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Abstract

Although model-agnostic meta-learning (MAML) is a very successful algorithm
in meta-learning practice, it can have high computational cost because it updates
all model parameters over both the inner loop of task-specific adaptation and the
outer-loop of meta initialization training. A more efficient algorithm ANIL (which
refers to almost no inner loop) was proposed recently by Raghu et al. 2019, which
adapts only a small subset of parameters in the inner loop and thus has substantially
less computational cost than MAML as demonstrated by extensive experiments.
However, the theoretical convergence of ANIL has not been studied yet. In this
paper, we characterize the convergence rate and the computational complexity for
ANIL under two representative inner-loop loss geometries, i.e., strongly-convexity
and nonconvexity. Our results show that such a geometric property can significantly
affect the overall convergence performance of ANIL. For example, ANIL achieves
a faster convergence rate for a strongly-convex inner-loop loss as the number N
of inner-loop gradient descent steps increases, but a slower convergence rate for
a nonconvex inner-loop loss as N increases. Moreover, our complexity analysis
provides a theoretical quantification on the improved efficiency of ANIL over
MAML. The experiments on standard few-shot meta-learning benchmarks validate
our theoretical findings.

1 Introduction

As a powerful learning paradigm, meta-learning [2, 29] has recently received significant attention,
especially with the incorporation of training deep neural networks [5, 30]. Differently from the
conventional learning approaches, meta-learning aims to effectively leverage the datasets and prior
knowledge of a task ensemble in order to rapidly learn new tasks often with a small amount of data
such as in few-shot learning. A broad collection of meta-learning algorithms have been developed
so far, which range from metric-based [16, 28], model-based [21, 30], to optimization-based algo-
rithms [5, 22]. The focus of this paper is on the optimization-based approach, which is often easy to
be integrated with optimization formulations of many machine learning problems.

One highly successful optimization-based meta-learning approach is the model-agnostic meta-
learning (MAML) algorithm [5], which has been applied to many application domains including
classification [25], reinforcement learning [5], imitation learning [9], etc. At a high level, the MAML
algorithm consists of two optimization stages: the inner loop of task-specific adaptation and the outer
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(meta) loop of initialization training. Since the outer loop often adopts a gradient-based algorithm,
which takes the gradient over the inner-loop algorithm (i.e., the inner-loop optimization path), even
the simple inner loop of gradient descent updating can result in the Hessian update in the outer loop,
which causes significant computational and memory cost. Particularly in deep learning, if all neural
network parameters are updated in the inner loop, then the cost for the outer loop is extremely high.
Thus, designing simplified MAML, especially the inner loop, is highly motivated. ANIL (which
stands for almost no inner loop) proposed in [24] has recently arisen as such an appealing approach.
In particular, [24] proposed to update only a small subset (often only the last layer) of parameters in
the inner loop. Extensive experiments in [24] demonstrate that ANIL achieves a significant speedup
over MAML without sacrificing the performance.

Despite extensive empirical results, there has been no theoretical study of ANIL yet, which motivates
this work. In particular, we would like to answer several new questions arising in ANIL (but not in the
original MAML). While the outer-loop loss function of ANIL is still nonconvex as MAML, the inner-
loop loss can be either strongly convex or nonconvex in practice. The strong convexity occurs naturally
if only the last layer of neural networks is updated in the inner loop, whereas the nonconvexity often
occurs if more than one layer of neural networks are updated in the inner loop. Thus, our theory
will explore how such different geometries affect the convergence rate, computational complexity, as
well as the hyper-parameter selections. We will also theoretically quantify how much computational
advantage ANIL achieves over MAML by training only partial parameters in the inner loop.

1.1 Summary of Contributions

In this paper, we characterize the convergence rate and the computational complexity for ANIL
with N -step inner-loop gradient descent, under nonconvex outer-loop loss geometry, and under two
representative inner-loop loss geometries, i.e., strongly-convexity and nonconvexity. Our analysis
also provides theoretical guidelines for choosing the hyper-parameters such as the stepsize and the
number N of inner-loop steps under each geometry. We summarize our specific results as follows.

