 t), almost surely,

lim inf
n

inf
t
b⇢ 2(bY , Y | X 2 t) � lim inf

n
inf
t
b⇢ 2(bY ⇤, Y | X 2 t),

where we remind the reader that bY ⇤ is the decision stump eY at an optimal theoretical direction
j⇤ and split s⇤. Next, note that b⇢ (bY ⇤, Y | X 2 t) is invariant to scale. Working instead with
N(t)
n
bY ⇤ and N(t)

n Y , we find that the correlation involves terms (empirical processes) of the form
1
n

Pn
i=1 1(Xi 2 t0), 1

n

Pn
i=1 1(Xi 2 t0)Yi, and 1

n

Pn
i=1 1(Xi 2 t)Y 2

i , where t0 is either the parent
node t or one of the daughter nodes, t⇤L := {X 2 t : X  s⇤} and t⇤R := {X 2 t : X > s⇤} at
an optimal theoretical split s⇤. The collection of hyperrectangles in Rd is a finite VC-class with
VC-dimension at most 2d, and hence these terms converge almost surely, uniformly over all nodes
t0, to their respective population level counterparts when d = o(n). Thus, lim infn inft b⇢ 2(bY ⇤, Y |
X 2 t)

a.s.
= inft lim infn b⇢ 2(bY ⇤, Y | X 2 t)

a.s.
= inft ⇢2(bY ⇤, Y | X 2 t).

The almost sure limit (19) in Theorem 3 follows from (17) with � = 1/n2 and lim infn b⇢ 2
H

� C/d0
(almost surely) together with the Borel-Cantelli lemma.

Proof of Theorem 4. As mentioned right before the statement of Theorem 4, we need to prove (20).
To lighten notation, we consider a generic direction X , write N for N(t), and assume that the data
is labeled in the node t so that X1  X2  · · ·  XN . Let I be one of the intervals on which
g(X) is constant and let Xi1 = min{Xi 2 I : Xi 2 t} and Xi2 = max{Xi 2 I : Xi 2 t} so
that i1  i2. We will show that if b�(ŝ, t) > 0, then the maximum of b�(s, t) for s 2 [Xi1 , Xi2+1)
must occur at the boundary, i.e., [Xi1 , Xi1+1) or [Xi2 , Xi2+1). Let µ1 = 1

i1

P
X2t, XiXi1

Yi,
µ2 = 1

N�i2

P
X2t, Xi>Xi2

Yi, and µ = 1
i2�i1

P
Xi1<XiXi2

Yi. Suppose Xi  s < Xi+1. Then
the decrease in impurity equals

b�(s, t) =
i

N
⇥ N � i

N
⇥
⇣1
i
(i1µ1 + (i� i1)µ)�

1

N � i
((N � i2)µ2 + (i2 � i)µ)

⌘2
.

Viewed as a function of i, b�(s, t) = b�(i) has two critical values, one of which is a zero solution,
namely, i⇤ = (µ1�µ)i1N

µ1i1+µ2(N�i2)�µ(N+i1�i2)
. The other critical value, equal to

i⇤ =
(µ1 � µ)i1N

µ1i1 � µ2(N � i2) + µ(N � i1 � i2)
,

produces the value
b�(i⇤) =

4i1(N � i2)(µ1 � µ)(µ� µ2)

N2
.

We will be done if we can show that either

b�(i1) =
i1(µ1(N � i1)� µ2(N � i2)� µ(i2 � i2))2

N2(N � i1)
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or
b�(i2) =

(N � i2)(µ1i1 � µ2i2 + µ(i2 � i1))2

N2i2

are (strictly) greater than b�(i⇤). After some tedious algebra, we find that b�(i1) > b�(i⇤) and
b�(i2) > b�(i⇤) with equality if and only if i⇤ = i1 and i⇤ = i2, respectively.

