
A Hypergradient Derivation for La-MAML

We derive the gradient of the weights θj0 and LRs αj at time-step j under the k-step
MAML objective, with Lt =

∑t
i=0 `i as the meta-loss and `t as the inner-objective:
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Where (a) is obtained by recursively expanding and differentiating the update function U() as done
in the step before it. (b) is obtained by assuming that the initial weight in the meta-update at time j :
θj0, is constant with respect to αj .

Similarly we can derive the MAML gradient for the weights θj0, denoted as gMAML(θj0) as:
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Setting all first-order gradient terms as constants to ignore second-order derivatives, we get the first
order approximation as:
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In Appendix B, we show the equivalence of the C-MAML and CL objectives in Eq. 6 by showing
that the gradient of the former (gMAML(θj0)) is equivalent to the gradient of the latter.
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B Equivalence of Objectives

It is straightforward to show that when we optimise the OML objective through the k-step MAML
update, as proposed in C-MAML in Eq. 5:

min
θj0

Eτ1:t
[
Lt

(
Uk(θj0)

)]
(10)

where the inner-updates are taken using data from the streaming task τt, and the meta-loss Lt(θ) =∑t
i=1 `i(θ) is computed on the data from all tasks seen so far, it will correspond to minimising the

following surrogate loss used in CL :
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We show the equivalence for the case when k = 1, for higher k the form gets more complicated but
essentially has a similar set of terms. Reptile [20] showed that the k-step MAML gradient for the
weights θj0 at time j, denoted as gMAML(θj0) is of the form:
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which is the same as the gradient of Eq. 11.

where:
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(gradient of the meta-loss evaluated at the initial point )

ḡk′ =
∂

∂θj0
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j
0) (for k′ < k) (gradients of the inner-updates evaluated at the initial point)

θjk′+1 = θjk′ − αgk′ (sequence of parameter vectors)
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H̄k = L′′meta

(
θj0

)
(Hessian of the meta-loss evaluated at the initial point)

H̄k′ = L′′inner

(
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(for k′ < k) (Hessian of the inner-objective evaluated at the initial point)

And, in our case:

Lmeta = Lt =

t∑
i=1

`i

Linner = `t

Bias in the objective: We can see in Eq. 11 that the gradient alignment term introduces some
bias, which means that the parameters don’t exactly converge to the minimiser of the losses on all
tasks. This has been acceptable in the CL regime since we don’t aim to reach the minimiser of some
stationary distribution anyway (as also mentioned in Section 4.3). If we did converge to the minimiser
of say t tasks at some time j, this minimiser would no longer be optimal as soon as we see the new
task τt+1. Therefore, in the limit of infinite tasks and time, ensuring low-interference between tasks
will pay off much more as opposed to being able to converge to the exact minima, by allowing us to
make shared progress on both previous and incoming tasks.

C C-MAML Algorithm

Algorithm 2 outlines the training procedure for the C-MAML algorithm we propose 3.

Algorithm 2 C-MAML

Input: Network weights θ00 , inner objective `, meta objective L, Inner learning rate α, Outer
learning rate β
j ← 0
R← {} . Initialise replay-buffer
for t := 1 to T do

(Xt, Y t) ∼ Dt

for ep := 1 to numepochs do
for batch b in (Xt, Y t) do

k ← sizeof(b)
bm ← Sample(R) ∪ b . batch of samples from τ1:t for meta-loss
for k′ = 0 to k − 1 do

Push b[k′] to R with some probability based on reservoir sampling
θjk′+1 ← θjk′ − α · ∇θj

k′
`t(θ

j
k′ , b[k

′]) . inner-update on each incoming sample
end for
θj+1
0 ← θj0 − β · ∇θj0Lt(θ

j
k, bm) . outer-update by differentiating meta-loss

j ← j + 1
end for

end for
end for

D Inter-Task Alignment

We assume that at time j during training, we are seeing samples from the streaming task τt. It
is intuitive to realise that incentivising the alignment of all τ1:t with the current τt indirectly also
incentivises the alignment amongst τ1:t−1 as well. To demonstrate this, we compute the mean dot
product of the gradients amongst the old tasks τ1:t−1 as the new task τt is added, for t varying from 2
to 11. We do this for C-MAML and La-MAML on CIFAR-100.

3Our algorithm, Continual-MAML is different from a concurrent work https://arxiv.org/abs/2003.
05856 which proposes an algorithm with the same name
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As can be seen in Figures 4a and 4b, the alignment stays positive and roughly constant even as more
tasks are added.

(a) C-MAML (b) La-MAML

Figure 4: Average dot product amongst gradients of τ1:t−1 as new tasks are added, for the C-MAML and
La-MAML algorithms calculated over 5 runs. x-axis shows the streaming task ID, t and y-axis shows the cosine
similarity.

