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Abstract

A major research direction in contextual bandits is to develop algorithms that are
computationally efficient, yet support flexible, general-purpose function approx-
imation. Algorithms based on modeling rewards have shown strong empirical
performance, yet typically require a well-specified model, and can fail when this
assumption does not hold. Can we design algorithms that are efficient and flexible,
yet degrade gracefully in the face of model misspecification? We introduce a
new family of oracle-efficient algorithms for ε-misspecified contextual bandits
that adapt to unknown model misspecification—both for finite and infinite action
settings. Given access to an online oracle for square loss regression, our algorithm
attains optimal regret and—in particular—optimal dependence on the misspecifi-
cation level, with no prior knowledge. Specializing to linear contextual bandits
with infinite actions in d dimensions, we obtain the first algorithm that achieves the
optimal Õ(d

√
T + ε

√
dT ) regret bound for unknown ε.

On a conceptual level, our results are enabled by a new optimization-based per-
spective on the regression oracle reduction framework of Foster and Rakhlin [21],
which we believe will be useful more broadly.

1 Introduction

The contextual bandit (CB) problem is an extension of the standard multi-armed bandit problem that
is relevant to a variety of applications in practice, including health services [43], online advertisement
[35, 4] and recommendation systems [8]. In the contextual bandit setting, at each round, the learner
observes a feature vector (or context) and an action set. The learner must select an action out of that
set and only observes the reward of that action. To make its selection, the learner has access to a
family of hypotheses (or policies), which map contexts to actions. The objective of the learner is to
achieve a cumulative reward that is close to that of the best hypothesis in hindsight for that specific
sequence of contexts and action sets.

A common approach to the contextual bandit problem consists of reducing it to a supervised learning
task such as classification or regression [33, 20, 6, 7, 42, 8, 36]. Recently, Foster and Rakhlin [21]
proposed SquareCB, an efficient reduction from K-armed contextual bandits to square loss regression
under realizability assumptions. One open question that comes up after this work is whether their
approach can be generalized to action spaces with many (or infinite) actions in d-dimensions. Another
open question is whether one can seamlessly shift from realizability to misspecified models without
requiring prior knowledge of the amount of misspecification. This is precisely the setup we study
here, where the action set is large or infinite, but where the learner has a ‘good’ feature representation
available up to some unknown amount of misspecification.

Adequately handling misspecification has been a subject of intense recent interest even for the simple
special case of linear contextual bandits. Du et al. [19] questioned whether “good” is indeed enough,
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that is, whether we can learn efficiently even without realizability. Lattimore et al. [34] gave a positive
answer to that question, provided the misspecification level ε is known in advance, and showed that
the price of misspecification (for regret) is roughly ε

√
dT , where d is the dimension and T is the time

horizon. However, they left the adapting to unknown ε as an open question.

Our results. We provide an affirmative answer to all of these questions. We generalize SquareCB
to infinite action sets, and use this strategy to adapt to unknown misspecification ε by combining it
with a bandit model selection procedure akin to the one proposed by Agarwal et al. [9]. Our algorithm
is oracle-efficient, and adapts to misspecification efficiently and optimally whenever it has access to
an online oracle for square loss regression. When specialized to linear contextual bandits, it answers
the question of Lattimore et al. [34].

An important conceptual contribution of our work is to show that one can view the action selection
scheme used by SquareCB as an approximation to a log-barrier regularized optimization problem,
which paves the way for a generalization to infinite action spaces. Another by-product of our results
is a generalization of the original CORRAL algorithm [9] for combining bandit algorithms, which is
simpler, flexible, and enjoys improved logarithmic factors.

1.1 Related Work

The contextual bandit is a well-studied problem, and misspecification in bandits and reinforcement
learning has been the subject of intense recent interest. We mention a few works which are closely
related to our results.

For linear bandits in d dimensions, Lattimore et al. [34] gave an algorithm with regret O(d
√
T +

ε
√
dT ), and left adapting to unknown misspecification for changing action sets as an open problem.

Concurrent work of Pacchiano et al. [38] solves this problem for the special case where contexts/action
sets are stochastic, and also leverages CORRAL-type aggregation of contextual bandit algorithms.
Our results resolve this question in the general adversarial setting.

Within the literature general-purpose contextual bandit algorithms, our approach builds on a recent
line of research that provides reductions to offline/online square loss regression [22, 21, 39, 46, 24].

Besides the standard references on oracle-based agnostic contextual bandits (e.g., [33, 20, 6, 7]),
ε-misspecification is somewhat related to the recent stream of literature on bandits with adversarially-
corrupted feedback [37, 27, 14]. See the discussion in Appendix A.

2 Problem Setting

We consider the following contextual bandit protocol: At every round t = 1, . . . , T , the learner first
observes a context xt ∈ X and an action set At ⊆ A, where A ⊆ Rd is a compact action space; for
simplicity, we assume throughout that A = {a ∈ Rd : ‖a‖ ≤ 1}, but place no restriction on (At)Tt=1.
Given the context and action set, the learner chooses action at ∈ At, then observes a stochastic loss
`t ∈ [−1,+1] depending on the action selected. We assume that the sequence of context vectors xt
and the associated sequence of action sets At are generated by an oblivious adversary.

We let µ(a, x) := E[`t |xt = x, at = a] denote the mean loss function, which is unknown to the
learner. We adopt a semi-parametric approach to modeling the losses, in which µ(a, x) is modelled a
(nearly) linear in the action a, but can depend on the context x arbitrarily [21, 46, 15]. In particular,
we assume the learner has access to a class of functions F ⊆ {f : X → Rd}, where for each f ∈ F ,
〈a, f(x)〉 attempts to predict the value of µ(a, x). In a well-specified/realizable setting, one would
assume that there exists some f? ∈ F such that µ(a, x) = 〈a, f?(x)〉. In this paper, we make no
such assumption, but the regret incurred by our algorithms depends on how far this is from being
true. For each f ∈ F , we let πf (·, ·) denote the induced policy, whose action at time t is given by
πf (xt,At) := argmina∈At〈a, f(xt)〉.
The goal of the learner is to minimize its pseudoregret Reg(T ) against the best unconstrained policy:

Reg(T ) := E
[∑T

t=1 µ(at, xt)− infa∈At µ(a, xt)
]
.

Here, and for the remainder of the paper, we use E[·] to denote the expectation with respect to both
the randomized choices of the learner and the stochastic realization of the losses `t.
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This setup recovers the usual finite-arm contextual bandit with K arms setting by taking At =
{e1, . . . , eK}. Another important special case is the well-studied linear contextual bandit setting,
which corresponds to the case where F consists of constant vector-valued functions that do not
depend on X . Specifically, for any Θ ⊆ Rd, we can take F = {x 7→ θ | θ ∈ Θ}. In this case, the
prediction 〈a, f(x)〉 simplifies to 〈a, θ〉, a constant linear function of the action space A. This special
case recovers the most widely studied version of linear contextual bandits [3, 12, 1, 16, 2, 10, 17], as
well as Gaussian process extensions [40, 31, 18, 41].

2.1 Misspecification

Contextual bandit algorithms based on modeling rewards typically rely on the assumption of a
well-specified model (or, “realizability”): That is, existence of a function f? ∈ F such that µ(a, x) =
〈a, f?(x)〉 for all a ∈ A and x ∈ X [16, 1, 6, 22]. Since this assumption may not be realistic in
practice, a more recent line of work has begun to develop algorithms for misspecified models. In
particular, Crammer and Gentile [17], Ghosh et al. [26], Lattimore et al. [34] and Foster and Rakhlin
[21] consider a uniform ε-misspecified setting in which

inff∈F supa∈A,x∈X |µ(a, x)− 〈a, f(x)〉| ≤ ε, (1)

for some misspecification level ε > 0. Notably, Lattimore et al. [34] show that for the linear setting,
regret must grow as Ω(d

√
T + ε

√
dT ). Since d

√
T is the optimal regret for a well-specified model,

ε
√
dT may be thought of as the price of misspecification.

In this paper, we consider a weaker average-case notion of misspecification. Given a sequence
S = (x1,A1), . . . , (xT ,AT ) of context-action set pairs, we define the average misspecification level
εT (S) as

εT (S) := inff∈F

(
1
T

∑T
t=1 supa∈At(〈a, f(xt)〉 − µ(a, xt))

2
)1/2

. (2)

This quantity measures the misspecification level for the specific sequence S at hand. Of course, the
uniform bound in Eq. (1) directly implies εT (S) ≤ ε for all S in Eq. (2), and εT (S) = 0 whenever
the model is well-specified.

We provide regret bounds that optimally adapt to εT (S) for any given realization of the sequence
S, with no prior knowledge of the misspecification level. The issue of adapting to unknown mis-
specification has not been addressed even for the stronger uniform notion (1). Indeed, previous
efforts typically use prior knowledge of ε to tune the exploration-exploitation scheme to encourage
conservative exploration when misspecification is large; see Lattimore et al. [34, Appendix E], Foster
and Rakhlin [21, Section 5.1], Crammer and Gentile [17, Section 4.2], and Zanette et al. [47] for
examples. Naively adapting such schemes using, e.g., doubling tricks, presents difficulties because
the quantity in Eq. (2) does not appear to be estimable without knowledge of µ.

2.2 Regression Oracles

Following Foster and Rakhlin [21], we assume access to an online regression oracle SqAlg, which is
simply an algorithm for sequential prediction with the square loss, using F as a benchmark class.
More precisely, the oracle operates under the following protocol. At each round t ∈ [T ], the algorithm
receives a context xt ∈ X , outputs a predictor ŷt ∈ Rd (in particular, we interpret 〈a, ŷt〉 as the
predicted loss for action a), then observes an action at ∈ A and loss `t ∈ [−1,+1] and incurs loss
(〈at, ŷt〉 − `t)2.4 Formally, we make the following assumption.

Assumption 1. The regression oracle SqAlg guarantees that for any (potentially adaptively chosen)
sequence {(xt, at, `t)}Tt=1,∑T

t=1(〈at, ŷt〉 − `t)2 − inff∈F
∑T
t=1(〈at, f(xt)〉 − `t)2 ≤ RegSq(T ) ,

for some (non-data-dependent) upper bound RegSq(T ).

4As in Foster and Rakhlin [21], the square loss itself does not play a crucial role, and can be replaced by
other loss that is strongly convex with respect to the learner’s predictions.
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For the finite-action setting, this definition coincides with that of Foster and Rakhlin [21]. To simplify
the presentation of our results, we assume throughout the paper that RegSq(T ) is a non-decreasing
function of T .

While this type of oracle suffices for all of our results, our algorithms are stated more naturally in
terms of a stronger oracle which supports weighted online regression. In this model, we follow the
same protocol as in Assumption 1, except that at each time t, the regression oracle observes a weight
wt ≥ 0 at the same time as the context xt, and the loss incurred is now wt · (〈at, ŷt〉 − `t)2. For
technical reasons, we also allow the oracle for this model to be randomized. We make the following
assumption.
Assumption 2. The weighted regression oracle SqAlg guarantees that for any (potentially adaptively
chosen) sequence {(wt, xt, at, `t)}Tt=1,

E
[∑T

t=1 wt(〈at, ŷt〉 − `t)2 − inff∈F
∑T
t=1 wt(〈at, f(xt)〉 − `t)2

]
≤ E

[
maxt∈[T ] wt

]
· RegSq(T ) ,

for some upper bound RegSq(T ), where the expectation is taken with respect to the oracle’s random-
ization.