• Convergence rate: ANIL converges sublinearly with the convergence error decaying sublinearly
with the number of sampled tasks due to nonconvexity of the meta objective function. The
convergence rate is further significantly affected by the geometry of the inner loop. Specifically,
ANIL converges exponentially fast with N initially and then saturates under the strongly-convex
inner loop, and constantly converges slower as N increases under the nonconvex inner loop.

• Computational complexity: ANIL attains an ε-accurate stationary point with the gradient and
second-order evaluations at the order of O(ε−2) due to nonconvexity of the meta objective
function. The computational cost is also significantly affected by the geometry of the inner
loop. Specifically, under the strongly-convex inner loop, its complexity first decreases and then
increases with N , which suggests a moderate value of N and a constant stepsize in practice for a
fast training. But under the nonconvex inner loop, ANIL has higher computational cost as N
increases, which suggests a small N and a stepsize at the level of 1/N for desirable training.

• Our experiments validate that ANIL exhibits aforementioned very different convergence behav-
iors under the two inner-loop geometries.

From the technical standpoint, we develop new techniques to capture the properties for ANIL, which
does not follow from the existing theory for MAML [4, 14]. First, our analysis explores how different
geometries of the inner-loop loss (i.e., strongly-convexity and nonconvexity) affect the convergence
of ANIL. Such comparison does not exist in MAML. Second, ANIL contains parameters that are
updated only in the outer loop, which exhibit special meta-gradient properties not captured in MAML.

1.2 Related Works

MAML-type meta-learning approaches. As a pioneering meta-initialization approach, MAML [5]
aims to find a good initialization point such that a few gradient descent steps starting from this point
achieves fast adaptation. MAML has inspired various variant algorithms [6, 7, 8, 12, 20, 24, 25, 33].
For example, FOMAML [5] and Reptile [22] are two first-order MAML-type algorithms which avoid
second-order derivatives. [7] provided an extension of MAML to the online setting. Based on the
implicit differentiation technique, [25] proposed a MAML variant named iMAML by formulating
the inner loop as a regularized empirical risk minimization problem. More recently, [24] modifies
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MAML to ANIL by adapting a small subset of model parameters during the inner loop in order to
reduce the computational and memory cost. This paper provides the theoretical guarantee for ANIL
as a complement to its empirical study in [24].

Other optimization-based meta-learning approaches. Apart from MAML-type meta-initialization
algorithms, another well-established framework in few-shot meta learning [3, 18, 26, 28, 32] aims
to learn good parameters as a common embedding model for all tasks. Building on the embedded
features, task-specific parameters are then searched as a minimizer of the inner-loop loss function [3,
18]. Compared to ANIL, such a framework does not train the task-specific parameters as initialization,
whereas ANIL trains a good initialization for the task-specific parameters.

Theory for MAML-type approaches. There have been only a few studies on the statistical and
convergence performance of MAML-type algorithms. [6] proved a universal approximation property
of MAML under mild conditions. [25] analyzed the convergence of iMAML algorithm based on
implicit meta gradients. [4] analyzed the convergence of one-step MAML for a nonconvex objective,
and [14] analyzed the convergence of multi-step MAML in the nonconvex setting. As a comparison,
we analyze the ANIL algorithm provided in [24], which has different properties from MAML due to
adapting only partial parameters in the inner loop.

Notations. For a function L(w, φ) and a realization (w′, φ′), we define ∇wL(w′, φ′) = ∂L(w,φ)
∂w

∣∣
(w′,φ′)

,

∇2
wL(w

′, φ′) = ∂2L(w,φ)

∂w2

∣∣
(w′,φ′)

,∇φ∇wL(w′, φ′) = ∂2L(w,φ)
∂φ∂w

∣∣
(w′,φ′)

. The same notations hold for φ.

2 Problem Formulation and Algorithms

Let T = (Ti, i ∈ I) be a set of tasks available for meta-learning, where tasks are sampled for use by
a distribution of pT . Each task Ti contains a training sample set Si and a test set Di. Suppose that
meta-learning divides all model parameters into mutually-exclusive sets (w, φ) as described below.

• w includes task-specific parameters, and meta-learning trains a good initialization of w.

• φ includes common parameters shared by all tasks, and meta-learning trains φ for direct reuse.