E Robustness

Learning rate is one of the most crucial hyper-parameters during training and it often has to be tuned
extensively for each experiment. In this section we analyse the robustness of our proposed variants to
their LR-related hyper-parameters on the CIFAR-100 dataset. Our three variants have different sets
of these hyper-parameters which are specified as follows:

• C-MAML: Inner and outer update LR (scalar) for the weights (α and β)

• Sync La-MAML: Inner loop initialization value for the vector LRs (α0), scalar learning
rate of LRs (η) and scalar learning rate for the weights in the outer update (β)

• La-MAML: Scalar initialization value for the vector LRs (α0) and a scalar learning rate of
LRs (η)

La-MAML is considerably more robust to tuning compared to its variants, as can be seen in Figure
5c. We empirically observe that it only requires tuning of the initial value of the LR, while being
relatively insensitive to the learning rate of the LR (η). We see a consistent trend where the increase
in η leads to an increase in the final accuracy of the model. This increase is very gradual, since
across a wide range of LRs varying over 2 orders of magnitude (from 0.003 to 0.3), the difference
in RA is only 6%. This means that even without tuning this parameter (η), La-MAML would have
outperformed most baselines at their optimally tuned values.

As seen in Figure 5a, C-MAML sees considerable performance variation with the tweaking of both
the inner and outer LR. We also see that the effects of the variations of the inner and outer LR follow
very similar trends and their optimal values finally selected are also identical. This means that we
could potentially tune them by doing just a 1D search over them together instead of varying both
independently through a 2D grid search. The Sync version of La-MAML (Figure 5b), while being
relatively insensitive to the scalar initial value α0 and the η, sees considerable performance variation
as the outer learning rate for the weights: β is varied. This variant has the most hyper-parameters and
only exists for the purpose of ablation.

Fig. 6 shows the result of 2D grid-searches over sets of the above-mentioned hyper-parameters for
C-MAML and La-MAML for a better overview.

F Timing Comparisons

In this section, we compare the wall-clock running times (Retained Accuracy (RA) versus Time) of
La-MAML against other baselines on the CIFAR100 dataset in the multi-pass setting. For ER, iCarl
and La-MAML we see an increasing tread in the RA vs Time plot with La-MAML having the best
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(a) C-MAML: Modulation of α and β (b) Sync: Modulation of α0, η and β

(c) La-MAML: Modulation of α0 and η

Figure 5: Retained Accuracy vs Learning Rates plot for La-MAML and its variants. Figures are plotted by
varying one of the learning rate hyperparameter while keeping the others fixed at their optimal value. The
hyperparameter is varied between [0.001, 0.3].

RA at the expense of the increase in time. In contrast, both AGEM and GEM perform worse than
La-MAML while also taking much more running time.

G Experimental

We carry out hyperparameter tuning for all the approaches by performing a grid-search over the
range [0.0001 - 0.3] for hyper-parameters related to the learning-rate. For the multi-pass setup we
use 10 epochs for all the CL approaches. In the single pass setup, all compared approaches have
a hyper-parameter called glances which indicates the number of gradient updates or meta-updates
made on each incoming sample of data. In the Single-Pass (LLL) setup, it becomes essential to take
multiple gradient steps on each sample (or see each sample for multiple glances), since once we move
on to later samples, we can’t revisit old data samples. The performance of the algorithms naturally
increases with the increase in glances up to a certain point. To find the optimal number of glances
to take over each sample, we search over the values [1,2,3,5,10]. Tables 5 and 6 lists the optimal
hyperparameters for all the compared approaches. All setups used the SGD optimiser since it was
found to preform better than Adam [13] (possibly due to reasons stated in Section 4.3 regarding the
CL setup).

To avoid exploding gradients, we clip the gradient values of all approaches at a norm of 2.0. Class di-
visions across different tasks vary with the random seeds with which the experiments were conducted.
Overall, we did not see much variability across different class splits, with the variation being within
0.5-2% of the mean reported result as can be seen from Table 3

For all our baselines, we use a constant batch-size of 10 samples from the streaming task. This batch
is augmented with 10 samples from the replay buffer for the replay-based approaches. La-MAML
and its variants split the batch from the streaming task into a sequence of smaller disjoint sets to
take multiple (k = 10 for MNIST and k = 5 for CIFAR100/TinyImagenet) gradient steps in the
inner-loop. In MER, each sample from the incoming task is augmented with a batch of 10 replay
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(a) C-MAML: Modulation of α and β (b) La-MAML: Modulation of α0 and η

Figure 6: Plots of Retained Accuracy (RA) across hyper-parameter variation for C-MAML and La-MAML. We
show results of the grid search over the learning rate hyperparameters. RA decreases from red to blue. All the
hyperparameters are varied between [0.001, 0.3], with the axes being in log-scale.