We show in Appendix B (Algorithm 5)that any unweighted regression oracle satisfying Assumption 1
can be transformed into a randomized oracle for weighted regression that satisfies Assumption 2,
with no overhead in runtime. Hence, to simplify exposition, for the remainder of the paper we state
our results in terms of weighted regression oracles satisfying Assumption 2.

Online regression has been well-studied, and many efficient algorithms are known for standard classes
F . One example, which is important for our applications, is when F is linear.
Example 1 (Linear Models). Suppose F = {x 7→ θ | θ ∈ Θ}, where Θ ⊆ Rd is a convex set with
‖θ‖ ≤ 1. Then the online Newton step algorithm [28] satisfies Assumption 1 with RegSq(T ) =
O(d log(T )) and—via our reduction (Algorithm 5)—can be augmented to satisfy Assumption 2.

Further examples include kernels [45], generalized linear models [29], and standard nonparametric
classes [25]. We refer to Foster and Rakhlin [21] for a more extensive discussion.

Additional notation. We make use of the following additional notation. Given a set X , we let
∆(X) denote the set of all probability distributions over X . If X is continuous, we restrict ∆(X)
to distributions with countable support. We let ‖x‖ denote the euclidean norm for x ∈ Rd. For any
positive definite matrix H ∈ Rd×d, we denote the induced norm on x ∈ Rd by ‖x‖2H = 〈x,Hx〉.
For functions f, g : X → R+, we write f = O(g) if there exists some constant C > 0 such that
f(x) ≤ Cg(x) for all x ∈ X . We write f = Õ(g) if f = O(gmax{1,polylog(g)}), and define
Ω̃(·) analogously.

3 Adapting to Misspecification: An Oracle-Efficient Algorithm

We now present our main result: an efficient reduction from contextual bandits to online regression
that adapts to unknown misspecification εT (S) and supports infinite action sets. Our main theorem is
as follows.
Theorem 1. Suppose we have access to a weighted regression oracle SqAlg that satisfies Assump-
tion 2 for class F . Then there exists an efficient reduction which guarantees that for any sequence
S = (x1,A1), . . . , (xT ,AT ) with misspecification level εT (S),

Reg(T ) = O
(√

dTRegSq(T ) log(T ) + εT (S)
√
dT
)
.

The algorithm has building blocks: First, we extend the reduction of [21] to infinite action sets
via a new optimization-based perspective, and we show that the resulting algorithm has favorable
dependence on misspecification level when it is known in advance. Then, we combine this reduction
with a scheme which aggregates multiple instances to adapt to unknown misspecification. If the
time required for a single query to SqAlg is TSqAlg, then the per-step runtime of our algorithm is
Õ(TSqAlg + |At| · poly(d)).
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As an important application, we solve an open question recently posed by Lattimore et al. [34]: we
exhibit an efficient algorithm for infinite-action linear contextual bandits which optimally adapts to
unknown misspecification.
Corollary 1. Let F = {x 7→ θ | θ ∈ Rd, ‖θ‖ ≤ 1}. Then there exists an efficient algorithm that, for
any sequence S = (x1,A1), . . . , (xT ,AT ), satisfies

Reg(T ) = O
(
d
√
T log(T ) + εT (S)

√
dT
)
.

This result immediately follows from Theorem 1 by applying online Newton step algorithm as the
regression oracle, as in Example 1. Modulo logarithmic factors, this bound coincides with the one
achieved by Lattimore et al. [34] for the simpler non-contextual linear bandit problem, for which the
authors also present a matching lower bound.

The remainder of this section is dedicated to proving Theorem 1. The roadmap is as follows.
First, we revisit the reduction from K-armed contextual bandits to online regression by Foster and
Rakhlin [21] and provide a new optimization-based perspective. This new viewpoint leads to a natural
generalization from theK-armed case to the infinite action case. We then provide an aggregation-type
procedure which combines multiple instances of this algorithm to adapt to unknown misspecification,
and finally put all the pieces together to prove the main result. As an extension, we also give a variant
of the algorithm which enjoys improved bounds when the action sets At lie in low-dimensional
subspaces of Rd. Going forward, we abbreviate εT (S) to εT whenever the sequence S is clear from
context.

3.1 Oracle Reductions with Finite Actions: An Optimization-Based Perspective

An important special case of our setting, is the finite-arm contextual bandit problem, where
At = K := {e1, . . . , eK}. For this setting, Foster and Rakhlin [21] proposed an efficient and
optimal reduction called SquareCB, which is displayed in Algorithm 1. At each step, queries the
oracle SqAlg with the current context xt and receives a loss predictor θ̂t ∈ RK (so that (θ̂t)i pre-
dicts the loss of action i). The algorithm then samples an action from a probability distribution
introduced by Abe and Long [3]. Specifically for any θ ∈ RK and learning rate γ > 0, we define
abe-long(θ, γ) as the distribution p ∈ ∆([K]) obtained by first selecting any i? ∈ argmini∈[K] θi,

Algorithm 1: SquareCB [21]
Input: Learning rate γ, time horizon T .
Initialize Regression oracle SqAlg.
for t = 1, . . . , T do

Receive context xt.
Let θ̂t be the oracle’s prediction for xt.
Sample It ∼ abe-long(θ̂t, γ).
Play at = eIt and observe loss `t.
Update SqAlg with (xt, at, `t).

then defining

pi =

{
1

K+γ(θi−θi? ) , if i 6= i?,

1−
∑
i′ 6=i? pi, otherwise.

(3)

By choosing γ ∝
√
KT/(RegSq(T ) + εT ), this

algorithm guarantees that

Reg(T ) ≤ O
(√

KTRegSq(T ) + εT
√
KT

)
.

Since this approach is the starting point for our
results, it will be useful to sketch the proof. For p ∈ ∆(A), let Hp := Ea∼p[aa>] be the correlation
matrix, and āp := Ea∼p[a] be the expected action. Let the sequence S be fixed, and let f? ∈ F be
any regression function which attains the value of εT (S) in Eq. (2).5 With a?t := πf?(xt,At) and
θ?t := f?(xt), we have

E
[∑T

t=1 µ(at, xt)− infa∈At µ(a, xt)
]
≤ E

[∑T
t=1〈at − a?t , θ?t 〉

]
+ 2εTT

= E
[∑T

t=1〈āpt − a?t , θ?〉 −
γ
4 ‖θ

? − θ̂t‖2Hpt
]

+ E
[∑T

t=1
γ
4 ‖θ

? − θ̂t‖2Hpt
]

+ 2εTT .

The first expectation term above is bounded by O(KT/γ), which is established by showing that
abe-long(θ̂, γ) is an approximate solution to the per-round minimax problem

min
p∈∆(K)

max
θ∈RK

max
a?∈K

〈āp − a?, θ〉 −
γ

4
‖θ̂ − θ‖2Hp , (4)

5If the infimum is not obtained, we can simply apply the argument that follows with a limit sequence.
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with value O(K/γ). The second expectation term is bounded by O(γ · (RegSq(T ) + εTT )), which
follows almost immediately from the definition of the square loss regret in Assumption 1 (see the
proof of Theorem 3 for details). Choosing γ to balance the terms leads to the result.

As a first step toward generalizing this result to infinite actions, we propose a new distribution which
exactly solves the minimax problem (4). This distribution is the solution to a dual optimization
problem based on log-barrier regularization, and provides a new principled approach to deriving
reductions.
Lemma 1. For any θ ∈ RK and γ > 0, the unique minimizer of Eq. (4) coincides with the unique
minimizer of the log-barrier(θ, γ) optimization problem defined by

log-barrier(θ, γ) = argminp∈∆([K])

{
〈p, θ〉 − 1

γ

∑
a∈[K] log(pa)

}
=
(

1
λ+γθi

)K
i=1

, (5)

where λ is the unique value that ensures that the weights on the right-hand side above sum to one.

The abe-long distribution is closely related to the log-barrier distribution: Rather than finding the
optimal Lagrange multiplier λ that solves the log-barrier problem, the abe-long strategy simply plugs
in λ = K − γmini′ θi′ , then shifts weight to pi? to ensure the distribution is normalized. Since
the log-barrier strategy solves the minimax problem Eq. (4) exactly, plugging it into the results of
Foster and Rakhlin [21] and Simchi-Levi and Xu [39] in place of abe-long leads to slightly improved
constants. More importantly, this new perspective leads to a principled way to extend these reductions
to infinite actions.

3.2 Moving to Infinite Action Sets: The Log-Determinant Barrier

Algorithm 2: SquareCB.Inf

Input: Learning rate γ, time horizon T .
Initialize Regression oracle SqAlg.
for t = 1, . . . , T do

Receive context xt.
Let θ̂t be the oracle’s prediction for xt.
Play at ∼ logdet-barrier(θ̂t, γ;At).
Observe loss `t.
Update SqAlg with (xt, at, `t).

We generalize the log-barrier distribution to infi-
nite action sets using the log-determinant function.
For any p ∈ ∆(A), denote āp = Ea∼p[a] and
Hp = Ea∼p[aaT ]. Furthermore we use dim(A)
to denote the dimension of the smallest affine linear
subspace that contains A. When dim(A) < d, we
adopt the convention that det(·) takes the product
of only the first dim(A) eigenvalues of the matrix
in its argument, so that the solution bwlow is well-
defined. Our logdet-barrier distributions are defined
as follows.
Definition 1. For any θ ∈ Rd, action set A ⊂ Rd, and γ > 0, the set of logdet-barrier(θ, γ;A)
distributions are defined as the solutions to

argminp∈∆(A)

{
〈āp, θ〉 − γ−1 log det(Hp − āpāTp )

}
. (6)

In general, Eq. (6) does not admit a unique solution; all of our results apply to any minimizer. Our key
result is that these logdet-barrier distributions solve a minimax problem analogous to that of Eq. (4).

Lemma 2. Any solution to logdet-barrier(θ̂, γ;A) satisfies

maxθ∈Rd maxa?∈A〈āp − a?, θ〉 − γ
4 ‖θ̂ − θ‖

2
Hp
≤ γ−1 dim(A). (7)

By replacing the abe-long distribution with the logdet-barrier distribution in Algorithm 1, we obtain
an optimal reduction for infinite action sets. This algorithm, which we call SquareCB.Inf, is displayed
in Algorithm 2.
Theorem 2. Given a regression oracle SqAlg that satisfies Assumption 1 for class F , SquareCB.Inf

with learning rate γ ∝
√
dT/(RegSq(T ) + ε) guarantees for all sequences S with εT (S) ≤ ε that

Reg(T ) = O
(√

dTRegSq(T ) + ε
√
dT
)
.

