
MetaPerturb: Transferable Regularizer for
Heterogeneous Tasks and Architectures

Jeongun Ryu1∗ Jaewoong Shin1∗ Hae Beom Lee1∗ Sung Ju Hwang 1,2

1KAIST, 2AITRICS, South Korea
{rjw0205, shinjw148, haebeom.lee, sjhwang82}@kaist.ac.kr

Abstract

Regularization and transfer learning are two popular techniques to enhance model
generalization on unseen data, which is a fundamental problem of machine learning.
Regularization techniques are versatile, as they are task- and architecture-agnostic,
but they do not exploit a large amount of data available. Transfer learning methods
learn to transfer knowledge from one domain to another, but may not generalize
across tasks and architectures, and may introduce new training cost for adapting
to the target task. To bridge the gap between the two, we propose a transferable
perturbation, MetaPerturb, which is meta-learned to improve generalization per-
formance on unseen data. MetaPerturb is implemented as a set-based lightweight
network that is agnostic to the size and the order of the input, which is shared
across the layers. Then, we propose a meta-learning framework, to jointly train
the perturbation function over heterogeneous tasks in parallel. As MetaPerturb
is a set-function trained over diverse distributions across layers and tasks, it can
generalize to heterogeneous tasks and architectures. We validate the efficacy and
generality of MetaPerturb trained on a specific source domain and architecture, by
applying it to the training of diverse neural architectures on heterogeneous target
datasets against various regularizers and fine-tuning. The results show that the
networks trained with MetaPerturb significantly outperform the baselines on most
of the tasks and architectures, with a negligible increase in the parameter size and
no hyperparameters to tune.

1 Introduction

The success of Deep Neural Networks (DNNs) largely owes to their ability to accurately represent
arbitrarily complex functions. However, at the same time, the excessive number of parameters, which
enables such expressive power, renders them susceptible to overfitting especially when we do not
have a sufficient amount of data to ensure generalization. There are two popular techniques that can
help with generalization of deep neural networks: transfer learning and regularization.

Transfer learning [39] methods aim to overcome this data scarcity problem by transferring knowledge
obtained from a source dataset to effectively guide the learning on the target task. Whereas the
existing transfer learning methods have been proven to be very effective, there also exist some
limitations. Firstly, their performance gain highly depends on the similarity between source and target
domains, and knowledge transfer across different domains may not be effective or even degenerate
the performance on the target task. Secondly, many transfer learning methods require the neural
architectures for the source and the target tasks to be the same, as in the case of fine-tuning. Moreover,
transfer learning methods usually require additional memory and computational cost for knowledge
transfer. Many require to store the entire set of parameters for the source network (e.g. fine-tuning,
LwF [21], attention transfer [48]), and some methods require extra training to transfer the source

∗: Equal contribution

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

𝒈𝜙

Conv4

VGG

Layer 1

Layer 2

Layer 3

Perturbation function

𝒈𝜙
Transfer
𝒈𝜙

Meta-testing

...

vs

Dog Cat

vs

Car Truck

Source Dataset

Task 1

Task 𝑇

Meta-training

Aircraft

CUB

Figure 1: Concepts. We learn our perturbation function at meta-training stage and use it to solve diverse
meta-testing tasks that come with diverse network architectures.

knowledge to the target task [15]. Such restriction makes transfer learning unappealing, and thus not
many of them are used in practice except for simple fine-tuning of the networks pre-trained on large
datasets (e.g. convolutional networks pretrained on ImageNet [33], BERT [8] trained on Wikipedia).

On the other hand, regularization techniques, which leverage human prior knowledge on the learning
tasks to help with generalization, are more versatile as they are domain- and architecture- agnostic.
Penalizing the ‘p-norm of the weights [28], dropping out random units or filters [38, 11], normalizing
the distribution of latent features at each input [14, 41, 45], randomly mixing or perturbing sam-
ples [50, 42], are instances of such domain-agnostic regularizations. They are more favored in practice
over transfer learning since they can work with any architectures and do not incur extra memory
or computational overhead, which is often costly with many advanced transfer learning techniques.
However, regularization techniques are limited in that they do not exploit the rich information in the
large amount of data available.