Figure 7: Retained Accuracy vs Running time (seconds) for La-MAML vs other baselines on the CIFAR100
dataset.

samples to form the batch used for the meta-update. We found very small performance gaps between
the first and second-order versions of our proposed variants with performance differences in the
range of 1-2% for RA. This is in line with the observation that deep neural networks have near-zero
hessians since the ReLU non-linearity is linear almost everywhere [23].

MNIST Benchmarks: On the MNIST continual learning benchmarks, images of size 28x28 are
flattened to create a 1x784 array. This array is passed on to a fully-connected neural network having
two layers with 100 nodes each. Each layer uses ReLU non-linearity. The output layer uses a single
head with 10 nodes corresponding to the 10 classes. In all our experiments, we use a modest replay
buffer of size 200 for MNIST Rotations and Permutation and size 500 for Many Permutations.

Real-world visual classification: For CIFAR and TinyImageNet we used a CNN having 3 and 4
conv layers respectively with 160 3x3 filters. The output from the final convolution layer is flattened
and is passed through 2 fully connected layers having 320 and 640 units respectively. All the layers
are succeeded by ReLU nonlinearity. Finally, a multi-headed output layer is used for performing
5-way classification for every task. This architecture is used in prior meta-learning work [30].

For CIFAR and TinyImagenet, we allow a replay buffer of size 200 and 400 respectively which
implies that each class in these dataset gets roughly about 1-2 samples in the buffer. For TinyImagenet,
we split the validation set into val and test splits, since the labels in the actual test set are not released.
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Table 5: Final hyperparameters for all compared approaches on the CIFAR and TinyImagenet benchmarks

METHOD PARAMETER CIFAR-100 TINYIMAGENET

SINGLE MULTIPLE SINGLE MULTIPLE

ER LR 0.03 0.03 0.1 0.1
Epochs/Glances 10 10 10 10

IID LR - 0.03 - 0.01
Epochs/Glances - 50 - 50

ICARL LR 0.03 0.03 0.01 0.01
Epochs/Glances 2 10 2 10

GEM LR 0.03 0.03 0.03 0.03
Epochs/Glances 2 10 2 10

AGEM LR 0.03 0.03 0.01 0.01
Epochs/Glances 2 10 2 10

MER LR α 0.1 - 0.1 -
LR β 0.1 - 0.1 -
LR γ 1 - 1 -

Epochs/Glances 10 - 10 -

META-BGD η 50 50 50 -
std-init 0.02 0.02 0.02 -
βinner 0.1 0.1 0.1 -

mc-iters 2 2 2 -
Epochs/Glances 3 10 3 -

C-MAML α 0.03 0.03 0.03 0.03
β 0.03 0.03 0.03 0.03

Epochs/Glances 5 10 2 10

LA-ER α0 0.1 0.1 0.03 0.03
η 0.1 0.1 0.1 0.1

Epochs/Glances 1 10 2 10

SYNC LA-MAML α0 0.1 0.1 0.075 0.075
β 0.1 0.1 0.075 0.075
η 0.3 0.3 0.25 0.25

Epochs/Glances 5 10 2 10

LA-MAML α0 0.1 0.1 0.1 0.1
η 0.3 0.3 0.3 0.3

Epochs/Glances 10 10 2 10

H Baselines

On the MNIST benchmarks, we compare our algorithm against the baselines used in [22], which are
as follows:

• Online: A baseline for the LLL setup, where a single network is trained one example at a
time with SGD.

• EWC [14]: Elastic Weight Consolidation is a regularisation based method which constraints
the weights important for the previous tasks to avoid catastrophic forgetting.

• GEM [17]: Gradient Episodic Memory does constrained optimisation by solving a quadratic
program on the gradients of new and replay samples, trying to make sure that these gradients
do not alter the past tasks’ knowledge.

• MER [22]: Meta Experience Replay samples i.i.d data from a replay memory to meta-learn
model parameters that show increased gradient alignment between old and current samples.
We evaluate against this baseline only in the LLL setups.

On the real-world visual classification dataset, we carry out experiments on GEM, MER along with:-

18



Table 6: Final hyperparameters used for our variants on the MNIST benchmarks

METHOD PARAMETER PERMUTATIONS ROTATIONS MANY

C-MAML α 0.03 0.1 0.03
β 0.1 0.1 0.15

Glances 5 5 5

SYNC LA-MAML α0 0.15 0.15 0.03
β 0.1 0.3 0.03
η 0.1 0.1 0.1

Glances 5 5 10

LA-MAML α0 0.3 0.3 0.1
η 0.15 0.15 0.1

Glances 5 5 10

• IID: Network gets the data from all tasks in an independent and identically distributed
manner, thus bypassing the issue of catastrophic forgetting completely. Therefore, IID acts
as an upper bound for the RA achievable with this network.