The logdet-barrier optimization problem is closely related to the D-optimal experimental design
problem and to finding the John ellipsoid [30, 44], which correspond to the case where θ = 0 in
Eq. (6) [32]. By adapting specialized optimization algorithms for these problems (in particular, a
Frank-Wolfe-type scheme), we can efficiently solve the logdet-barrier problem. In particular, we have
the following proposition.
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Proposition 1. An approximation to (6) that achieves the same regret bound up to a constant factor
can be computed in time Õ(|At| · poly(d)) and memory Õ(log|At| · poly(d)) per round.

The algorithm and a full analysis for runtime and memory complexity, as well as the impact on the
regret, is provided in Appendix E.

3.3 Adapting to Misspecification: Algorithmic Framework

The regret bound of SquareCB.Inf in Theorem 2 achieves optimal dependence on dimension and on
the misspecification level, but requires an a-priori upper bound on εT (S) to set the learning rate. We
now turn our attention to adapting to this parameter.

At a high level, our approach is to run multiple instances of SquareCB.Inf, each tuned to a different
level of misspecification, then run an aggregation procedure on top to learn the best instance. Specifi-
cally, if we initialize a collection of M := blog(T )c instances of Algorithm 2 in which the learning
rate for instancem is tuned for misspecification level ε′m := exp(−m) (that is, we follow a geometric
grid), then it is straightforward to show that there exists m? ∈ [M ] such that the m?th instance would
enjoy optimal regret if we ran it on the sequence S. Since m? is not known a-priori, we run an
aggregation (or, “Corralling”) procedure [9] to select the best instance. This approach is, in general,
not suitable for model selection, since it typically requires prior knowledge of the optimal regret
bound to tune certain parameters appropriately [23]. We show that adaptation to misspecification is
an exception to this rule, and provides a simple setting where model selection for contextual bandits
is possible.

Algorithm 3: Corralling [9]
Input: Master algorithm Master, T
Initialize (Basem)Mm=1
for t = 1, . . . , T do

Receive context xt.
Receive At, qt,At from Master.
Pass (xt,At, qt,At , ρt,At) to BaseAt .
BaseAt plays at and observes `t.
Update Master with ˜̀

t,At = (`t + 1).

We consider the aggregation scheme in Algorithm 3,
which is a generalization of the CORRAL algorithm
of Agarwal et al. [9]. The algorithm is initialized
with M base algorithms, and uses a multi-armed
bandit algorithm with M arms as a master algorithm
responsible for choosing which base algorithm to
follow at each round.

The master maintains a distribution qt ∈ ∆([M ])
over the base algorithms. At each round t, it samples
an algorithm At ∼ qt and passes the current context
xt into this algorithm, as well as the sampling probability qt,At and a weight ρt,At , where we define
ρt,m := 1/mins≤t qs,m for each m. The base algorithm At now plays a regular contextual bandit
round: Given the context xt, it proposes an arm at, which is pulled, receives the loss `t, and updates
its internal state. Finally, the master updates its state with the action-loss pair (At, ˜̀

t,At), where
˜̀
t,At := `t + 1 (for technical reasons, it is useful to shift the loss by 1 to ensure non-negativity).

Let RegmImp(T ) := E
[∑T

t=1
I{At=m}
qt,m

(µ(at, xt)− infa∈At µ(a, xt))
]

denote the importance-
weighted regret for base algorithm m, which is simply the pseudoregret incurred in the rounds
where Algorithm 3 follows this base algorithm, weighted inversely proportional to the probability
that this occurs. It is straightforward to show that for any choice of master and base algorithms, this
scheme guarantees that

Reg(T ) = E
[∑T

t=1
˜̀
t,At − ˜̀

t,m?

]
+ Regm

?

Imp(T ) , (8)

where ˜̀
t,m henceforth denotes the loss the algorithm would have suffered at round t if we had

At = m. That is, the regret of Algorithm 3 is equal to the regret RegM (T ) := E[
∑T
t=1

˜̀
t,At − ˜̀

t,m? ]
of the master algorithm, plus the importance-weighted regret of the optimal base algorithm m?.

The difficulty in instantiating this general scheme lies in the fact that the important-weighted regret of
the best base typically scales with E[ραT,m? ] ·Regm

?

Unw(T ), where α ∈ [ 1
2 , 1] is an algorithm-dependent

parameter and RegmUnw(T ) := E[
∑T
t=1 I {At = m} (µ(at, xt)− infa∈At µ(a, xt))] denotes the un-

weighted regret of algorithm m. A-priori, the E[ραT,m? ] can be unbounded, leading to large regret.
The key to the analysis of Agarwal et al. [9], and the approach we follow here, is to use a master
algorithm with negative regret proportional to E[ραT,m? ], allowing to cancel this factor.
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Algorithm 4: SquareCB.Imp (for base alg. m)
Input: T , RegSq(T )
Initialize Weighted regression oracle SqAlg.
for t = (τ1, τ2, . . .) ⊂ [T ] do

Receive context xt and (qt,m, ρt,m).
Set γt,m =

min
{√

d
ε′m
,
√
dT/(ρt,mRegSq(T ))

}
.

Set wt = γt,m/qt,m.
Compute oracle’s prediction θ̂t for xt, wt.
Sample at ∼ logdet-barrier(θt, γt,m;At).
Play at and observe loss `t.
Update SqAlg with (wt, xt, at, `t).

Base algorithm. As the first step towards
instantiating the aggregation scheme above,
we specify the base algorithm. We use a
modification to SquareCB.Inf based importance
weighting, which is designed to ensure that
the importance-weighted regret in Eq. (8) is
bounded. Pseudocode for the mth base algo-
rithm is given in Algorithm 4.

Let the instance m be fixed, and let Zt,m =
I{At = m} indicate the event that this in-
stance gets to select an arm; note that we
have Zt,m ∼ Ber(qt,m) marginally. When
Zt,m = 1, instancem receives qt,m and ρt,m =
maxs≤t q

−1
s,m from the master algorithm. The

instance then follows the same update scheme as in the vanilla version of SquareCB.Inf, except that i)
it uses an adaptive learning rate γt,m, which is tuned based on ρt,m, and ii) it uses a weighted square
loss regression oracle (Assumption 2), with the weight wt set as a function of γt,m and qt,m.

The importance weighted regret RegmImp(T ) for this scheme is bounded as follows.
Theorem 3. When invoked within Algorithm 3 with a regression oracle satisfying Assumption 2, the
importance-weighted regret for each instance m ∈ [M ] of Algorithm 4 satisfies

RegmImp(T ) ≤ 3
2E[
√
ρT,m]

√
dTRegSq(T ) +

((
ε′m
εT

+ εT
ε′m

)√
d+ 2

)
εTT. (9)

The key feature of this regret bound is that only the leading term involving RegSq(T ) depends on
the importance weights, not the second term involving the misspecification. This is allows us to get
away with tuning the master algorithm using only d, T , and RegSq(T ), but not εT , which is critical
to adapt without prior knowledge. Another important detail is that if ε′m is within a constant factor of
εT , the second term simplifies to O(εT

√
dT ) as desired.

3.4 Improved Master Algorithms for Combining Bandit Algorithms

It remains to provide a master algorithm for use within Algorithm 3. While it turns out the master
algorithm proposed in Agarwal et al. [9] suffices for this task, we go a step further and propose a new
master algorithm called (α,R)–hedged FTRL which is simpler and enjoys slightly improved regret,
removing logarithmic factors. While this is not the focus of the paper, we believe that it to be a useful
contribution on its own, because it provides a new approach to designing master algorithms for bandit
aggregation. We hope that it will find use more broadly.

The (α,R)–hedged FTRL algorithm is parameterized by a regularizer and two scale parameters
α ∈ (0, 1) and R > 0. We defer a precise definition and analysis to Appendix D, and state only the
relevant result for our aggregation setup here. This result concerns a specific instance of the (α,R)–
hedged FTRL algorithm that we call (α,R)–hedged Tsallis-INF, which instantiates the framework
using the Tsallis entropy as a regularizer [11, 5, 48]. The key property of the algorithm is that the
regret with respect to a policy playing a fixed arm m contains a negative contribution of magnitude
ραT,mR. The following result is a corollary of a more general theorem, Theorem 6.

Corollary 2. Consider the adversarial multi-armed bandit problem with M arms and losses ˜̀
t,m ∈

[0, 2]. For any α ∈ (0, 1) and R > 0, the (α,R)–hedged Tsallis-INF algorithm with learning rate
η =

√
1/(2T ) guarantees that for all m? ∈ [M ],

E
[∑T

t=1
˜̀
t,At − ˜̀

t,m?

]
≤ 4
√

2MT + E
[
min

{
1

1−α , 2 log(ρT,m?)
}
Mα − ραT,m?

]
·R . (10)

3.5 Putting Everything Together

Crucially, the regret bound in Corollary 2 has a negative R · ραT,m? term which, for sufficiently large
R and appropriate α, can be used to offset the regret incurred from importance-weighting the base
algorithms. In particular,

(
1
2 ,

3
2

√
dTRegSq(T )

)
–hedged Tsallis-INF has exactly the negative regret
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contribution needed to cancel the importance weighting term in Eq. (9) if we use SquareCB.Imp as the
base algorithm. In more detail, we combine the regret for the master and base algorithms as follows
to prove Theorem 1.

Proof sketch for Theorem 1. Using Eq. (8), it suffices to bound the regret of the bandit master
RegM (T ) and the important-weighted regret Regm

?

Imp(T ) for the optimal instancem?. By Corollary 2,

using
(

1
2 ,

3
2

√
dTRegSq(T )

)
–hedged Tsallis-INF as the master algorithm gives

RegM (T ) ≤ O
(√

dTRegSq(T ) log(T )
)
− 3

2E[
√
ρT,m? ]

√
dTRegSq(T ).

Whenever the misspecification level is not trivially small, the geometric grid ensures that there exists
m? ∈ [M ] such that e−1εT ≤ ε′m? ≤ εT . For this instance, Theorem 3 yields

Regm
?

Imp(T ) ≤ 3
2E[
√
ρT,m? ]

√
dTRegSq(T ) +O(εT

√
dT ).

Summing the two bounds using Eq. (8) completes the proof.

3.6 Extension: Adapting to the Average Dimension

A canonical application of linear contextual bandit is the problem of online news article recommenda-
tion, where the context xt is taken to be a feature vector containing information about the user, and
each action a ∈ At is the concatenation of xt with a feature representation for a candidate article
(e.g., Li et al. [35]). In this application and others like it, it is often the case that while examples
lie in high-dimensional space, the true dimensionality dim(At) of the action set is small, so that
davg := 1

T

∑T
t=1 dim(At) � d. If we have prior knowledge of davg (or an upper bound thereof),

we can exploit this low dimensionality for tighter regret. In fact, following the proof of Theorem 3
and Theorem 1, and bounding

∑T
t=1 dim(At) by davgT instead of dT , it is fairly immediate to show

that Algorithm 3 enjoys improved regret Reg(T ) = O(
√
davgTRegSq(T ) log(T ) + εT

√
davgT ), so

long as davg is replaced by d in the algorithm’s various parameter settings. Our final result shows that
it is possible to adapt to unknown davg and unknown misspecification simultaneously. The key idea
to apply a doubling trick on top of Algorithm 3
Theorem 4. There exists an algorithm that, under the same conditions as Theorem 1, satisfies
Reg(T ) = O

(√
davgTRegSq(T ) log(T ) + εT

√
davgT

)
without prior knowledge of davg or εT .