For example, in training neural networks, w often represents the parameters of some partial layers,
and φ represents the parameters of the remaining inner layers. The goal of meta-learning here is
to jointly learn w as a good initialization parameter and φ as a reuse parameter, such that (wN , φ)
performs well on a sampled individual task T , where wN is the N -step gradient descent update of w.
To this end, ANIL solves the following optimization problem with the objective function given by

(Meta objective function): min
w,φ

Lmeta(w, φ) := Ei∼pT LDi(wiN (w, φ), φ), (1)

where the loss function LDi(w
i
N , φ) :=

∑
ξ∈Di `(w

i
N , φ; ξ) takes the finite-sum form over the test

dataset Di, and the parameter wiN for task i is obtained via an inner-loop N -step gradient descent
update of wi0 = w (aiming to minimize the task i’s loss function LSi(w, φ) over w) as given by

(Inner-loop gradient descent): wim+1 = wim − α∇wLSi(wim, φ), m = 0, 1, ..., N − 1. (2)

Here, wiN (w, φ) explicitly indicates the dependence of wiN on φ and the initialization w via the
iterative updates in eq. (2). To draw connection, the problem here reduces to the MAML [5]
framework if w includes all training parameters and φ is empty, i.e., no parameters are reused directly.

2.1 ANIL Algorithm

ANIL [24] (as described in Algorithm 1) solves the problem in eq. (1) via two nested optimization
loops, i.e., inner loop for task-specific adaptation and outer loop for updating meta-initialization and
reuse parameters. At the k-th outer loop, ANIL samples a batch Bk of identical and independently
distributed (i.i.d.) tasks based on pT . Then, each task in Bk runs an inner loop of N steps of gradient
descent with a stepsize α as in lines 5-7 in Algorithm 1, where wik,0 = wk for all tasks Ti ∈ Bk.

After obtaining the inner-loop output wik,N for all tasks, ANIL computes two partial gradients
∂LDi (w

i
k,N , φk)

∂wk
and

∂LDi (w
i
k,N , φk)

∂φk
respectively by back-propagation, and updates wk and φk by
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Algorithm 1 ANIL Algorithm
1: Input: Distribution over tasks pT , inner stepsize α, outer stepsize βw, βφ, initialization w0, φ0
2: while not converged do
3: Sample a mini-batch of i.i.d. tasks Bk = {Ti}Bi=1 based on the distribution pT
4: for each task Ti in Bk do
5: for m = 0, 1, ..., N − 1 do
6: Update wik,m+1 = wik,m − α∇wLSi(wik,m, φk)
7: end for
8: Compute gradients

∂LDi (w
i
k,N ,φk)

∂wk
,
∂LDi (w

i
k,N ,φk)

∂φk
by back-propagation

9: end for
10: Update parameters wk and φk by mini-batch SGD:

wk+1 = wk −
βw
B

∑
i∈Bk

∂LDi(w
i
k,N , φk)

∂wk
, φk+1 = φk −

βφ
B

∑
i∈Bk

∂LDi(w
i
k,N , φk)

∂φk

11: Update k ← k + 1
12: end while

stochastic gradient descent as in line 10 in Algorithm 1. Note that φk and wk are treated to be
mutually-independent during the differentiation process. Due to the nested dependence of wik,N on
φk and wk, the two partial gradients involve complicated second-order derivatives. Their explicit
forms are provided in the following proposition.
Proposition 1. The partial meta gradients take the following explicit form:

1)
∂LDi(w

i
k,N , φk)

∂wk
=

N−1∏
m=0

(I − α∇2
wLSi(w

i
k,m, φk))∇wLDi(w

i
k,N , φk).

2)
∂LDi(w

i
k,N , φk)

∂φk
=− α

N−1∑
m=0

∇φ∇wLSi(w
i
k,m, φk)

N−1∏
j=m+1

(I − α∇2
wLSi(w

i
k,j , φk))∇wLDi(w

i
k,N , φk)

+∇φLDi(w
i
k,N , φk).

2.2 Technical Assumptions and Definitions

We let z = (w, φ) ∈ Rn denote all parameters. For simplicity, suppose Si and Di for all i ∈ I have
sizes of S and D, respectively. In this paper, we consider the following types of loss functions.