• ER: Experience Replay uses a small replay buffer to store old data using reservoir sampling.
This stored data is then replayed again along with the new data samples.

• iCARL [21]: iCARL is originally from the family of class incremental learners, which learns
to classify images in the metric space. It prevents catastrophic forgetting by using a memory
of exemplar samples to perform distillation from the old network weights. Since we perform
experiments in a task incremental setting, we use the modified version of iCARL (as used
by GEM [17]), where distillation loss is calculated only over the logits of the particular task.

• A-GEM [6]: Averaged Gradient Episodic Memory proposed to project gradients of the new
task to a direction such as to avoid interference with respect to the average gradient of the
old samples in the buffer.

• Meta-BGD: Bayesian Gradient Descent [32] proposes training a bayesian neural network for
CL where the learning rate for the parameters (the means) are derived from their variances.
We construct this baseline by equipping C-MAML with bayesian training, where each
parameter in θ is now sampled from a gaussian distribution with a certain mean and variance.
The inner-loop stays same as C-MAML(constant LR), but the magnitude of the meta-update
to the parameters in θ is now influenced by their associated variances. The variance updates
themselves have a closed form expression which depends on m monte-carlo samples of the
meta-loss, thus implying m forward passes of the inner-and-outer loops (each time with a
newly sampled θ) to get m meta-gradients.

I Discussion on Prior Work

In Table 7, we provide a comparative overview of various continual learning methods to situate our
work better in the context of prior work.

Prior-focused methods face model capacity saturation as the number of tasks increase. These methods
freeze weights to defy forgetting, and so penalise changes to the weights, even if those changes could
potentially improve model performance on old tasks. They are also not suitable for the LLL setup
(section 5), since it requires many passes through the data for every task to learn weights that are
optimal enough to be frozen. Additionally, the success of weight freezing schemes can be attributed
to over-parameterisation in neural networks, leading to sub-networks with sufficient capacity to
learn separate tasks. However continual-learning setups are often motivated in resource-constrained
settings requiring efficiency and scalability. Therefore solutions that allow light-weight continual
learners are desirable. Meta-learning algorithms are able to exploit even small models to learn a good
initialization where gradients are aligned across tasks, enabling shared progress on optimisation of
task-wise objectives. Our method additionally allows meta-learning to also achieve a prior-focusing
affect through the async-meta-update, without necessarily needing over-parameterised models.
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In terms of resources, meta-learning based methods require smaller replay memories than traditional
methods because they learn to generalise better across and within tasks, thus being sample-efficient.
Our learnable learning rates incur a memory overhead equal to the parameters of the network. This is
comparable to or less than many prior-based methods that store between 1 to T scalars per parameter
depending on the approach (T is the number of tasks).

It should be noted that our learning rate modulation involves clipping updates for parameters with
non-aligning gradients. In this aspect, it is related to methods like GEM and AGEM mentioned
before. Where the distinction lies, is that our method takes some of the burden off of the clipping,
by ensuring that gradients are more aligned in the first place. This means that there should be less
interference and therefore less clipping of updates deemed essential for learning new tasks, on the
whole.

Table 7: Setups in prior work: We describe the setups and assumptions adopted by prior work, focusing on
approaches relevant to our method. FWT and BWT refer to forward and backward transfer as defined in [17]. ’-’
refers to no inductive bias for or against the specific property. Saturation of capacity refers to reduced network
plasticity due to weight change penalties gradually making further learning impossible. The LLL setup is defined
in Section 5. < and > with replay indicate that a method’s replay requirements are lesser or more compared to
other methods in the table. Fishers refers to the Fisher Information Matrix (FIM) computed per task. Each FIM
has storage equal to that of the model parameters. Approaches using Bayesian Neural Networks require twice as
many parameters (as does La-MAML) to store the mean and variance estimates per parameter.

APPROACH TRANSFER CAPACITY RESOURCES ALGORITHM
FWT BWT SATURATES LLL STORAGE

PRIOR-FOCUSED - ×
√

× T FISHERS EWC [14]
PRIOR FOCUSED - ×

√
× T MASKS HAT [26]

PRIOR FOCUSED - ×
√ √

2X PARAMS BGD/UCB [32] [8]
REPLAY - - ×

√
> REPLAY ICARL [21]

REPLAY - - ×
√

> REPLAY GEM [17]
META + REPLAY

√ √
×

√
REPLAY MER [22]

META + REPLAY
√ √

×
√

REPLAY OURS
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