Proof of Theorem 5. We first show that

err(bY (TK))  b�2
Y exp

⇣
� b⇢ 2

M

KX

k=1

(log2(4Nk))
�1
⌘
. (A.25)

By (11) in Lemma 1, the training error in the node is decreased by a factor of exp(�b⇢ 2(bY , Y | X 2
t)) each time the node is split. By Fact 1, almost surely, b⇢ 2(bY , Y | X 2 t) � 1

1+log(2N(t)) ⇥ b⇢
2
M

�
1

log2(4N(t)) ⇥ b⇢
2
M

� 1
log2(4Nk)

⇥ b⇢ 2
M

, if t is a node at level k. Thus, the training error at level k + 1

is at most exp(�b⇢ 2
M
(log2(4Nk))�1) times the training error at level k—in other words, the training

error is geometrically decreasing. The proof of (A.25) can then be completed using an induction
argument, noting that the training error at the root node is simply b�2

Y .

For the training error bound (22), we use the inequality
PK

k=1
1

log2(4Anka/2k) �

log
⇣

log2(4K
aAn)

log2(4K
aAn)�K

⌘
for integers K � 1. By (A.25), if TK is a fully grown tree of depth K,

then under Assumption 1, i.e., Nk  Anka/2k, we have

err(bY (TK))  b�2
Y exp

✓
� b⇢ 2

M

KX

k=1

(log2(4Nk))
�1

◆

 b�2
Y exp

✓
� b⇢ 2

M

KX

k=1

1

log2(4Anka/2k)

◆

 b�2
Y

✓
1� K

log2(4K
aAn)

◆b⇢ 2
M

. (A.26)

Next, we show (23), i.e., the bound on the prediction error. By Theorem 1, with high probability, the
leading behavior of the test error Err(bY ( bT )) is governed by

inf
T�Tmax

R↵(bY (T )), (A.27)

where the temperature ↵ is ⇥((d/n) log(n/d)). Note that (A.27) is smaller than the minimum of
R↵(bY (TK)) = err(bY (TK)) +↵|TK | over all fully grown trees TK of depth K with |TK |  2K , i.e.,

inf
K�1

{err(bY (TK)) + ↵2K}. (A.28)

Combining the training error bound (A.26) with (A.28), we are led to optimize

b�2
Y

✓
1� K

log2(4K
aAn)

◆b⇢ 2
M

+ ↵2K , (A.29)

over K � 1, although suboptimal choices of K will suffice for our purposes. Choosing K to satisfy

K = dlog2
� b�2

Y (log2(4K
aAn))�b⇢ 2

M

↵

�
e < dlog2(b�2

Y /↵)e, we find that (A.29) is equal to

b�2
Y

✓
log2(4K

aAn↵(log2(4K
aAn))b⇢

2
M/b�2

Y )

log2(4K
aAn)

◆b⇢ 2
M

+ b�2
Y

⇣ 1

log2(4K
aAn)

⌘b⇢ 2
M

= O
✓
b�2
Y

⇣ log((d/b�2
Y ) log

2+a(n))

log(n)

⌘b⇢ 2
M

◆
.

Combining this bound with Theorem 1 proves (23).
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B Auxiliary Lemmas
Lemma B.1. Suppose the density of X never vanishes and �(s⇤, t) > 0. Then the conditional

probability of the left daughter node along the splitting variable, i.e., P(X  s⇤ | X 2 t), has the

form

1

2
± 1

2

s
v

v + ⇢2(bY ⇤, Y | X 2 t)
, (B.1)

where v = (E[Y |X2t, X=s⇤]�E[Y |X2t])2

VAR(Y |X2t) .

Proof. Recall from (4) (albeit, the infinite sample version) that one can write

�(s, t) = P (tL)P (tR)(E[Y | X 2 t, X  s]� E[Y | X 2 t, X > s])2. (B.2)

Next, define

⌅(s) = P (tL)P (tR)(E[Y | X 2 t, X  s]� E[Y | X 2 t, X > s]),

so that
�(s, t) = |⌅(s)|2/(P (tL)P (tR)). (B.3)

An easy calculation shows that

@

@s
⌅(s) = p(tL)(E[Y | X 2 t, X = s]� E[Y | X 2 t]) = p(tL)G(s), (B.4)

where p(tL) =
@
@sP(X  s | X 2 t) and G(s) = E[Y | X 2 t, X = s]� E[Y | X 2 t].