We remark that while the bound in Theorem 4 replaces the d factor in the reduction with the data-
dependent quantity davg, the oracle’s regret RegSq(T ) may itself still depend on d unless a sufficiently
sophisticated algorithm is used.

4 Discussion

We have presented the first general-purpose, oracle-efficient algorithms for contextual bandits that
adapt to unknown model misspecification. For infinite-action linear contextual bandits, our results
yield the first optimal algorithms that adapt to unknown misspecification with changing action sets.
Our results suggest a number of interesting conceptual questions:

• Can our optimization-based perspective lead to new oracle-based algorithms for more rich
types of infinite action sets? Examples include nonparametric actions and structured (e.g.,
sparse) linear actions.

• Can our reduction-based techniques be lifted to more sophisticated interactive learning
settings such as reinforcement learning?

On the technical side, we anticipate that our new approach to reductions will find broader use; natural
extensions include reductions for offline oracles [39] and adapting to low-noise conditions [24].

Lastly, we recall that in passing, we have derived a novel class of master algorithms for combining
bandit algorithms which enjoys more flexibility, an improvement in logarithmic factors, and a greatly
simplified analysis. We hope this result will be useful for future work on model selection in contextual
bandits.
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Broader Impact

This paper concerns contextual bandit algorithms that adapt to unknown model misspecification.
Because of their efficiency and ability to adapt to the amount of misspecification contained with no
prior knowledge, our algorithms are robust, and may be suitable for large-scale practical deployment.
On the other hand, our work is at the level of foundational research, and hence its impact on society
is shaped by the applications that stem from it. We will focus our brief discussion on the applications
mentioned in the introduction.

Health services [43] offer an opportunity for potential positive impact. Contextual bandits can be
used to propose medical interventions that lead to a better health outcomes. However, care must be
taken to ethically implement the explore-exploit tradeoff in this sensitive setting, and more research
is required. Online advertisements [4, 35] and recommendation systems [8] are another well-known
application. While improved, robust algorithms can lead to increased profits here, it is important to
recognize that this may positively impact society as a whole.

Lastly, we mention that predictive algorithms like contextual bandits become more and more powerful
as more information is gathered about users. This provides a clear incentive toward collecting as much
information as possible. We believe that the net benefit of research on contextual bandit outweighs
the harm, but we welcome regulatory efforts to produce a legal framework that steers the usage of
machine learning algorithms, including in contextual bandits, in a direction which is respects of the
privacy rights of users.
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Algorithm 5: Randomized reduction from weighted to unweighted online regression
Input: Online regression oracle SqAlg satisfying Assumption 1.
Initialize wmax ← 0
for t = 1, . . . , T do

Receive weight wt and xt.
if wt > wmax then

Reset SqAlg.
wmax ← 2wt.

Predict ŷt, where ŷt is the prediction from SqAlg given xt.
Observe at and `t.
if ut ∼ Ber(wt/wmax) = 1 then

Update SqAlg with (xt, at, `t).

A Additional Related Work

In particular, our work builds on and provides a new perspective on the online square loss oracle
reduction of Foster and Rakhlin [21]. The infinite-action setting we consider was introduced in Foster
and Rakhlin [21], but algorithms were only given for the special case where the action set is the
sphere; our work extends this to arbitrary action sets. Concurrent work of Xu and Zeevi [46] gives a
reduction to offline oracles for infinite action sets. This result is not strictly comparable: On one hand,
an online oracle can always be converted to an offline oracle through online-to-batch conversion, but
when an online oracle is available our algorithm is significantly more efficient.

Misspecification in contextual bandits can be formalized in different ways that go beyond the setting
we consider. First, we mention a long line of work which reduces stochastic contextual bandits to
oracles for cost-sensitive classification [33, 20, 6, 7]. These results are agnostic, meaning they make
no assumption on the model. However, in the presence of misspecification, the type of guarantee
is somewhat different than what we provide here: rather than giving a bound on regret to the true
optimal policy, these results give bounds on the regret to the best-in-class policy.

Another line of works consider a model in which the feedback received by the learning algorithm at
each round may be arbitrarily corrupted by an adaptive adversary [37, 27, 14]. Typical results for this
setting pick up additive error O(C), where C is the total number of corrupted rounds. While this
model was original introduced for non-contextual stochastic bandits, it has recently been extended
to Gaussian process bandit optimization, which is closely related to the contextual bandit setting
(though these results only tolerate C ≤

√
T ). While this is not the focus of our paper, we mention in

passing that our notion of misspecification satisfies εT (S) ≤
√
C/T , and hence our main theorem

(Theorem 1) picks up additive error
√
CT for this corrupted setting (albeit, only with an oblivious

adversary).

B Reducing Weighted to Unweighted Regression

In this section we show how to transform any unweighted online regression oracle SqAlg satisfying
Assumption 1 into a weighted oracle satisfying Assumption 2. The reduction is stated in Algorithm 5.
Theorem 5. If the oracle SqAlg satisfies Assumption 1 with regret bound RegSq(T ), then Algorithm 5
satisfies Assumption 2 with regret bound RegSq(T ).

Proof. Let Dt = (wt, xt, at, `t) and define the filtration Ft = σ(D1:t), with the convention Et[·] =
E[· |Ft]. Let τ1, τ2 . . . , τI denote the timesteps at which the algorithm doubles wmax and resets
SqAlg, with the convention ∀n > I : τn = T + 1. Note that these random variables are stopping
times with respect to the filtration F1:T , and hence Fτi is well-defined for each i ∈ N. It will also be
helpful to note that we always have τi+1 > τi for all i ≤ I by construction and otherwise τi+1 = τi.
We also observe that τ1 = 1 unless w1 = 0.

For the first step, we show that the conditional regret of Algorithm 5 between any pair of doubling
steps is bounded. Let i ≤ I and f ∈ F be fixed, and observe that i ≤ I holds iff τi ≤ T , which is
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Fτi -measurable. Hence,

E

[
τi+1−1∑
t=τi

wt
(
(〈at, ŷt〉 − `t)2 − (〈at, f(xt)〉 − `t)2

)
| Fτi

]

= E

[
2wτi

τi+1−1∑
t=τi

wt
2wτi

(
(〈at, ŷt〉 − `t)2 − (〈at, f(xt)〉 − `t)2

)
| Fτi

]

(a)
= E

[
2wτi

τi+1−1∑
t=τi

Et
[
ut
(
(〈at, ŷt〉 − `t)2 − (〈at, f(xt)〉 − `t)2

)]
| Fτi

]

(b)
= E

[
2wτi

τi+1−1∑
t=τi

ut
(
(〈at, ŷt〉 − `t)2 − (〈at, f(xt)〉 − `t)2

)
| Fτi

]
(c)

≤ E[2wτi | Fτi ] · RegSq(T ) ,

where (a) follows from the conditional independence of ut, (b) is by the tower rule of expectation,
and (c) uses Assumption 1 on the set {t ∈ {τi, . . . τi+1 − 1} | ut = 1} (in particular, that regret is
bounded by RegSq(T ) on every sequence with probability 1 and RegSq(T ) is non-decreasing in T ).
For i > I , the term is 0 since the sum is empty. To complete the proof that Algorithm 5 satisfies
Assumption 2, we sum the bound above across all epochs as follows:

E

[
T∑
t=1

wt
(
(〈at, ŷt〉 − `t)2 − (〈at, f(xt)〉 − `t)2

)]
(d)
= E

[ ∞∑
i=1

τi+1−1∑
t=τi

wt
(
(〈at, ŷt〉 − `t)2 − (〈at, f(xt)〉 − `t)2

)]

(e)
= E

[ ∞∑
i=1

E

[
τi+1−1∑
t=τi

wt
(
(〈at, ŷt〉 − `t)2 − (〈at, f(xt)〉 − `t)2

)
| Fτi

]]
(f)

≤ E

[
I∑
i=1

E[2wτi | Fτi ]

]
RegSq(T )

(g)
= 2E

[
I∑
i=0

wτi

]
RegSq(T )

(h)

≤ 2E[2wτI ]RegSq(T )
(i)

≤ 4E
[
max
t∈[T ]

wt

]
RegSq(T ) ,

where (d) uses that all t < τ1 have wt = 0, (e) uses the tower rule of expectation, (f) applies the
conditional bound between stopping times above, (g) uses the tower rule of expectation again, (h)
holds because the weights at least double between doubling steps, and (i) follows because τI is a
random variable with support over [T ].

C Proofs from Section 3

In this section we provide complete proofs for all of the algorithmic results from Section 3.

C.1 Proofs from Section 3.1

Proof of Lemma 1. We begin by showing that the log-barrier distribution takes the form claimed in
Eq. (5). The minimization problem of Lemma 1 is strictly convex and the value is∞ on the boundary.
Hence the unique solution lies in the interior of the domain. By the K.K.T. conditions, the partial
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derivatives in each coordinate must coincide for the minimizer p?. There exists a λ̃ ∈ R such that

∀a ∈ [K] :
∂

∂pa

〈p?, θ〉 − 1

γ

∑
a∈[K]

log(p?a)

 = θa −
1

γp?a
= λ̃ .

Substituting λ̃ = mina∈[K] θa − 1/γ and rearranging finishes the proof.

Next we show that the log-barrier distribution indeed solves the minimax problem Eq. (4), which we
rewrite as

min
p∈∆([K])

sup
θ∈RK

max
i?∈[K]

〈āp − ei? , θ〉 −
γ

4
‖θ̂ − θ‖2Hp

= min
p∈∆([K])

max
i?∈[K]

sup
δ∈RK

〈āp − ei? , θ̂ + δ〉 − γ

4
‖δ‖2Hp . (11)

For any choice of p and i?, taking the derivative of the expression in Eq. (11) with respect to δ, we
have

∂

∂δ

[
〈āp − ei? , δ〉 −

γ

4
‖δ‖2Hp

]
= āp − ei? −

γ

2
Hpδ . (12)

For p on the boundary of ∆([K]) (i.e. there exists i ∈ [K] such that pi = 0), the gradient is constant
and the supremum has value +∞. Hence, we only need to consider the case where p lies in the
interior of ∆([K]), which implies Hp � 0. In this case Eq. (12) is strongly convex in δ and the
unique maximizer is given by δ? = 2

γH
−1
p (āp − ei?). Hence, we can rewrite (11) as

min
p∈∆([K])

max
i?∈[K]

max
δ∈RK

〈āp − ei? , θ̂ + δ〉 − γ

4
‖δ‖2Hp

= min
p∈∆([K])
Hp�0

max
i?∈[K]

〈āp − ei? , θ̂〉+
1

γ
‖āp − ei?‖2H−1

p

≥ min
p∈∆([K])
Hp�0

Ei?∼p
[
〈āp − ei? , θ̂〉+

1

γ
‖āp − ei?‖2H−1

p

]
(13)

= min
p∈∆([K])
Hp�0

Ei?∼p
[

1

γ

(
tr(HpH

−1
p )− ‖āp‖2H−1

p

)]
=
K − 1

γ
.