• The outer-loop meta loss function in eq. (1) takes the finite-sum form as LDi(w
i
N , φ) :=∑

ξ∈Di `(w
i
N , φ; ξ). It is generally nonconvex in terms of both w and φ.

• The inner-loop loss function LSi(w, φ) with respect to w has two cases: strongly-convexity and
nonconvexity. The strongly-convex case occurs often when w corresponds to parameters of the
last linear layer of a neural network, so that the loss function of such a w is naturally chosen to be
a quadratic function or a logistic loss with a strongly convex regularizer [3, 18]. The nonconvex
case can occur if w represents parameters of more than one layers (e.g., last two layers [24]). As
we prove in Section 3, such geometries affect the convergence rate significantly.

Since the objective function Lmeta(w, φ) in eq. (1) is generally nonconvex, we use the gradient norm
as the convergence criterion, which is standard in nonconvex optimization.
Definition 1. We say that (w̄, φ̄) is an ε-accurate solution for the meta optimization problem in eq. (1)

if E
∥∥∥ ∂Lmeta(w̄,φ̄)

∂w̄

∥∥∥2

< ε and E
∥∥∥ ∂Lmeta(w̄,φ̄)

∂φ̄

∥∥∥2

< ε.

We further take the following standard assumptions on the individual loss function for each task,
which have been commonly adopted in conventional minimization problems [10, 13, 31] and min-max
optimization [19] as well as the MAML-type optimization [7, 14].
Assumption 1. The loss function LSi(z) and LDi(z) for each task Ti satisfy:
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• LSi(z) and LDi(z) are L-smooth, i.e., for any z, z′ ∈ Rn,

‖∇LSi(z)−∇LSi(z′)‖ ≤ L‖z − z′‖, ‖∇LDi(z)−∇LDi(z′)‖ ≤ L‖z − z′‖.

• LDi(z) is M -Lipschitz, i.e., for any z, z′ ∈ Rn, |LDi(z)− LDi(z′)| ≤M‖z − z′‖.

Note that we do not impose the function Lipschitz assumption (i.e., item 2 in Assumption 1) on the
inner-loop loss function LSi(z). We take the assumption on the Lipschitzness of function LDi to
ensure the meta gradient to be bounded. We note that iMAML [25] alternatively assumes the search
space of parameters to be bounded (see Theorem 1 therein) so that the meta gradient (eq. (5) therein)
can be bounded.

As shown in Proposition 1, the partial meta gradients involve two types of high-order derivatives
∇2
wLSi(·, ·) and ∇φ∇wLSi(·, ·). The following assumption imposes a Lipschitz condition for these

two high-order derivatives, which has been widely adopted in optimization problems that involve two
sets of parameters, e.g, bi-level programming [11].

Assumption 2. Both ∇2
wLSi(z) and ∇φ∇wLSi(z) are ρ-Lipschitz and τ -Lipschitz, i.e.,

• For any z, z′ ∈ Rn, ‖∇2
wLSi(z)−∇2

wLSi(z
′)‖ ≤ ρ‖z − z′‖.

• For any z, z′ ∈ Rn, ‖∇φ∇wLSi(z)−∇φ∇wLSi(z′)‖ ≤ τ‖z − z′‖.

3 Convergence Analysis of ANIL

We first provide convergence analysis for the ANIL algorithm, and then compare the performance of
ANIL under two geometries and compare the performance between ANIL and MAML.

3.1 Convergence Analysis under Strongly-Convex Inner-Loop Geometry

We first analyze the convergence rate of ANIL for the case where the inner-loop loss function LSi(·, φ)
satisfies the following strongly-convex condition.

Definition 2. LSi(w, φ) is µ-strongly convex with respect to w if for any w,w′ and φ,

LSi(w
′, φ) ≥ LSi(w, φ) +

〈
w′ − w,∇wLSi(w, φ)

〉
+
µ

2
‖w − w′‖2.