Taking the derivative of �(s, t) with respect to s, we find that

@

@s
�(s, t) =

⌅(s)p(tL)(2P (tL)P (tR)G(s)� ⌅(s)(1� 2P (tL)))

(P (tL)P (tR))2
. (B.5)

Suppose s⇤ is a global maximizer of (B.3) (in general, it need not be unique). Then a necessary
condition (first-order optimality condition) is that the derivative of �(s, t) is zero at s⇤. That is, from
(B.5), s⇤ satisfies

⌅(s⇤)p(t⇤L)(2P (t⇤L)P (t⇤R)G(s⇤)� ⌅(s⇤)(1� 2P (t⇤L))) = 0, (B.6)

where we denote the daughter nodes with an optimal theoretical split s⇤ by t⇤L and t⇤R, i.e., t⇤L =
{X 2 t : X  s⇤} and t⇤R = {X 2 t : X > s⇤}. By assumption, p(t⇤L) > 0 (since the density of X
never vanishes) and �(s⇤, t) > 0. It follows from rearranging (B.6) and using the identity (B.3) that

P (t⇤L) =
1

2
� sgn(⌅(s⇤))⇥G(s⇤)p

�(s⇤, t)

q
P (t⇤L)P (t⇤R). (B.7)

The solution to (B.7) is obtained by solving a simple quadratic equation of the form p = 1/2 ±
c
p

p(1� p), 0  p  1, and noting from Lemma A.1 that �(s⇤, t) = �(t)⇥ ⇢2(bY ⇤, Y | X 2 t),
which proves the identity (B.1).

Lemma B.2. Suppose X is uniformly distributed on the unit interval and R = inf{r � 1 :
g(r)(·) exists and is continuous and nonzero at c} < 1, where c 2 [0, 1]. Then

lim inf
(a,b)!(c,c)

(
VAR(g(X) | X 2 [a, b])
� R b

a |g0(x)|
q

x�a
b�a

b�x
b�adx

�2

)
= ⌦(1/R). (B.8)

Proof. Since the distribution of (X � a)/(b� a) given X 2 [a, b] is uniform on the unit interval, the
ratio in the limit infimum (B.8) is

VAR(g(X(b� a) + a))
�
(b� a)

R 1
0 |g0(x(b� a) + a)|

p
x(1� x)dx

�2 .
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Let � = (c� a)/(b� a). By a Taylor expansion of g0(·) and the definition of R, for fixed �,

lim
(a,b)!(c,c)

(b� a)�R

Z 1

0
|g0(x(b� a) + a)|

p
x(1� x)dx (B.9)

=
|g(R)(c)|
(R� 1)!

Z 1

0
|x� �|R�1

p
x(1� x)dx. (B.10)

For the variance, first note that

VAR(g(X(b� a) + a)) =

Z 1

0
(g(x(b� a) + a)�

Z 1

0
g(x0(b� a) + a)dx0)2dx.

Let D(x) denote the divided difference g(x(b�a)+a)�g(c)
(x(b�a)+a�c)R . Then, we can rewrite (b� a)�R(g(x(b�

a) + a)�
R 1
0 g(x0(b� a) + a)dx0) as

D(x)(x� �)R �
Z 1

0
D(x0)(x0 � �)Rdx0. (B.11)

Next, use a Taylor expansion of g(·) about the point c and continuity of g(R)(·) at c to argue that

lim
(a,b)!(c,c)

D(x) =
g(R)(c)

R!
,

where the convergence is uniform and the limit is nonzero by definition of R. Therefore, for fixed �,

lim
(a,b)!(c,c)

(b� a)�2RVAR(g(X(b� a) + a)) (B.12)

=
⇣g(R)(c)

R!