These limitations of transfer learning and regularization techniques motivate us to come up with a
transferable regularization technique that can bridge the gap between the two different approaches
for enhancing generalization. Such a transferable regularizer should learn useful knowledge from the
source task for regularization, while generalizing across different domains and architectures, with
minimal extra cost. A recent work [19] propose to meta-learn a noise generator for few-shot learning,
to improve the generalization on unseen tasks. Yet, the proposed gradient-based meta-learning scheme
cannot scale to standard learning settings which require large amount of steps to converge to good
solutions and is inapplicable to architectures that are different from the source network architecture.

To overcome these difficulties, we propose a novel lightweight, scalable perturbation function that
is meta-learned to improve generalization on unseen tasks and architectures for standard training
(See Figure 1 for the concept). Our model generates regularizing perturbations to latent features,
given the set of original latent features at each layer. Since it is implemented as an order-equivariant
set function, it can be shared across layers and networks learned with different initializations. We
meta-learn our perturbation function by a simple joint training over multiple subsets of the source
dataset in parallel, which largely reduces the computational cost of meta-learning.

We validate the efficacy and efficiency of our transferable regularizer MetaPerturb by training it on a
specific source dataset and applying the learned function to the training of heterogeneous architectures
on a large number of datasets with varying degrees of task similarity. The results show that networks
trained with our meta regularizer outperforms recent regularization techniques and fine-tuning, and
obtains significantly improved performances even on largely different tasks on which fine-tuning fails.
Also, since the optimal amount of perturbation is automatically learned at each layer, MetaPerturb
does not have any hyperparameters unlike most of the existing regularizers. Such effectiveness,
efficiency, and versatility of our method makes it an appealing transferable regularization technique
that can replace or accompany fine-tuning and conventional regularization techniques.

The contribution of this paper is threefold:

� We propose a lightweight and versatile perturbation function that can transfer the knowledge
of a source task to heterogeneous target tasks and architectures.

� We propose a novel meta-learning framework in the form of joint training, which allows to
efficiently perform meta-learning on large-scale datasets in the standard learning framework.

� We validate our perturbation function on a large number of datasets and architectures, on
which it successfully outperforms existing regularizers and finetuning.

2

2 Related Work

Transfer Learning Transfer learning [39] is one of the popular tools in deep learning to solve the
data scarcity problem. The most widely used method in transfer learning is fine-tuning [34] which
first trains parameters in the source domain and then use them as the initial weights when learning
for the target domain. ImageNet [33] pre-trained network weights are widely used for fine-tuning,
achieving impressive performance on various computer vision tasks (e.g. semantic segmentation [22],
object detection [12]). However, if the source and target domain are semantically different, fine-tuning
may result in negative transfer [46]. Further it is inapplicable when the target network architecture
is different from that of the source network. Transfer learning frameworks often require extensive
hyperparameter tuning (e.g. which layers to transfer, fine-tuning or not, etc). Recently, Jang et al. [15]
proposed a framework to overcome this limitation which can automatically learn what knowledge to
transfer from the source network and between which layer to perform knowledge transfer. However,
it requires large amount of additional training for knowledge transfer, which limits its practicality.
Most of the existing transfer learning methods aim to transfer the features themselves, which may
result in negative or zero transfer when the source and the target domains are dissimilar. Contrary to
existing frameworks, our framework transfers how to perturb the features in the latent space, which
can yield performance gains even on domain-dissimilar tasks.

Regularization methods Training with our input-dependent perturbation function is reminiscent
of some of existing input-dependent regularizers. Specifically, information bottleneck methods [40]
with variational inference have input-dependent form of perturbation function applied to both training
and testing examples as with ours. Variational Information Bottleneck [3] introduces additive noise
whereas Information Dropout [2] applies multiplicative noise as with ours. The critical difference
from those existing regularizers is that our perturbation function is meta-learned while they do not
involve such knowledge transfer. A recently proposed meta-regularizer, Meta Dropout [19] is relevant
to ours as it learns to perturb the latent features of training examples for generalization. However,
it specifically targets for meta-level generalization in few-shot meta-learning, and does not scale to
standard learning frameworks with large number of inner gradient steps as it runs on the MAML
framework [9] that requirs lookahead gradient steps. Meta Dropout also requires the noise generator
to have the same architecture as the source network, which limits its practicality with large networks
and makes it impossible to generalize over heterogeneous architectures.