Now consider the inequality (13). If we can show that there exists a unique solution p such that this
step in fact holds with equality, then we have identified the minimizer over p ∈ ∆([K]). Consider an
arbitrary candidate solution p on the interior of ∆([K]). Then, letting Wi := 〈āp− ei? , θ̂〉+ 1

γ ‖āp−
ei?‖2H−1

p
, the step (13) lower bounds maxi∈[K]Wi by Ei∼p[Wi]. This step holds with equality if

and only if Ei∼p[Wi −maxi′∈[K]Wi′ ] = 0. Since all probabilities pi are strictly positive, this can
happen if and only if

∃λ̃ ∈ R such that ∀i ∈ [K] : Wi = 〈āp − ei, θ̂〉+
1

γ
‖āp − ei‖2H−1

p
= λ̃ .

Basic algebra shows that

〈āp − ei, θ̂〉+
1

γ
‖āp − ei?‖2H−1

p
=
∑
i′∈[K]

pi′ θ̂i − θ̂i −
1

γ
+

1

γpi
= λ̃ .

Substituting λ̃ =
∑
i′∈[K] pi′ θ̂i −minj θ̂j − 1

γ + λγ, rearranging and picking the unique value such
that this is a probability distribution leads to the log-barrier distribution.

C.2 Proofs from Section 3.2

Recall that dim(A) is the dimension of the smallest affine linear subspace containing A. In other
words ∀a ∈ A : dim(A) = dim(span(A − a)). Our main result in this section is the following
slightly stronger version of Lemma 2.
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Lemma 3. Any solution p ∈ ∆(A) to the problem logdet-barrier(θ̂, γ;A) in Eq. (6) satisfies

max
a?∈A

sup
θ∈Rd
〈āp − a?, θ〉 −

γ

4
‖θ̂ − θ‖2Hp−āpā>p ≤ γ

−1 dim(A) .

Since−‖θ̂−θ‖2Hp−āpā>p = −‖θ̂−θ‖2Hp +〈θ̂−θ, āp〉2 ≥ −‖θ̂−θ‖2Hp , Lemma 2 is a direct corollary
of Lemma 3.

Before proving Lemma 3, we discuss in detail the case where A does not span Rd.

C.2.1 Handling the case where dim(A) < d.

We first show that if dim(A) < d, there exists a bijection ofA to a set Ã ⊂ Rdim(A) and a projection
P of the loss estimator into Rdim(A), such that logdet-barrier(θ, γ;A) and logdet-barrier(P (θ), γ; Ã)
are (up to the bijection) identical, and such that the objective in Lemma 3 coincides. This implies for
all subsequent sections, we can assume w.l.o.g. that dim(A) = d, since if this does not hold we can
work in the subspace outlined in this section.

We pick an arbitrary anchor a ∈ A, let P be the projection onto span(A− a) represented in a fixed
arbitrary orthonormal basis of span(A− a). Denote Ã = P (A− a) and for p ∈ ∆(A) let p̃ ∈ ∆(Ã)

be such that p̃P (a−a) = pa (recall that we define ∆(A) to have countable support). Let θ̂ ∈ Rd be
arbitrary, then

〈āp, θ̂〉 = Ea∼p
[
〈P (a− a), P (θ̂)〉

]
+ 〈a, θ̂〉 = 〈āp̃, P (θ̂)〉+ 〈a, θ̂〉 .

Recall that we define the det in logdet-barrier as the product over the first dim(A) eigenvalues of
Hp − āpā>p . Let (νi)

dim(A)
i=1 denote the corresponding eigenvectors (note that this requires νi ∈

span(A− a)). We have

log det(Hp − āpā>p ) =

dim(A)∑
i=1

log(‖νi‖2Hp−āpā>p ) =

dim(A)∑
i=1

log(Ea∼p[〈νi, a− āp〉2])

=

dim(A)∑
i=1

log(Ea∼p[〈νi, a− a− Ea′∼p(a′ − a)〉2]) =

dim(A)∑
i=1

log(Ea∼p[〈P (νi), P (a− a)− āp̃〉2])

=

dim(A)∑
i=1

log(‖P (νi)‖2Hp̃−āp̃ā>p̃ ) = log det(Hp̃ − āp̃ā>p̃ ) ,

where we use the fact that P only changes the representation on span(A− a) and does not change
the identity of the eigenvalues. Combining these two results immediately shows that for any p ∈
logdet-barrier(θ̂, γ;A) it follows that p̃ ∈ logdet-barrier(P (θ̂), γ; Ã) and vice versa.

For the objective of Lemma 3, we have

〈āp − a?, θ〉 = 〈Ea∼p[P (a− a)]− P (a? − a), P (θ)〉 = 〈āp̃ − (P (a? − a)), P (θ)〉.

For the quadratic term, following the same steps as above for νi, we have

‖θ̂ − θ‖2Hp−āpā>p = ‖P (θ̂)− P (θ)‖2Hp̃−āp̃ā>p̃ .

and

〈āp − a?, θ〉 −
γ

4
‖θ̂ − θ‖2Hp−āpā>p = 〈āp̃ − P (a? − a), P (θ)〉 − γ

4
‖P (θ̂)− P (θ)‖2Hp̃−āp̃ā>p̃ .

Hence, we have

max
a?∈A

sup
θ∈Rd
〈āp − a?, θ〉 −

γ

4
‖θ̂ − θ‖2Hp−āpā>p = max

ã?∈Ã
sup

θ̃∈Rdim(A)

〈āp̃ − ã?, θ̃〉 −
γ

4
‖P (θ̂)− θ̃‖2Hp̃−āp̃ā>p̃ .
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C.2.2 Handling the case where dim(A) = d.

Lemma 4. When dim(A) = d, any solution p ∈ ∆(A) to the problem logdet-barrier(θ, γ;A) in
Eq. (6) satisfies

∀a ∈ A : 〈āp − a, θ〉+
1

γ
‖āp − a‖2H−1

p −āpā>p
≤ dim(A)

γ
.

Proof. We first observe that any solution p ∈ ∆(A) to the problem logdet-barrier(θ̂, γ;A) must be
positive definite in the sense that Hp − āpā>p � 0, since otherwise the objective has value∞; note
that dim(A) = d implies that there exists p with Hp − āpā>p � 0. Going forward we work only with
p for which Hp − āpā>p � 0.

Recall p = logdet-barrier(θ̂, γ;A) is any solution to

argmin
p∈∆(A)

{
〈āp, θ̂〉 − γ−1 log det(Hp − āpā>p )

}
,

where ∆(A) is the set of distributions over countable subsets of A. Hence we can write

∆(A) =

{ ∞∑
i=1

wieAi |w ∈ RN
+, A ∈ AN,

∞∑
i=1

wi = 1

}
,

where ea denotes the distribution that selects a with probability 1. By first-order optimality, p is a
solution to Eq. (6) if and only if

∀p′ ∈ ∆(A) :
∑

a∈supp(p)∪supp(p′)

(p′a − pa)
∂

∂pa

[
〈āp, θ̂〉 −

1

γ
log det(Hp − āpā>p )

]
≥ 0 .

By the K.K.T. conditions, this is the case if and only if there exists some λ̃ ∈ R such that

∀a ∈ supp(p) :
∂

∂pa

[
〈āp, θ̂〉 −

1

γ
log det(Hp − āpā>p )

]
= λ̃ (14)

∀a ∈ A :
∂

∂pa

[
〈āp, θ̂〉 −

1

γ
log det(Hp − āpā>p )

]
≥ λ̃ . (15)

To find λ̃, we calculate the partial derivative with the chain rule:

∂

∂pa

[
〈āp, θ̂〉 −

1

γ
log det(Hp − āpā>p )

]
= 〈a, θ̂〉 −

det(Hp − āpā>p ) tr((Hp − āpā>p )−1(aa> − āpa> − aā>p ))

γ det(Hp − āpā>p )

= 〈a− āp, θ̂〉 −
1

γ
‖a− āp‖2(Hp−āpā>p )−1 +

1

γ
‖āp‖2(Hp−āpā>p )−1 + 〈āp, θ̂〉 .

Using Eq. (14) and taking the expectation over p yields

λ̃ = Ea∼p
[
∂

∂pa

[
〈āp, θ̂〉 −

1

γ
log det(Hp − āpā>p )

]]
= −d

γ
+

1

γ
‖āp‖2(Hp−āpā>p )−1 + 〈āp, θ̂〉 .

Finally, plugging this into Eq. (15), we get

∀a ∈ A : 〈a− āp, θ̂〉 −
1

γ
‖a− āp‖2(Hp−āpā>p )−1 ≥ −

d

γ
.

Rearranging finishes the proof.

Proof of Lemma 3. As mentioned in the previous proof, for any solution p ∈ ∆(A) to the problem
logdet-barrier(θ̂, γ;A) the matrix Hp − āpā>p is positive definite. In this case, for any fixed a? ∈ A,
the function

θ 7→ 〈āp − a?, θ〉 −
γ

4
‖θ̂ − θ‖2Hp−āpā>p
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is strictly concave in θ and the maximizer θ? is found by setting the derivative with respect to θ to 0:

∂

∂θ

[
〈āp − a?, θ〉 −

γ

4
‖θ̂ − θ‖2Hp−āpā>p

]
= āp − a? +

γ

2
(Hp − āpāTp )(θ̂ − θ)

θ? = θ̂ +
2

γ
(Hp − āpā>p )−1(ap − a?) .

Substituting in this choice, we have that

max
a?∈A

sup
θ∈Rd
〈āp − a?, θ〉 −

γ

4
‖θ̂ − θ‖2Hp−āpā>p = max

a?∈A
〈āp − a?, θ̂〉+

1

γ
‖āp − a‖2(Hp−āpā>p )−1 .

To complete the proof, we apply Lemma 4 to the right-hand side above.

C.3 Proofs from Section 3.3

Proof of Theorem 3. Letm be fixed. To keep notation compact, we abbreviate qt ≡ qt,h, ρt ≡ ρt,m,
γt ≡ γt,m, Zt ≡ Zt,m, and so forth.

Let the sequence S be fixed, and let f? be any predictor achieving the value of εT (S). If the infimum
is not achieved, we can consider a limit sequence; we omit the details. Recall that since we assume an
oblivious adversary, f? is fully determined before the interaction protocol begins. Let us abbreviate
θ?t = f?(xt), a?t = πf?(xt), and π?t (xt) = argmina∈At µ(a, xt), where ties are broken arbitrarily.
Then we can bound

RegImp(T ) = E

[
T∑
t=1

Zt
qt

(µ(at, xt)− µ(π?t (xt), xt))

]

≤ E

[
T∑
t=1

Zt
qt

(
〈at − π?t (xt), θ

?
t 〉+ 2 max

a∈At
|µ(a, xt)− 〈a, θ?t 〉|

)]
(a)

≤ E

[
T∑
t=1

Zt
qt

(〈at − π?t (xt), θ
?
t 〉)

]
+ 2εTT

(b)

≤ E

[
T∑
t=1

Zt
qt
〈at − a?t , θ?t 〉

]
+ 2εTT

(c)
= E

[
T∑
t=1

Zt
qt

(
〈āpt − a?t , θ?t 〉 −

γt
4
‖θ̂t − θ?‖2Hpt +

γt
4
‖θ̂t − θ?‖2Hpt

)]
+ 2εTT

(d)

≤ E

[
T∑
t=1

Zt
qt

(
dim(At)

γt
+
γt
4
‖θ̂t − θ?‖2Hpt

)]
+ 2εTT

(e)

≤ E
[
max
t∈[T ]

γ−1
t

] T∑
t=1

dim(At) + E

[
T∑
t=1

Zt
qt

γt
4

(〈at, θ̂t〉 − 〈at, θ?t 〉)2

]
+ 2εTT .