Based on Proposition 1, we characterize the smoothness property of Lmeta(w, φ) in eq. (1) as below.
Proposition 2. Suppose Assumptions 1 and 2 hold and choose the inner stepsize α = µ

L2 . Then, for
any two points (w1, φ1), (w2, φ2) ∈ Rn, we have

1)
∥∥∥∂Lmeta(w, φ)

∂w

∣∣∣
(w1,φ1)

− ∂Lmeta(w, φ)

∂w

∣∣∣
(w2,φ2)

∥∥∥
≤ poly(L,M, ρ)

L

µ
(1− αµ)N‖w1 − w2‖+ poly(L,M, ρ)

(
L

µ
+ 1

)
N(1− αµ)N‖φ1 − φ2‖,

2)
∥∥∥∂Lmeta(w, φ)

∂φ

∣∣∣
(w1,φ1)

− ∂Lmeta(w, φ)

∂φ

∣∣∣
(w2,φ2)

∥∥∥
≤ poly(L,M, τ, ρ)

L

µ
(1− αµ)

N
2 ‖w1 − w2‖+ poly(L,M, ρ)

L3

µ3
‖φ1 − φ2‖,

where τ, ρ, L and M are given in Assumptions 1 and 2, and poly(·) denotes the polynomial function
of the parameters with the explicit forms given in Appendix C.2.

Proposition 2 indicates that increasing the number N of inner-loop gradient descent steps yields
much smaller smoothness parameters for the meta objective function Lmeta(w, φ). As shown in the
following theorem, this allows a larger stepsize βw, which yields a faster convergence rate O( 1

Kβw
).

Theorem 1. Suppose Assumptions 1 and 2 hold, and apply Algorithm 1 to solve the meta optimization
problem eq. (1) with stepsizes βw = poly(ρ, τ, L,M)µ2(1− µ2

L2 )−
N
2 and βφ = poly(ρ, τ, L,M)µ3.
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Then, ANIL finds a point (w, φ) ∈
{

(wk, φk), k = 0, ...,K − 1
}

such that

(Rate w.r.t. w) E
∥∥∥∥∂Lmeta(w, φ)

∂w

∥∥∥∥2 ≤O
( 1
µ2

(
1− µ2

L2

)N
2

K
+

1
µ

(
1− µ2

L2

)N
2

B

)
,

(Rate w.r.t. φ) E
∥∥∥∥∂Lmeta(w, φ)

∂φ

∥∥∥∥2 ≤O
( 1
µ2

(
1− µ2

L2

)N
2

+ 1
µ3

K
+

1
µ

(
1− µ2

L2

) 3N
2

+ 1
µ2

B

)
.

To achieve an ε-accurate point, ANIL requires at most O
(
cwN
µ4

(
1 − µ2

L2

)N/2
+

c′wN
µ5

)
ε−2 gradient

evaluations in w, O
( cφ
µ4

(
1− µ2

L2

)N/2
+

c′φ
µ5

)
ε−2 gradient evaluations in φ, and O

(
csN
µ4

(
1− µ2

L2

)N/2
+

c′sN
µ5

)
ε−2 second-order derivative evaluations of ∇2

wLSi(·, ·) and ∇φ∇wLSi(·, ·), where constants
cw, c

′
w, cφ, c

′
φ, cs, c

′
s depend on τ,M, ρ.

Theorem 1 shows that ANIL converges sublinearly with the number K of outer-loop meta iterations,
and the convergence error decays sublinearly with the number B of sampled tasks, which are
consistent with the nonconvex nature of the meta objective function. The convergence rate is further
significantly affected by the number N of the inner-loop steps. Specifically, with respect to w, ANIL
converges exponentially fast as N increases due to the strong convexity of the inner-loop loss. With
respect to φ, the convergence rate depends on two components: an exponential decay term with N
and an N -independent term. As a result, the overall convergence of meta optimization becomes faster
as N increases, and then saturates for large enough N as the second component starts to dominate.
This is demonstrated by our experiments in Section 4.1.