Meta Learning Our regularizer is meta-learned to generalize over heterogeneous tasks and archi-
tectures. Meta-learning [14] aims to learn common knowledge that can be shared over distribution of
tasks, such that the model can generalize to unseen tasks. While the literature on meta-learning is
vast, we name a few works that are most relevant to ours. Finn et al. [9] proposes a model-agnostic
meta-learning (MAML) framework to find a shared initialization parameter that can be fine-tuned to
obtain good performance on an unseen target task a few gradient steps. The main difficulty is that the
number of inner-gradient steps is excessively large for standard learning scenarios, when compared
to few-shot learning cases. This led the follow-up works to focus on reducing the computational cost
of extending the inner-gradient steps [29, 10, 31, 4], but still they assume we take at most hundreds
of gradient steps from a shared initialization. On the other hand, Ren et al. [32] and its variant [35]
propose to use an online approximation of the full inner-gradient steps, such that we lookahead only
a single gradient step and the meta-parameter is optimized with the main network parameter at the
same time in an online manner. While effective for standard learning, they are still computationally
inefficient due to the expensive bi-level optimization. As an approach to combine meta-learning with
regularization, MetaMixup [24] meta-learns the hyperparameter of Mixup and MetaReg [6] proposes
to meta-learn the regularization parameter (‘1 for domain generalization), but they consider gener-
alization within a single task or across similar domains, while ours target heterogeneous domains.
Differently from all existing meta-learning approaches, by resorting to simple joint training on fixed
subsets of the dataset, we efficiently extend the meta-learning framework from few-shot learning into
a standard learning frameworks for transfer learning.

3 Approach

In this section, we introduce our perturbation function that is applicable to any convolutional network
architectures and to any image datasets. We then further explain our meta-learning framework for
efficiently learning the proposed perturbation function in the standard learning framework.

3

Figure 2:Left: The architecture of the channel-wise permutation equivariant operation.Right: The architecture
of the channel-wise scaling function taking a batch of instances as an input.

3.1 Dataset and Network agnostic perturbation function

The conventional transfer learning method transfers the entire set or a subset of the main network
parameters� . However such parameter transfer may become ineffective when we transfer knowledge
across a dissimilar pair of source and target tasks. Further, if we need to use a different neural
architecture for the target task, it becomes simply inapplicable. Thus, we propose to focus on
transferring another set of parameters� which is disjoint from� and is extremely light-weight. In this
work, we let� be the parameter forthe perturbation functionwhich are learned to regularize latent
features of convolutional neural networks. The important assumption here is that even if a disjoint
pair of source and target task requires different feature extractors for each, there may exist some
general rules of perturbation that can effectively regularize both feature extractors at the same time.

Another property that we want to impose upon our perturbation function is its general applicability to
any convolutional neural network architectures. The perturbation function should be applicable to:

� Neural networks withunde�ned number of convolutional layers. We can solve this
problem by allowing the function to be shared across the convolutional layers.

� Convolutional layers withunde�ned number of channels. We can tackle this problem ei-
ther by sharing the function across channels or using permutation-equivariant set encodings.

3.2 MetaPerturb

We now describe our novel perturbation function,MetaPerturbthat satis�es the above requirements.
It consists of the following two components: input-dependent stochastic noise generator and batch-
dependent scaling function.

Input-dependent stochastic noise generator The �rst component is an input-dependent stochastic
noise generator, which has been empirically shown by Lee et al. [19] to often outperform the input-
independent counterparts. To make the noise applicable to any convolutional layers, we propose to
use permutation equivariant set-encoding [49] across the channels. It allows to consider interactions
between the feature maps at each layer while making the generated perturbations to be invariant to
the re-orderings caused by random initializations.