Here (a) follows from the fact that E[Zt] = qt and the Cauchy-Schwarz inequality, together with
the definition of εT ; (b) follows from the definition of the policy πf? ; (c) is due to the fact that,
conditioned on Zt = 1, we sample at ∼ pt with Eat∼pt [at] = āpt ; (d) uses Lemma 2; (e) uses
Eat∼pt [ata>t ] = Hpt . Continuing with squared error term above, we have

E

[
T∑
t=1

Zt
qt
γt(〈at, θ̂t〉 − 〈at, θ?t 〉)2

]

= E

[
T∑
t=1

Zt
qt
γt

(
(〈at, θ̂t〉 − `t)2 − (〈at, θ?t 〉 − `t)2 + 2(`t − 〈at, θ?t 〉)〈at, θ̂t − θ?t 〉

)]
(a)
= E

[
T∑
t=1

Zt
qt
γt

(
(〈at, θ̂t〉 − `t)2 − (〈at, θ?t 〉 − `t)2 + 2(µ(at, xt)− 〈at, θ?t 〉)〈at, θ̂t − θ?t 〉

)]
,
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where (a) uses that `t is conditionally independent of Zt and at. We bound the term involving the
difference of squares as

E

[
T∑
t=1

Zt
qt
γt((〈at, θ̂t〉 − `t)2 − (〈at, θ?t 〉 − `t)2)

]
≤ E

[
max
t∈[T ]

γt
qt

]
RegSq(T ),

by Assumption 2, which also holds if SqAlg runs for less than T timesteps, since we could extend
the sequence with 0 weight until time T . For the linear term, we apply the sequence of inequalities

2E

[
T∑
t=1

Zt
qt
γt(µ(at, xt)− 〈at, θ?t 〉)〈at, θ̂t − θ?t 〉

]
(a)

≤ 2E

[
T∑
t=1

Zt
qt
γt((µ(at, xt)− 〈at, θ?t 〉)2 +

1

4
〈at, ŷt − θ?t 〉2

]

≤ 2E

[
T∑
t=1

Zt
qt
γt max
a∈At

((µ(a, xt)− 〈a, θ?t 〉)2 +
1

4
〈at, ŷt − θ?t 〉2

]
(b)

≤ 2E
[
max
t∈[T ]

γt

]
ε2
TT +

1

2
E

[
T∑
t=1

Zt
qt
γt(〈at, θ̂t〉 − 〈at, θ?t 〉)2

]
,

where (a) is by the AM-GM inequality: 2ab ≤ 2a2 + 1
2b

2; (b) follows from the fact that Zt is
conditionally independent of γt, and the definition of εT .

Altogether, we have

E

[
T∑
t=1

Zt
qt
γt(〈at, θ̂t〉 − 〈at, θ?t 〉)2

]

≤ E
[
max
t∈[T ]

γt
qt

]
RegSq(T ) + 2E

[
max
t∈[T ]

γt

]
ε2
TT +

1

2
E

[
T∑
t=1

Zt
qt
γt(〈at, θ̂t〉 − 〈at, θ?t 〉)2

]
.

Rearranging yields

E

[
T∑
t=1

Zt
qt
γt(〈at, θ̂t〉 − 〈at, θ?t 〉)2

]
≤ 2E

[
max
t∈[T ]

γt
qt

]
RegSq(T ) + 4E

[
max
t∈[T ]

γt

]
ε2
TT .

Combining all of the developments so far, we have

RegImp(T ) ≤
T∑
t=1

E
[
γ−1
t

]
dim(At) +

1

2
E
[
max
t∈[T ]

γt
qt

]
RegSq(T ) + E

[
max
t∈[T ]

γt

]
ε2
TT + 2εTT .

(16)

The proof is completed by noting that the learning rate γt = min
{√

d
ε′ ,
√
dT/(ρtRegSq(T ))

}
is

non-increasing, but γtρt ≥ γt
qt

is non-decreasing. Hence, we can upper bound the expression above
by

RegImp(T ) ≤ E
[
γ−1
T

]
dT +

1

2
E [γT ρT ]RegSq(T ) + E[γ1]ε2

TT + 2εTT

≤

(
ε′√
d

+ E[
√
ρT ]

√
RegSq(T )

dT

)
dT +

1

2
E[
√
ρT ]
√
dTRegSq(T ) +

√
d

ε′
ε2
TT + 2εTT .

Proof of Theorem 1. Let m? := argminm∈[M ]
εT
ε′m

+
ε′m
εT

if εT ≥ T−1 and m? = M otherwise.
We begin by formally verifying the claim

Reg(T ) = E

[
T∑
t=1

˜̀
t,At − ˜̀

t,m?

]
+ Regm

?

Imp(T ) . (17)
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By the definition ˜̀
t,At := `t + 1, we have

E
[
˜̀
t,At − ˜̀

t,m?

]
= E

[
`t + 1− Zt,m?

pt,m?
(`t + 1)

]
= E

[
µ(at, xt)−

Zt,m?

pt,m?
µ(at, xt)

]
.

The second term is

Regm
?

Imp(T ) = E

[
T∑
t=1

Zt,m?

pt,m?
(µ(at, xt)− µ(π?t (xt), xt))

]
= E

[
T∑
t=1

Zt,m?

pt,m?
µ(at, xt)− µ(π?t (xt), xt)

]
.

Combining both lines leads to Eq. (17). The losses ˜̀ satisfy ∀m ∈ [M ] : ˜̀
t,m ∈ [0, 2], since

`t ∈ [−1, 1] and we shift the loss by 1. Hence we can apply Corollary 2 with α = 1
2 and R =

3
2

√
dTRegSq(T ) to obtain

E

[
T∑
t=1

˜̀
t,At − ˜̀

t,m?

]
≤ 4
√

2MT + 3
√
dTRegSq(T )M − 3

2
E[
√
ρT,a? ]

√
dTRegSq(T ) ,

and by Theorem 3,

Regm
?

Imp(T ) ≤
((

ε′m?

εT
+

εT
ε′m?

)√
d+ 2

)
εTT +

3

2
E[
√
ρT,a? ]

√
dTRegSq(T ) .

Either εT > T−1, in which case we can pick m? such that ε′m? ∈ [εT , eεT ] and
(
ε′m?
εT

+ εT
ε′
m?

)
≤

e+ e−1, or we pick ε′m? = T−1 and the misspecification term is bounded by((
ε′m?

εT
+

εT
ε′m?

)√
d+ 2

)
εTT =

((
ε′m? +

ε2
T

ε′m?

)√
d+ 2εT

)
T ≤ 2

√
d+ 2 .

Summing the regret bounds for the base and master algorithms completes the proof.

C.4 Proofs from Section 3.6

The procedure runs in episodes. At the begin of episode 1, the algorithm assumes D1 =∑T
t=1 dim(At) ≤ 2T and initializes its learning rate accordingly. Within each episode i ≥ 1,

if the agent observes at time t that
∑t
s=τi

dim(As) > Di, it restarts the algorithm with Di+1 = 2Di;
we denote this time by τi+1 = t. We can assume dim(A) ≤ d < T or the result is trivial, hence we
never need to double more than once at each time step. For technical reasons, we require that the
bound of Theorem 1 also holds when the agent plays only on a subset of time steps.
Corollary 3. Let T ⊂ [T ] be a subset of the time horizon chosen oblivious to the actions of the agent.
Then the upper bound of Theorem 1 for SquareCB.Imp on the sequence S is also an upper bound
for running the algorithm on the sub-sequence ST . This also holds for any refinement of the bound
based on the average dimension davg instead of d.

Proof. We extend the sequence S by adding an “end” sequence E = ({0}, x)Tt=1, where x ∈ X is
picked such that µ(0, x) = 0 (If there is no such context, we add a context with that property to X ).
Let the enhanced sequence be S′ = S + E and consider the sequence S̃ = S′T ∪{T+1,...,2T−|T |},
which is of length T . The regret contribution from playing on the E section on the sequence is always
0, since there is only one action. Furthermore εT (S̃) ≤ εT (S) Hence we have by Theorem 1

E

[∑
t∈T

µ(at, xt)− min
a∈At

µ(a, xt)

]
= E

 ∑
t∈T {T+1,...,2T−|T |}

µ(at, xt)− min
a∈At

µ(a, xt)


≤ O

(√
dεT (S)T +

√
dRegSq(T ) log(T )

)
.

Since davg(S̃) ≤ davg(S), this argument also extends to the refined version where d is replaced by
davg if the algorithm parameters are tuned accordingly.
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Proof of Theorem 4. Let τ1, . . . , τL denote the times where the algorithm is restarted, with τ1 = 1
and τL+1 = T + 1 by convention.

Since the adversary fixes the action sets in advance, these doubling times are deterministic. The regret
is given by

Reg(T ) = E

[
T∑
t=1

µ(at, xt)− min
a∈At

µ(a, xt)

]

≤
L∑
i=1

E

[
τi+1−1∑
t=τi

µ(at, xt)− min
a∈At

µ(a, xt)

]
.

By Corollary 3 applied to each episode

E

 τi∑
t=τi−1+1

µ(at, xt)− min
a∈At

µ(a, xt)

 =
√

2i · O
(
εT (S)T +

√
RegSq(T ) log(T )

)
.

Summing over these terms and observing that

L∑
i=1

2i/2 = O(2L/2) = O(1) ·

√√√√ 1

T

T∑
t=1

dim(At) = O
(
d1/2

avg

)
,

completes the proof.

D Improved Master Algorithms for Bandit Aggregation

In this section, we present a general class of algorithms that can be used for the master algorithm
within the framework of Algorithm 3. For the remainder of this section, we are working in a generic
adversarial multi-armed bandit setting, where the agent selects an action At ∈ [M ] at any time step
and observes the associated loss `t,At ∈ [0, L]. Compared to the original CORRAL algorithm of
Agarwal et al. [9], our new algorithms are simpler to analyze, more flexible, and improve in terms of
logarithmic factors.