Theorem 1 further indicates that ANIL attains an ε-accurate stationary point with the gradient and
second-order evaluations at the order of O(ε−2) due to nonconvexity of the meta objective function.
The computational cost is further significantly affected by inner-loop steps. Specifically, the gradient
and second-order derivative evaluations contain two terms: an exponential decay term with N and a
linear growth term with N . For a large condition number κ, a small N , e.g., N = 2, is a better choice.
However, when κ is not very large, e.g., in our experiments in Section 4.1 (in which increasing
N accelerates the iteration rate), the computational cost of ANIL initially decreases because the
exponential reduction dominates the linear growth. But when N is large enough, the exponential
decay saturates and the linear growth dominates, and hence the overall computational cost of ANIL
gets higher as N further increases. This suggests to take a moderate but not too large N in practice to
achieve an optimized performance, which we also demonstrate in our experiments in Section 4.1.

3.2 Convergence Analysis under Nonconvex Inner-Loop Geometry

In this subsection, we study the case, in which the inner-loop loss function LSi(·, φ) is nonconvex.
The following proposition characterizes the smoothness of Lmeta(w, φ) in eq. (1).
Proposition 3. Suppose Assumptions 1 and 2 hold, and choose the inner-loop stepsize α < O( 1

N
).

Then, for any two points (w1, φ1), (w2, φ2) ∈ Rn, we have

1)

∥∥∥∥∂Lmeta(w, φ)∂w

∣∣∣
(w1,φ1)

− ∂Lmeta(w, φ)

∂w

∣∣∣
(w2,φ2)

∥∥∥∥ ≤ poly(M,ρ, α, L)N(‖w1 − w2‖+ ‖φ1 − φ2‖),

2)

∥∥∥∥∂Lmeta(w, φ)∂φ

∣∣∣
(w1,φ1)

− ∂Lmeta(w, φ)

∂φ

∣∣∣
(w2,φ2)

∥∥∥∥ ≤ poly(M,ρ, τ, α, L)N(‖w1 − w2‖+ ‖φ1 − φ2‖),

where τ, ρ, L and M are given by Assumptions 1 and 2, and poly(·) denotes the polynomial function
of the parameters with the explicit forms of the smoothness parameters given in Appendix D.1.

Proposition 3 indicates that the meta objective function Lmeta(w, φ) is smooth with respect to both
w and φ with their smoothness parameters increasing linearly with N . Hence, N should be chosen to
be small so that the outer-loop meta optimization can take reasonably large stepsize to run fast. Such
a property is in sharp contrast to the strongly-convex case in which the corresponding smoothness
parameters decrease with N .

The following theorem provides the convergence rate of ANIL under the nonconvex inner-loop loss.
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Theorem 2. Under the setting of Proposition 3, and apply Algorithm 1 to solve the meta optimization
problem in eq. (1) with the stepsizes βw = βφ = poly(ρ, τ,M, α, L)N−1. Then, ANIL finds a point
(w, φ) ∈ {(wk, φk), k = 0, ...,K − 1} such that

E
∥∥∥∥∂Lmeta(w, φ)

∂w

∥∥∥∥2 ≤O(NK +
N

B

)
, E

∥∥∥∥∂Lmeta(w, φ)

∂φ

∥∥∥∥2 ≤ O(NK +
N

B

)
.

To achieve an ε-accurate point, ANIL requires at mostO(N2ε−2) gradient evaluations in w, O(Nε−2)

gradient evaluations in φ, and O(N2ε−2) second-order derivative evaluations.

Theorem 2 shows that ANIL converges sublinearly with K, the convergence error decays sublinearly
with B, and the computational complexity scales at the order of O(ε−2). But the nonconvexity of the
inner loop affects the convergence very differently. Specifically, increasing the numberN of the inner-
loop gradient descent steps yields slower convergence and higher computational complexity. This
suggests to choose a relatively small N for an efficient optimization process, which is demonstrated
in our experiments in Section 4.2

3.3 Complexity Comparison of Different Geometries and Different Algorithms

In this subsection, we first compare the performance for ANIL under strongly convex and nonconvex
inner-loop loss functions, and then compare the performance between ANIL and MAML.

Table 1: Comparison of different geometries on the convergence rate and complexity of ANIL.