Zaheer et al. [49] showed that for a linear transformation� � 0 : RC ! RC parmeterized by a matrix
� 0 2 RC � C , � � 0 is permutation equivariant to theC input elementsiff the diagonal elements of� 0

are equal and also the off-diagonal elements of� 0 are equal as well, i.e.� 0 = � 0I + 011T with
� 0; 0 2 R and1 = [1 ; : : : ; 1]T . The diagonal elements map each of the input elements to themselves,
whereas the off-diagonal elements capture the interactions between the input elements.

Here, we propose an equivalent form for convolution operation, such that the output feature maps
� � are equivariant to the channel-wise permutations of the input feature mapsh. We assume that�
consists of the following two types of parameters:� 2 R3� 3 for self-to-self convolution operation
and 2 R3� 3 for all-to-self convolution operation. We then similarly combine� and to produce a
convolutional weight tensor of dimensionRC � C � 3� 3 for C input and output channels (See Figure 2
(left)). Zaheer et al. [49] also showed that a stack of multiple permutation equivariant operations is
also permutation equivariant. Thus we stack two layers of� � with different parameters and ReLU
nonlinearity in-between them in order to increase the �exibility of� � (See Figure 2 (left)).

4

Finally, we sample the input-dependent stochastic noisez from the following distribution:

z = Softplus(a); a � N (� � (h); I) (1)

where we �x the variance ofa to I following Lee et al. [19] to eliminate any hyperparameters, which
we empirically found to work well in practice.

Batch-dependent scaling function The next component is batch-dependent scaling function,
which scales each channel to different values between[0; 1] for a given batch of examples. The
assumption here is that the proper amount of the usage for each channel should be adaptively decided
for each dataset by using a soft multiplicative gating mechanism. In Figure 2 (right), at training time,
we �rst collect examples in batchB, apply convolutions, followed by global average pooling (GAP)
for each channelk to extract4-dimensional vector representations of the channel. We then compute
statistics of them such as mean and diagonal covariance over batch and further concatenate the layer
information such as the number of channelsC and the widthW (or equivalently, the heightH) to the
statistics. We �nally generate the scaless1; � � � ; sC with a shared af�ne transformation and a sigmoid
function, and collect them into a single vectors = [s1; ::; sC] 2 [0; 1]C . At testing time, instead of
using batch-wise scales, we use global scales accumulated by moving average at the training time
similarly to batch normalization [14]. Although this scaling term may look similar to the feature-wise
linear modulation (FiLM) [30], it is different as ours is meta-learned and performs batch-wise scaling
whereas FiLM performs instance-wise scaling and is not meta-learned.

Figure 3:The architecture of our perutrbation
function applicable to any convolutional neural
networks (e.g. ResNet)

Final form We lastly combinez ands to obtain the
following form of the perturbationg� (h):

g� (h) = s � z (2)

where� denotes channel-wise multiplication. We
then multiplyg� (h) back to the input feature maps
h, at every layer (every block for ResNet [13]) of
the network (See Figure 3). We empirically veri�ed
that clipping the combined feature map values with
a constantk (e.g. k = 100) during meta-training
helps with its stability since the perturbation may
excessively amplify some of the feature map values. Note that since the noise generator is shared
across all the channels and layers, our transferable regularizer can perform knowledge transfer with
marginal parameter overhead (e.g. 82). Further, there is no hyperparameter to tune2, since the proper
amount of the two perturbations is meta-learned and automatically decided for each layer and channel.

3.3 Meta-learning framework

The next important question is how to ef�ciently meta-learn the parameter� for the perturbation
function. There are two challenges:1) Because of the large size of each source task, it is costly
to sequentially alternate between the tasks within a single GPU, unlike few-shot learning where
each task is suf�ciently small.2) The computational cost of lookahead operation and second-order
derivative in online approximation proposed by Ren et al. [32] is still too expensive.

Distributed meta-learning To solve the �rst problem, we class-wisely divide the source dataset to
generateT (e.g.10) tasks with�xed samples and distribute them across multiple GPUs for parallel
learning of the tasks. Then, throughout the entire meta-training phase, we only need to share the
low-dimensional (e.g.82) meta parameter� between the GPUs without sequential alternating training
over the tasks. Such a way of meta-learning is simple yet novel, and scalable to the number of tasks
when a suf�cient number of GPUs are available.