⌘2 Z 1

0
((x� �)R �

Z 1

0
(x0 � �)Rdx0)2dx

=
⇣g(R)(c)

R!

⌘2
VAR((X � �)R). (B.13)

Combining (B.9) and (B.13), we have that the limit infimum (B.8) is at least

inf
�

VAR((X � �)R)

(R
R 1
0 |x� �|R�1

p
x(1� x)dx)2

. (B.14)

Tedious calculations show that the infimum is achieved at � = 1/2 and hence (B.14) is ⌦(1/R).

Lemma B.3. Consider the expression (A.22). Then,

N(t)
PV

k=1(bik � bik�1)
2/Dk

� 1

D�1MN(t) + (V �M � 1) ^ (1 + log(2N(t)))
, (B.15)

where M , V , and D are defined in Lemma A.4.

Proof. For brevity, we omit dependent on t and write N instead of N(t).

Suppose that bi changes sign at index ik (one of the M many indices such that bik�1bik < 0). Then,
since bik = sgn(aik � aik�1)

p
ik(N � ik), we have

X

k:bik�1
bik<0

(bik � bik�1)
2

NDk
=

X

k:bik�1
bik<0

(|bik |+ |bik�1 |)2

NDk


X

k:bik�1
bik<0

(|bik |+ |bik�1 |)2

ND

 D�1MN,
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where the last line is from (|bik |+ |bik�1 |)2 = (
p
ik(N � ik) +

p
ik�1(N � ik�1))2  N2. Next,

for the remaining V �M indices such that bik�1bik > 0 we have,

X

k:bik�1
bik>0

(|bik |� |bik�1 |)2

NDk


X

k:bik�1
bik>0

|N � ik � ik�1|
N

 V �M � 1,

where the last line follows from the fact there is always one index such that |N � ik � ik�1|+ |N �
ik+1 � ik| = |ik+1 � ik�1|, namely, at k⇤ := min{k : ik + ik�1 � N}. Thus, it follows that

NPV
k=1(bik�bik�1

)2/Dk
is at least

1

D�1MN + (V �M � 1) ^
PV

k=1

(|bik |�|bik�1
|)2

NDk

. (B.16)

We now obtain an upper bound for

VX

k=1

(|bik |� |bik�1 |)2

NDk
=

VX

k=1

Dk(N � ik � ik�1)2

N(
p
ik(N � ik) +

p
ik�1(N � ik�1))2

. (B.17)

Now, (
p
ik(N � ik) +

p
ik�1(N � ik�1))2 � (2N � ik � ik�1)(ik + ik�1 �N) for all k � k⇤.

Thus, the sum
P

k�k⇤

Dk(N�ik�ik�1)
2

N(
p

ik(N�ik)+
p

ik�1(N�ik�1))2
is at most

X

k�k⇤

Dk

2N � ik � ik�1
(
ik�1 + ik

N
� 1) 

X

k�k⇤

ik � ik�1

2N � ik � ik�1
, (B.18)

where we used the fact that Dk = ik � ik�1. Next, (
p
ik(N � ik) +

p
ik�1(N � ik�1))2 �

(ik+ik�1)(N�ik�ik�1) for all k < k⇤ and hence the sum
P

k<k⇤

Dk(N�ik�ik�1)
2

N(
p

ik(N�ik)+
p

ik�1(N�ik�1))2

is at most X

k<k⇤

Dk

ik + ik�1
(1� ik�1 + ik

N
) 

X

k<k⇤

ik � ik�1

ik + ik�1
. (B.19)

Combining (B.18) and (B.19), we have shown that (B.17) is at most
X

k<k⇤

ik � ik�1

ik + ik�1
+
X

k�k⇤

ik � ik�1

2N � ik � ik�1
. (B.20)

The sum (B.20) is largest when V = N , yielding

(N�1)/2X

i=1

1

2i� 1
+

(N+1)/2X

i=1

1

2i� 1
 1 + log(2N). (B.21)

Combining (B.20) and (B.21) with (B.16) proves (B.15).
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