The CORRAL algorithm is a special case of Algorithm 3 that uses a bandit variant of Online
Mirror Descent (OMD) algorithm with log-barrier regularization as the master.6 The bandit
variant of the OMD algorithm used within CORRAL is parameterized by a Legendre potential
F (x) =

∑d
i=1 η

−1
i f(xi) where η1, . . . , ηd are per-coordinate learning rates. It initializes the distri-

bution p1 = argminp∈∆([M ]) F (p). At each time t, the bandit OMD algorithm samples arm At ∼ pt,
observes `t, and constructs an unbiased importance-weighted loss estimator ˆ̀

t =
`t,At
pt,At

eAt . It then
updates the action distribution as

pt+1 = argminp∈∆([M ])〈p, ˆ̀〉+DF (p, pt) , (18)

where DF (x, y) := F (x)− F (y)− 〈x− y,∇F (y)〉 is the Bregman divergence associated with F .

A key to the performance of the CORRAL master is an time-dependent learning rate7 schedule for
each of the per-arm learning rates, which increases the learning rate for each arm whenever the
probability for that arm falls below a certain threshold.

An algorithm closely related to OMD is the Follow-the-Regularized-Leader (FTRL) algorithm. In
particular, for any sequence of loss vector estimates (ˆ̀

t)
T
t=1, there exists a sequence of (vector) biases

bt, such that FTRL running on the loss sequence (ˆ̀
t− bt)Tt=1 using the same learning rate as its OMD

counterpart has an identical trajectory of plays pt.

We can view the CORRAL master through the lens of FTRL: the algorithm performs two steps
whenever it increases the learning rate of arm i. First it subtracts a bias bt,i > 0 from the loss

6Note that the use of the log-barrier in CORRAL is not related to our use of the log-barrier within the
contextual bandit framework.

7For time-dependent learning rates, replace η by ηt in the update rule of Eq. (18).
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estimates for arm i. Then it increases the learning rate for that arm. We argue that only the former
step is actually relevant to the performance of CORRAL, while the latter is unnecessary, and ends
up complicating the analysis. This motivates the (α,R)-hedged FTRL algorithm, which achieves a
slightly improved guarantee by removing the per-coordinate learning rates.

D.1 The Hedged FTRL Algorithm

Following the intuition in the prequel we propose (α,R)-hedged FTRL, a modified variant of the
FTRL algorithm with strong guarantees for aggregating bandit algorithms. We begin by defining a
basic bandit variant of FTRL algorithm.

The FTRL family algorithms of algorithms is parameterized by a potential F and learning rate η > 0.
At each round t, the algorithm selects

pt = argminp∈∆([M ])〈p, L̂t−1〉+ η−1F (p) , where L̂t =
∑t
s=1

ˆ̀
s .

Two relevant properties of F that arise in our analysis are stability and diameter. Define

F̄ ?η (−L) = maxp∈∆([M ])〈p,−L〉 − η−1F (p) .

The stability stab(F ) and diameter diam(F ) of F for a loss range [0, L] are define as follows:

stab(F ) = sup
η>0

sup
x∈∆([M ])

sup
`∈[0,L]M

η−1EA∼x
[
DF̄?η

(
η−1∇F (x)− `A

xA
eA, η

−1∇F (x)

)]
,

diam(F ) = max
p∈∆([M ])

F (p)− min
p∈∆([M ])

F (p) .

Given a potential with bounded stab(F ) and diam(F ), setting the learning rate as η =√
diam(F )/(stab(F )T ) leads to a regret bound 2

√
stab(F ) diam(F )T for FTRL [5].8 Well-

known algorithms that arise as special cases of this result include:

• EXP3 [13] is an instance of FTRL with F (x) =
∑M
i=1 xi log(xi), diam(F ) = log(M) and

stab(F ) ≤ L2M
2 .

• Tsallis-INF [11, 5, 48] is the instance of FTRL with the best known regret bound. It is given
by F (x) = −2

∑M
i=1

√
xi with diam(F ) ≤ 2

√
M and stab(F ) ≤ L2

√
M .

We can now present the (α,R)-hedged FTRL algorithm. The algorithm augments the basic FTRL
strategy using an additional pair of parameters (α,R) ∈ (0, 1) × R. The algorithm initializes
(B0,i)

M
i=1 with B0,i = ρα1,iR. At each step t, it plays At ∼ pt and computes

p̃t+1 = argminp∈∆([M ])〈p, L̂t − (Bt−1 −B0)〉+ η−1F (p) , where L̂t =
∑t
s=1

ˆ̀
s .

If p̃−αt+1,At
R ≤ Bt−1,At , the algorithm sets Bt = Bt−1 and pt+1 = p̃t+1. Otherwise it chooses the

unique bt > 0, such that for Bt = Bt−1 + bteAt it holds simultaneously

pt+1 = argmin
p∈∆([M ])

〈p, L̂t − (Bt −B0)〉+ η−1F (p) and p−αt+1,At
R = Bt,At .

This algorithm is always well defined (see Appendix D.2 for details). The main regret guarantee is as
follows. Let ρt,i = maxs≤t p

−1
s,i .

Theorem 6. Then for any potential F with stab(F ),diam(F ) <∞, the pseudo-regret RegM (T ) =

E
[∑T

t=1 `t,At − `t,a?
]

of (α,R)-hedged FTRL run with learning rate η =
√

diam(F )/(stab(F )T )

against any arm a? ∈ [M ] is bounded as follows:

RegM (T ) ≤ 2
√

stab(F ) diam(F )T +

[
α

1− α

M∑
i=1

(
ρα−1

1,i − E[ρα−1
T,i ]

)
+ ρα1,a? − E[ραT,a? ]

]
·R .

The algorithm may be viewed “hedging” against the event that the arm a? experiences a very small
probability, as this guarantees a negative regret contribution of ρ−αT,a?R.

8Abernethy et al. [5] present this result slightly differently. See our proof of Theorem 6 with R = 0 for an
alternative.
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D.2 Proofs

Before proving the main result, we first established that the (α,R)-hedged FTRL is well-defined.
The algorithm initializes with B0 such that ∇F̄ ?η (B0)−αi R = B0,i. For symmetric potentials
F (x) =

∑M
i=1 f(xi), ∇F̄ ?η (c1M ) = 1

M 1M for any c ∈ R. Hence B0 = M−αR1M satisfies the
initialization condition. Otherwise a solution exists by the observation that ∇F̄ ?η (B0)−αi R is a
continuous, decreasing function in B0,i that has positive values at B0 = 0. Hence a solution to the
equation must exist.

The same argument holds during the update at subsequent rounds t. Only the arm that was played
can decrease in probability, which means we only need to ensure that ραt+1,At

R = Bt,At . The LHS
is continuously decreasing with increasing bt, while the RHS is increasing. The optimal value must
exist, it is unique and lays in [0, ˆ̀

t,At ].

Proof of Theorem 6. We follow the standard FTRL analysis. Let B̃t = Bt − B0 and note that
pt = ∇F̄ ?η (−L̂t−1 + B̃t−1), so 〈pt, ˆ̀

t〉 = 〈∇F̄ ?η (−L̂t−1 + B̃t−1), L̂t− L̂t−1〉. Hence, we can write

E

[
T∑
t=1

`t,At − `t,a?
]

= E

[
T∑
t=1

〈pt, ˆ̀
t〉 − ˆ̀

t,a?

]

= E

[
T∑
t=1

DF̄?η
(−L̂t + B̃t−1,−L̂t−1 + B̃t−1)

]

+ E

[
T∑
t=1

(
−F̄ ?η (−L̂t + B̃t−1) + F̄ ?η (−L̂t−1 + B̃t−1)− ˆ̀

t,a?

)]
.

Note that there exists λ such that −L̂t−1 + B̃t−1 = λ1M + η−1∇F (pt). Furthermore, adding
or subtracting the same λ1M term to both arguments does not change the value of the Bregman
divergence, because F̄η(−L+ λ1M ) = Fη(−L) + λ. Thus,

E

[
T∑
t=1

DF̄?η
(−L̂t + B̃t−1,−L̂t−1 + B̃t−1)

]

= ηE

[
T∑
t=1

η−1DF̄?η
(η−1∇F (pt)− ˆ̀

t, η
−1∇F (pt))

]
≤ η stab(F )T .

Rearranging the second term gives

T∑
t=1

(
−F̄ ?η (−L̂t + B̃t−1) + F̄ ?η (−L̂t−1 + B̃t−1)− ˆ̀

t,a?

)
= F̄ ?η (0)− F̄ ?η (−L̂T + B̃T−1)− L̂T,a? +

T−1∑
t=1

F̄ ?η (−L̂t + B̃t)− F̄ ?η (−L̂t + B̃t−1) .

Note that F̄ ?η (−L̂t + B̃t) = 〈pt+1,−L̂t + B̃t〉+ η−1F (pt+1). Furthermore we have the bounds

− F̄ ?η (−L̂T + B̃T−1) ≤ −
(
〈ea? ,−L̂T + B̃T−1〉 − η−1F (ea?

)
,

and

− F̄ ?η (−L̂t + B̃t−1) ≤ −
(
〈pt+1,−L̂t + B̃t−1〉 − η−1F (pt+1

)
.
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Plugging these in leads to

F̄ ?η (0)− F̄ ?η (−L̂T + B̃T−1)− L̂T,a? +

T−1∑
t=1

F̄ ?η (−L̂t + B̃t)− F̄ ?η (−L̂t + B̃t−1)

≤ F (ea?)− F (p1)

η
− B̃T−1,a? +

T−1∑
t=1

〈pt+1, B̃t − B̃t−1〉

≤ (ρα1,a? − ραT,a?)R+
diam(F )

η
+

T−1∑
t=1

〈pt+1, Bt −Bt−1〉 .

To bound the final sum above, note that for each coordinate i, the difference Bt,i − Bt−1,i can be
non-zero only if pt+1,i achieves pt+1,i = ρ−1

t+1,i. Therefore, we have

pt+1,i(Bt,i −Bt−1,i) = Rρ−1
t+1,i

(
ραt+1,i − ραt,i

)
= αR

∫ ρt+1,i

ρt,i

xα−1ρ−1
t+1 dx

≤ αR
∫ ρt+1,i

ρt,i

xα−2 dx

=
αR

1− α
(ρα−1
t,i − ρ

α−1
t+1,i) .

Applying this bound to each coordinate, we have

T−1∑
t=1

〈pt+1, Bt −Bt−1〉 =

M∑
i=1

αR

1− α

(
ρα−1

1,i − ρ
α−1
T,i

)
=

M∑
i=1

αR

1− α

(
ρα−1

1,i − ρ
α−1
T,i

)
.

Combining all of the bounds so far concludes the proof.

Proof of Corollary 2. The Tsallis regularizer is

F (x) = −
M∑
i=1

2
√
xi ,

with a stability for the loss range [0, L] of L2
√
M and a diameter of 2

√
M [48]9. Due to the symmetry

of the potential, we have ∀i : p1,i = 1/M . Using Theorem 6 with the loss range [0, 2] leads to

RegM (T ) ≤ 4
√

2MT +

[
α

1− α

M∑
i=1

(Mα−1 − E[ρα−1
T,i ]) +Mα − E[ραT,m? ]

]
R

≤ 4
√

2MT +

[
α

1− α
Mα

(
1−M1−α min

j∈[M ]
E[ρα−1

T,j ]

)
+Mα − E[ραT,m? ]

]
R .