2The feature map clipping value,k, need not be tuned and the clipping could be simply omitted.

5

Figure 4:Comparison with MetaDropout [19]. While MetaDropout also meta-learns a noise generator, it is
tied to a speci�c architecture and cannot scale to large networks and datasets since it learns a different noise
generator at each layer and uses MAML, which is not scalable.

Algorithm 1 Meta-training

1: Input: (D tr
1 ; D te

1); : : : ; (D tr
T ; D te

T)
2: Input: Learning rate�
3: Output: � �

4: Randomly initialize� 1 ; : : : ; � T ; �
5: while not convergeddo
6: for t = 1 to T do
7: SampleBtr

t � D tr
t andBte

t � D te
t .

8: ComputeL (Btr
t ; � t ; �) w/ perturbation.

9: � t � t � � r � t L (Btr
t ; � t ; �)

10: ComputeL (Bte
t ; � t ; �) w/ perturbation.

11: end for
12: � � � � r �

1
T

P T
t =1 L (Bte

t ; � t ; �)
13: end while

Algorithm 2 Meta-testing

1: Input: D tr; D te; � �

2: Input: Learning rate�
3: Output: � �

4: Randomly initialize�
5: while not convergeddo
6: SampleBtr � D tr.
7: ComputeL (Btr; �; � �) w/ perturbation.
8: � � � � r � L (Btr; �; � �)
9: end while

10: Evaluate the test examples inD te with MC approxi-
mation and the parameter� � .

11:
12:

Knowledge transfer at the limit of convergence To solve the second problem, we propose to
further approximate the online approximation [32] by simply ignoring the bi-level optimization and
the corresponding second-order derivative. It means we simply focus on knowledge transfer across
the tasksonly at the limit of the convergenceof the tasks. Toward this goal, we propose to perform
a joint optimization of� = f � 1; : : : ; � T g and� , each of which maximizes the log likelihood of the
training datasetD tr and test datasetD te, respectively:

� � ; � � = argmax
�;�

TX

t =1

n
logp(y te

t jX te
t ; StopGrad(� t); �) + log p(y tr

t jX tr
t ; � t ; StopGrad(�))

o
(3)

whereStopGrad(x) denotes that we do not compute the gradient and considerx as constant. See
the Algorithm 1 and 2 for meta-training and meta-test, respectively. The intuition is that, even
with this naive approximation, the �nal� � will be transferable if we con�ne the limit of transfer
to around the convergence, since we know that� � already has satis�ed the desired property at
the end of the convergence of multiple meta-training tasks, i.e. over� �

1 ; : : : ; � �
T . It is natural to

expect similar consequence at meta-test time if we let the novel taskT + 1 jointly converge with
the meta-learned� � to obtain� �

T +1 . We empirically veri�ed that this simple joint meta-learning
suffers from negligible accuracy loss over meta-learning with a single lookahead step [32], while
achieving order of magnitude faster training time depending on the tasks and architectures. Further,
gradually increasing the strength of our perturbation functiong� performs much better than without
such annealing, which means that the knowledge transfer may be less effective at the early stage of
the training, but becomes more effective at later steps, i.e. near the convergence. We can largely
reduce the computational cost of meta-training with this naive approximation.

Comparison with MetaDropout MetaDropout [19] also proposes to meta-learn the noise genera-
tor. However, it is largely different from MetaPerturb in multiple aspects. First of all, MetaDropout
cannot generalize across heterogeneous neural architectures, since it learns an individual noise gener-
ator for each layer (Figure 2 of [19]). Thus it is tied to the speci�c base network architecture (Fig 4),
while MetaPerturb can generalize across architectures. Moreover, MetaDropout does not scale to
large networks since the noise generator should be the same size as the main network. MetaPerturb,
on the other hand, requires marginal parameter overhead (82) even for deep CNNs since it shares the
same lightweight noise generator across all layers and channels. MetaDropout also cannot scale to
standard learning with large number of instance and deep networks (Fig 4), since it uses episodic
training and MAML for meta-learning. We overcome such a challenge with a scalable distributed
joint meta-learning framework described in the earlier paragraphs.