Geometries Convergence rate Gradient complexity Second-order complexity

Strongly convex O
(

(1−ξ)
N
2 +ck
K

+ (1−ξ)
3N
2 +cb
B

)
] O

(
N((1−ξ)

N
2 +cε)

ε2

)
§ O

(
N((1−ξ)

N
2 +cε)

ε2

)
Nonconvex O

(
N
K

+ N
B

)
O
(
N2

ε2

)
O
(
N2

ε2

)
Each order term in the table summarizes the dominant components of both w and φ.
] : ξ = µ2

L2 < 1, ck, cb are constants. § : cε is constant.

Comparison for ANIL between strongly convex and nonconvex inner-loop geometries: Our
results in Sections 3.1 and 3.2 have showed that the inner-loop geometry can significantly affect the
convergence rate and the computational complexity of ANIL. The detailed comparison is provided
in Table 1. It can be seen that increasing N yields a faster convergence rate for the strongly-convex
inner loop, but a slower convergence rate for the nonconvex inner loop. Table 1 also indicates that
increasing N first reduces and then increases the computational complexity for the strongly-convex
inner loop, but constantly increases the complexity for the nonconvex inner loop.

We next provide an intuitive explanation for such different behaviors under these two geometries. For
the nonconvex inner loop, N gradient descent iterations starting from two different initializations
likely reach two points that are far away from each other due to the nonconvex landscape so that the
meta objective function can have a large smoothness parameter. Consequently, the stepsize should
be small to avoid divergence, which yields slow convergence. However, for the strongly-convex
inner loop, also consider two N -step inner-loop gradient descent paths. Due to the strong convexity,
they both approach to the same unique optimal point, and hence their corresponding values of the
meta objective function are guaranteed to be close to each other as N increases. Thus, increasing N
reduces the smoothness parameter, and allows a faster convergence rate.

Comparison between ANIL and MAML: [24] empirically showed that ANIL significantly speeds
up MAML due to the fact that only a very small subset of parameters go through the inner-loop
update. The complexity results in Theorem 1 and Theorem 2 provide theoretical characterization of
such an acceleration. To formally compare the performance between ANIL and MAML, let nw and
nφ be the dimensions of w and φ, respectively. The detailed comparison is provided in Table 2.

For ANIL with the strongly-convex inner loop, Table 2 shows that ANIL requires fewer gradient and
second-order entry evaluations than MAML by a factor ofO

(Nnw+Nnφ
Nnw+nφ

(
1+κL

)N) andO
(nw+nφ

nw

(
1+

κL
)N), respectively. Such improvements are significant because nφ is often much larger than nw.
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Table 2: Comparison of the computational complexities of ANIL and MAML.

Algorithms # of gradient entry evaluations ] # of second-order entry evaluations§

MAML [14, Theorem 2] O
(

(Nnw+Nnφ)(1+κL)N

ε2

)
ℵ O

(
(nw+nφ)2N(1+κL)N

ε2

)
ANIL (Strongly convex) O

(
(Nnw+nφ)((1−ξ)

N
2 +cε)

ε2

)
[ O

(
(n2
w+nwnφ)N((1−ξ)

N
2 +cε)

ε2

)
ANIL (Nonconvex) O

(
(Nnw+nφ)N

ε2

)
O
(

(n2
w+nwnφ)N2

ε2

)
]: with respect to each dimension of gradient. §: with respect to each entry of second-order derivatives.
ℵ: κ is the inner-loop stepsize used in MAML. [ : ξ = µ2

L2 < 1 and cε is a constant.

For nonconvex inner loop, we set κ ≤ 1/N for MAML [14, Corollary 2] to be consistent with our
analysis for ANIL in Theorem 2. Then, Table 2 indicates that ANIL requires fewer gradient and
second-order entry computations than MAML by a factor of O

(Nnw+Nnφ
Nnw+nφ

)
and O

(nw+nφ
nw

)
.

4 Experiments

In this section, we validate our theory on the ANIL algorithm over two benchmarks for few-shot
multiclass classification, i.e., FC100 [23] and miniImageNet [30]. The experimental implementation
and the model architectures are adapted from the existing repository [1] for ANIL. We consider a
5-way 5-shot task on both the FC100 and miniImageNet datasets. We relegate the introduction of
datasets, model architectures and hyper-parameter settings to Appendix A due to the space limitations.

Our experiments aim to explore how the different geometry (i.e., strong convexity and nonconvexity)
of the inner loop affects the convergence performance of ANIL.