6

Table 1:Transfer to multiple datasets.We use ResNet 20 as the source and target networks. TIN denotes the
Tiny ImageNet dataset. The reported results are mean accuracies and standard deviations over 5 meta-test runs.

Model # Transfer Source Target Dataset
params dataset STL10 s-CIFAR100 Dogs Cars Aircraft CUB

Base 0 None 66.78� 0.59 31.79� 0.24 34.65� 1.05 44.34� 1.10 59.23� 0.95 30.63� 0.66

Info. Dropout [2] 0 None 67.46� 0.17 32.32� 0.33 34.63� 0.68 43.13� 2.31 58.59� 0.90 30.83� 0.79

DropBlock [11] 0 None 68.51� 0.67 32.74� 0.36 34.59� 0.87 45.11� 1.47 59.76� 1.38 30.55� 0.26

Manifold Mixup [42] 0 None 72.83� 0.69 39.06� 0.73 36.29� 0.70 48.97� 1.69 64.35� 1.23 37.80� 0.53

MetaPerturb 82 TIN 69.98� 0.63 34.57� 0.38 38.41� 0.74 62.46� 0.80 65.87� 0.77 42.01� 0.43

Finetuning (FT) .3M TIN 77.16� 0.41 43.69� 0.22 40.09� 0.31 58.61� 1.16 66.03� 0.85 34.89� 0.30

FT + Info. Dropout .3M + 0 TIN 77.41� 0.13 43.92� 0.44 40.04� 0.46 58.07� 0.57 65.47� 0.27 35.55� 0.81

FT + DropBlock .3M + 0 TIN 78.32� 0.31 44.84� 0.37 40.54� 0.56 61.08� 0.61 66.30� 0.84 34.61� 0.54

FT + Manif. Mixup .3M + 0 TIN 79.60� 0.27 47.92� 0.79 42.54� 0.70 64.81� 0.97 71.53� 0.80 43.07� 0.83

FT + MetaPerturb .3M + 82 TIN 78.27� 0.36 47.41� 0.40 46.06� 0.44 73.04� 0.45 72.34� 0.41 48.60� 1.14

Figure 5:Convergence plotson Aircraft [25] and Stanford Cars [17] datasets.

4 Experiments

We next validate our method under realistic learning scenarios where target tasks can come with arbi-
trary image datasets and arbitrary convolutional network architectures. For the base regularizations,
we used the weight decay of0:0005and random cropping and horizontal �ipping in all experiments.

4.1 Transfer to multiple datasets

We �rst validate if our meta-learned perturbation function can generalize to multiple target datasets.

Datasets We useTiny ImageNet [1] as the source dataset, which is a subset of the ImageNet [33]
dataset. It consists of64 � 64 size images from 200 classes, with500 training images for each
class. We class-wisely split the dataset into10 splits to produce heterogeneous task samples. We
then transfer our perturbation function to the following target tasks:STL10 [7], CIFAR-100 [18],
Stanford Dogs[16], Stanford Cars [17], Aircraft [25], andCUB [44]. STL10 and CIFAR-100 are
benchmark classi�cation datasets of general categories, which is similar to the source dataset. Other
datasets are for �ne-grained classi�cation, and thus quite dissimilar from the source dataset. We
resize the images of the �ne-grained classi�cation datasets into84� 84. Lastly, for CIFAR-100, we
sub-sample5; 000images from the original training set in order to simulate data-scarse scenario (i.e.
pre�x s-). See the Appendix for more detailed information for the datasets.

Baselines and our model We consider the following well-known stochastic regularizers to compare
our model with. We carefully tuned the hyperparameters of each baseline with a holdout validation
set for each dataset. Note that MetaPerturb does not have any hyperparameters to tune, but there
could be variations among runs as with any neural models. Thus we select the best performing
noise generator over �ve meta-training runs using a validation set consisting of samples from
CIFAR-100, that is disjoint from s-CIFAR100, and use it throughout all the experiments in the paper.
Information Dropout: This model [2] is an instance of Information Bottleneck (IB) method [40],
where the bottleneck variable is de�ned as multiplicative perturbation as with ours.DropBlock: This
model [11] is a type of structured dropout [38] speci�cally developed for convolutional networks,
which randomly drops out units in a contiguous region of a feature map together.Manifold Mixup:
A recently introduced stochastic regularizer [42] that randomly pairs training examples to linearly
interpolate between the latent features of them. We also compare withBaseandFinetuning which
have no regularizer added.

Results Table 1 shows that our MetaPerturb regularizer signi�cantly outperforms all the baselines
on most of the datasets with only82 dimesions of parameters transferred. MetaPerturb is especially
effective on the �ne-grained datasets. This is because the generated perturbations help focus on

7

Table 2:Transfer to multiple networks. We use Tiny ImageNet as the source and small-SVHN as the target
dataset. As for Finetuning, we use the same source and target network since it cannot be applied across two
different networks. The reported numbers are the mean accuracies and standard deviations over 5 meta-test runs.

Model Source Target Network
Network Conv4 Conv6 VGG9 ResNet20 ResNet44 WRN-28-2

Base None 83.93� 0.20 86.14� 0.23 88.44� 0.29 87.96� 0.30 88.94� 0.41 88.95� 0.44

Infomation Dropout None 84.91� 0.34 87.23� 0.26 88.29� 1.18 88.46� 0.65 89.33� 0.20 89.51� 0.29

DropBlock None 84.29� 0.24 86.22� 0.26 88.68� 0.35 89.43� 0.26 90.14� 0.18 90.55� 0.25

Finetuning Same 84.00� 0.27 86.56� 0.23 88.17� 0.18 88.77� 0.26 89.62� 0.05 89.85� 0.31

MetaPerturb ResNet20 86.61� 0.42 88.59� 0.26 90.24� 0.27 90.70� 0.25 90.97� 1.09 90.88� 0.07

Figure 6:(a-c)Adversarial robustness against EoT attacks with varying size of radius� . (d) Calibration plot.

relevant part of the input by injecting noisez or downweighting the scales of the distracting parts of
the input. Our model also outperforms the baselines with signi�cant margins when used along with
�netuning (on Tiny ImageNet dataset). All these results demonstrate that our model can effectively
regularize the networks trained on unseen tasks from heterogeneous task distributions. Figure 5 shows
that MetaPerturb achieves better convergence over the baselines in terms of test loss and accuracy.

4.2 Transfer to multiple networks

We next validate if our meta-learned perturbation can generalize to multiple network architectures.

Dataset and Networks We use small version of SVHN dataset [27] (total 5; 000instances). We
use networks with 4 or 6 convolutional layers with64channels (Conv4 [43] and Conv6), VGG9 (a
small version of VGG [37] used in [36]), ResNet20, ResNet44 [13] and Wide ResNet 28-2 [47].

Results Table 2 shows that our MetaPerturb regularizer signi�cantly outperforms the baselines
on all the network architectures we considered. Note that although the source network is �xed as
ResNet20 during meta-training, the statistics of the layers are very diverse, such that the shared
perturbation function is learned to generalize over diverse input statistics. We conjecture that such
sharing across layers is the reason MetaPerturb effectively generalize to diverse target networks.
While �netuning generally outperforms learning from scratch in most cases, for experiments with
SVHN which contains digits and which is largely different from classes in TIN (Table 2), the
performance gain becomes smaller. Contrarily, MetaPerturb obtains large performance gains even on
heterogeneous datasets, which shows that the knowledge of how to perturb a sample is more generic
and is applicable to diverse domains.

4.3 Adversarial robustness and calibration performance

Reliability Figure 6(a) shows that MetaPerturb achieves higher robustness over existing baselines
againstExpectation over Time(EoT) [5] PGD attacks without explicit adversarial training, and even
higher robust accuracy over adversarial training [23] against̀ 2 and`1 attacks with small amount of
perturbations. Figure 6(d) shows that our MetaPerturb also improves the calibration performance in
terms of the expected calibration error (ECE [26]) and calibration plot, while other regularizers do
not, and Manifold Mixup even yields worse calibration over the base model.