4.1 ANIL with Strongly-Convex Inner-Loop Loss

We first validate the convergence results of ANIL under the strongly-convex inner-loop loss function
LSi(·, φ), as we establish in Section 3.1. Here, we let w be parameters of the last layer of CNN and
φ be parameters of the remaining inner layers. As in [3, 18], the inner-loop loss function adopts L2

regularization on w with a hyper-parameter λ > 0, and hence is strongly convex.
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(b) dataset: miniImageNet

Figure 1: Convergence of ANIL with strongly-convex inner-loop loss function. For each dataset, left
plot: training loss v.s. number of total meta iterations; right plot: training loss v.s. running time.

For the FC100 dataset, the left plot of Figure 1(a) shows that the convergence rate in terms of
the number of meta outer-loop iterations becomes faster as the inner-loop steps N increases, but
nearly saturates at N = 7 (i.e., there is not much improvement for N ≥ 7). This is consistent with
Theorem 1, in which the gradient convergence bound first decays exponentially with N , and then the
bound in φ dominates and saturates to a constant. Furthermore, the right plot of Figure 1(a) shows
that the running-time convergence first becomes faster as N increases up to N ≤ 7, and then starts to
slow down as N further increases. This is also captured by Theorem 1 as follows. The computational
cost of ANIL initially decreases because the exponential reduction dominates the linear growth
in the gradient and second-order derivative evaluations. But when N becomes large enough, the
linear growth dominates, and hence the overall computational cost of ANIL gets higher as N further
increases. Similar nature of convergence behavior is also observed over the miniImageNet dataset as
shown in Figure 1(b). Thus, our experiment suggests that for the strongly-convex inner-loop loss,
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choosing a relatively large N (e.g., N = 7) achieves a good balance between the convergence rate
(as well as the convergence error) and the computational complexity.

4.2 ANIL with Nonconvex Inner-Loop Loss

We next validate the convergence results of ANIL under the nonconvex inner-loop loss function
LSi(·, φ), as we establish in Section 3.2. Here, we let w be the parameters of the last two layers with
ReLU activation of CNN (and hence the inner-loop loss is nonconvex with respect to w) and φ be the
remaining parameters of the inner layers.
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Figure 2: Convergence of ANIL with nonconvex inner-loop loss function. For each dataset, left plot:
training loss v.s. number of total meta iterations; right plot: training loss v.s. running time.

Figure 2 provides the experimental results over the datasets FC100 and miniImageNet. For both
datasets, the running-time convergence (right plot for each dataset) becomes slower as N increases,
where N = 1 is fastest, and the algorithm even diverges for N = 30 over the FC100 dataset. The
plots are consist with Theorem 2, in which the computational complexity increases as N becomes
large. Note that N = 1 is not the fastest in the left plot for each dataset because the influence of N
is more prominent in terms of the running time than the number of outer-loop iterations (which is
likely offset by other constant-level parameters for small N ). Thus, the optimization perspective here
suggests that N should be chosen as small as possible for computational efficiency, which in practice
should be jointly considered with other aspects such as generalization for determining N .

5 Conclusion

In this paper, we provide theoretical convergence guarantee for the ANIL algorithm under strongly-
convex and nonconvex inner-loop loss functions, respectively. Our analysis reveals different per-
formance behaviors of ANIL under the two geometries by characterizing the impact of inner-loop
adaptation steps on the overall convergence rate. Our results further provide guidelines for the
hyper-parameter selections for ANIL under different inner-loop loss geometries.

Broader Impact

Meta-learning has been successfully used in a wide range of applications including reinforcement
learning, robotics, federated learning, imitation learning, etc, which will be highly influential to
technologize our life. This work focuses on understanding the computational efficiency of the
optimization-based meta learning algorithms, particularly MAML and ANIL type algorithms. We
characterize the convergence guarantee on these algorithms. Furthermore, our theory provides
useful guidelines on the selections of hyperparameters for these algorithms, in order for them to be
efficiently implemented in large-scale applications. We also anticipate the theory that we develop
will be useful in other academic fields in addition to machine learning, including optimization theory,
signal processing, and statistics.
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