Qualitative analysis Figure 7 shows the learned scales across the layers for each dataset. We see
thats for each channel and layer are generated differently for each dataset. The amount of channel
scaling at the lower layers have low variance across the channels and datasets which may be because
they are generic features of almost equal importance. Contrarily, the amount of perturbations at the
upper layers are highly variable across channels and datasets, since the scaling terms modulates the
amount of noise differently for each channel according to their (noises') relevance to the given task.

8

Table 3:Ablation study.
Variants s-CIFAR100 Aircraft CUB

Base 31.79� 0.24 59.23� 0.95 30.63� 0.66

(a) Components of
perturbation

w/o channel-wise scalings 32.65� 0.40 63.56� 1.30 33.63� 0.92

w/o stochastic noisez 31.02� 0.44 58.32� 0.92 30.26� 0.67

(b) Location of
perturbation

Only before pooling 32.89� 0.33 61.39� 1.01 38.88� 1.15

Only at top layers 32.57� 0.46 57.51� 0.72 37.89� 0.58

Only at bottom layers 31.77� 0.42 61.32� 0.29 33.48� 0.57

(c) Meta-training strategy Homogeneous task distribution34.31� 0.88 65.41� 0.76 40.64� 0.31

MetaPerturb 34.47� 0.45 65.87� 0.77 42.01� 0.43

Figure 7:The scales at each block of ResNet20.

(a) Base (b) DropBlock (c) Manif. Mixup (d) MetaPerturb

Figure 8:Visualization of training loss surface[20] (CUB, ResNet20)

Figure 8 shows that models trained with MetaPerturb and Manifold Mixup have �atter loss surfaces
than the baselines', which may be a reason why MetaPerturb improves model generalization.

Ablation study (a) Components of the perturbation function: In Table 3(a), we can see that
both components of our perturbation function, the input-dependent stochastic noisez and the channel-
wise scalings jointly contribute to the good performance of our MetaPerturb regularizer.
(b) Location of the perturbation function: Also, in order to �nd appropriate location of the pertur-
bation function, we tried applying it to various parts of the networks in Table 3(b) (e.g. only before
pooling layers or only at top/bottom layers). We can see that applying the function to a smaller subset
of layers largely underperforms applying it to all the ResNet blocks as done with MetaPerturb.
(c) Source task distribution: Lastly, in order to verify the importance of heterogeneous task distri-
bution, we compare with the homogeneous task distribution by splitting the source dataset across
the instances, rather than across the classes as done with MetaPetrub. We observe that this strategy
results in performance degradation since the lack of diversity prevents the perturbation function from
effectively extrapolating to diverse tasks.

5 Conclusion
We proposed a light-weight perturbation function that can transfer the knowledge of a source task
to any convolutional architectures and image datasets, by bridging the gap between regularization
methods and transfer learning. This is done by implementing the noise generator as a permutation-
equivariant set function that is shared across different layers of deep neural networks, and meta-
learning it. To scale up meta-learning to standard learning frameworks, we proposed a simple yet
effective meta-learning approach, which divides the dataset into multiple subsets and train the noise
generator jointly over the subsets, to regularize networks with different initializations. With extensive
experimental validation on multiple architectures and tasks, we show that MetaPerturb trained on a
single source task and architecture signi�cantly improves the generalization of unseen architectures on
unseen tasks, largely outperforming advanced regularization techniques and �ne-tuning. MetaPerturb
is highly practical as it requires negligible increase in the parameter size, with no adaptation cost
and hyperparameter tuning. We believe that with such effectiveness, versatility and practicality, our
regularizer has a potential to become a standard tool for regularization.

9

	Introduction
	Related Work
	Approach
	Dataset and Network agnostic perturbation function
	MetaPerturb
	Meta-learning framework

	Experiments
	Transfer to multiple datasets
	Transfer to multiple networks
	Adversarial robustness and calibration performance

	Conclusion