Dropping the negative−M1−α minj∈[M ] E[ρα−1
T,j ] term leads to the first part of the min{·} expression

in Eq. (10). For the other term in the min{·}, note that the function

α 7→ α

1− α
(
1− zα−1

)
is monotonically increasing in α with

lim
α→1

α

1− α
(
1− zα−1

)
= log(z) .

Absorbing log(maxj∈[M ] E[ρT,j ]/M) + 1 by 2 log(maxj∈[M ] E[ρT,j ]) (using that ρ1,i = M ) com-
pletes the proof.

9This has been shown for L = 1 but the extension to general L is trivial.
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E Approximation Algorithms for the Log-Determinant Barrier Problem

Recall that at every step, SquareCB.Inf (Algorithm 2) needs to sample from any distribution in
logdet-barrier(θ̂, γ;A), which is defined as

p? ∈ argmin
p∈∆(A)

γ〈āp, θ̂〉 −
1

γ
log det

(
Hp − āpā>p

)
, (19)

where āp = Ea∼p[a] and Hp = Ea∼p[aa>]. In this section, we develop optimization algorithms to
efficiently find approximate solutions to the problem Eq. (19). In particular, our main result will be to
prove Proposition 1.

While this is a convex optimization problem, developing efficient algorithms presents a number
of technical difficulties. First, the optimization problem is non-smooth due to the presence of the
log-determinant function, which prevents us from applying standard first-order methods such as
gradient descent out of the box. Second, representing distributions in ∆(A) naively requires Ω(|A|)
memory. To get the result in Proposition 1, we employ a specialized Frank-Wolfe-type method, which
maintains a sparse distribution and requires only O(log|A|) memory.

As a first step toward solving the problem numerically, we move to an equivalent but slightly more
convenient formulation which lifts the actions to d+ 1 dimensions. Define the lifting operator, which
adds a new coordinate with 1 to each vector, by

ã :=

(
a
1

)
,

and define

ãp := Ea∼p[ã], H̃p := Ea∼p
[
ãã>

]
, θ̃ :=

(
θ̂
0

)
, and d̃ := d+ 1 .

Furthermore, we define

G(p) = 〈ãp, θ̃〉 −
1

γ
log det(H̃p). (20)

Proposition 2. The set of solutions for the lifted problem

argmin
p∈∆(A)

G(p) = argmin
p∈∆(A)

〈ãp, θ̃〉 −
1

γ
log det(H̃p) , (21)

is identical to the set of solutions for Eq. (19), and vice-versa.

Proof. By Lemma 4, any solution p? to Eq. (19) must satisfy the optimality condition

∀a ∈ A : 〈āp? − a, θ̂〉+
1

γ
‖āp? − a‖2(Hp?−āp? ā>p? )−1 ≤

d

γ
.

Now, let p? be a minimizer for the optimization problem in (21). By first order optimality, we have

∀p′ ∈ ∆(A) :
∑

a∈supp(p?)∪supp(p′)

(p′a − p?a)

(
〈ã, θ̃〉 − 1

γ
‖ã‖2

H̃−1
p?

)
≥ 0 .

By the K.K.T. conditions, this condition holds if and only if there exists λ ∈ R such that

∀a ∈ supp(p?) : 〈ã, θ̃〉 − 1

γ
‖ã‖2

H̃−1
p?

= λ (22)

and

∀a ∈ A : 〈ã, θ̃〉 − 1

γ
‖ã‖2

H̃−1
p?
≥ λ . (23)

Note that Eq. (22) implies that

Ea∼p?
[
〈ã, θ̃〉 − 1

γ
‖ã‖2

H̃−1
p?

]
= 〈ãp? , θ̂〉 −

d̃

γ
= λ.
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Combining this identity with Eq. (23) and rearranging, we conclude that

∀a ∈ A : 〈ãp? − a, θ̂〉+
1

γ
‖ã‖2

H̃−1
p?
≤ d̃

γ
. (24)

Finally, observe that for any p ∈ ∆(A)

H̃p =

(
Hp āp
ā>p 1

)
, and H̃−1

p =

 (
Hp − āpā>p

)−1 −
(
Hp − āpā>p

)−1
āp

−ā>p
(
Hp − āpā>p

)−1
1 + ‖āp‖2(Hp−āpā>p )

−1

 ,

where the second expression uses the identity for the Schur complement. Using the latter expression,
we have that

‖ã‖2
H̃−1
p

= ‖a‖2(Hp−āpā>p )−1 − 2a>
(
Hp − āpā>p

)−1
āp + ‖āp‖2(Hp−āpā>p )

−1 + 1

= ‖a− āp‖2(Hp−āpā>p )−1 + 1 . (25)

By plugging this expression into Eq. (24), it follows that the optimality conditions for the problems
(21) and (19) are identical. Any solution p? to the problem (21) yields a solution to the problem (19),
and vice-versa.

In light of Proposition 2, we will work exclusively with the lifted problem going forward. Before
stating our algorithm, we introduce the following approximate version of the optimality condition in
Eq. (4), which quantifies the quality of a candidate solution p ∈ ∆(A).

Definition 2. For any action set A, parameter θ̂ ∈ Rd and learning rate γ > 0, a distribution
p ∈ ∆(A) is called an η-rounding if it satisfies

∀a ∈ A :
1

γ
‖ã‖2

H̃−1
p
≤ (1 + η)

(
d̃

γ
+ 〈ã− ãp, θ̃〉

)
. (26)

The following lemma quantifies the loss in regret incurred by sampling from an η-rounding for the
logdet-barrier objective rather than an exact solution.

Lemma 5. Suppose that for all steps t, we sample from an η-rounding for logdet-barrier(At, θ̂t, γ/(1+
η)) within Algorithm 2. Then the bound from Lemma 4 will increase by at most a factor of 1 + 2η.

Lemma 5 implies that to achieve the regret bound from Theorem 2 up to a factor of 2, it suffices to
find a 1/2-rounding.

Proof. We first prove an analogue of the inequality in Lemma 4. Let t be fixed and abbreviate θ̂ ≡ θ̂t.
Assume without loss of generality that d = dim(At). For an η-rounding p that satisfies Eq. (26) with
learning rate γ′ := γ/(1 + η), by the identity (25), the following inequalities are equivalent:

1

γ′
‖ã‖2

H̃−1
p
≤ (1 + η)

(
d̃

γ′
+ 〈a− āp, θ̂〉

)

⇐⇒ 1 + η

γ
‖ã‖2

H̃−1
p
≤ (1 + η)

(
d̃(1 + η)

γ
+ 〈a− āp, θ̂〉

)

⇐⇒ 1

γ

(
‖a− āp‖2(Hp−āpā>p )−1 + 1

)
≤ (d+ 1)(1 + η)

γ
+ 〈a− āp, θ̂〉

⇐⇒ 〈āp − a, θ̂〉+
1

γ
‖a− āp‖2(Hp−āpā>p )−1 ≤

d

γ

(
1 + η +

η

d

)
.

It follows that the bound from Lemma 4 increases by at most a factor of (1 + η + η
d ) < 1 + 2η if we

use an η-rounding rather than an exact solution.
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E.1 Algorithm

Preliminaries. To keep notation compact, throughout this section we drop the learning rate param-
eter and work with

G(p) := 〈ãp, θ̃〉 − log det(H̃p), and p? ∈ argmin
p∈∆(A)

G(p). (27)

Note that this suffices to capture the case where γ 6= 1 (Eq. (20)), since we can multiply both sides
by γ and absorb a gamma factor into θ. Consequently, for the remainder of the section we work
under the assumption that ‖θ‖ ≤ γ rather than ‖θ‖ ≤ 1. The definition of an η-rounding remains
unaffected, since we can multiply both sides in Eq. (26) by γ.

Additional notation. For each a ∈ A, let ea ∈ ∆(A) be the distribution that selects a with
probability 1. For any distributions p1, p2 ∈ ∆(A), let conv[p1, p2] = {λp1 + (1−λ)p2 |λ ∈ [0, 1]}
be their convex hull. To improve readability, we abbreviate ‖ · ‖H̃−1

p
to ‖ · ‖p in this section.

Algorithm. Our main algorithm is stated in Algorithm 6. The algorithm is a generalization of
Khachiyan’s algorithm for optimal design [30]. It maintains a finitely supported distribution over
arms in A and adds a single arm to the support at each step.

In more detail, the algorithm proceeds as follows. At step k, the algorithm checks whether the
current iterate pk−1 is an η-rounding. If this is the case, the algorithm simply terminates, as we
are done. Otherwise, with a? := argmina∈A〈a, θ〉, the algorithm first checks whether the current
distribution satisfies d̃ + 〈a? − āpk−1

, θ〉 ≥ 1. If that condition is violated, we define a new
distribution p′k−1 by choosing the distribution in conv[pk−1, ea? ] that minimizes G(p). This ensures
that ∂

∂λ [G(p′k−1 + x(ea? − pk−1)](0) = 0 the same as the one along p′k−1, i.e.

〈a?, θ〉 − ‖a?‖2p′k−1
= Ea∼p′k−1

[
〈a, θ〉 − ‖a‖2p′k−1

]
= 〈āp′k−1

, θ〉 − d̃ ,

and hence mina∈A d̃+ 〈a− āp′k−1
, θ〉 = ‖a?‖2p′k−1

≥ 1. This ensures in particular that

ηk := max
a∈A
‖ã‖2p′k−1

/(d+ 〈a− āp′k−1
, θ〉) (28)

is well defined. To conclude the iteration, the algorithm selects an action ak that attains the maximum
in Eq. (28) and adds it to the support of p′k−1, yielding pk.

Algorithm 6: Frank-Wolfe for minimizing the logdet-barrier objective
Input: p0 ∈ ∆(A),A, θ, η
Let a? = argmina∈A〈a, θ〉, k = 1.
while pk−1 is not an η-rounding (Eq. (26)) do

if d̃+ 〈a? − āpk−1
, θ〉 < 1 then

Solve p′k−1 = argminp∈conv[pk−1,ea? ]G(p).

else
p′k−1 = pk−1.

Pick any ak ∈ argmax ‖ã‖2p′k−1
/(d+ 〈a− āp′k−1

, θ〉) (ties broken arbitrarily).

Solve pk = argminp∈conv[p′k−1,eak ]G(p).
Increment k.

E.2 Analysis

In this section we prove a number of intermediate results used to bound the iteration complexity of
Algorithm 6, culminating in our main convergence guarantee, Theorem 7. The total computational
complexity is summarized at the end of the section in Appendix E.2.1.

We begin by relating the η-rounding property to the suboptimality gap for the objective G(p).
Lemma 6. If p ∈ ∆(A) is an η-rounding, then

G(p)−G(p?) ≤ log(1 + η)d̃ .

27



Proof of Lemma 6. By the optimality conditions in Eqs. (22) to (24), we are guaranteed that

∀a ∈ supp(p?) : d̃+ 〈a, θ〉 = ‖ã‖2
H̃−1
p?

+ 〈āp? , θ〉 .

Hence, combining this statement with the η-rounding condition for p, we have that

∀a ∈ supp(p?) : ‖ã‖2
H̃−1
p
≤ (1 + η)

(
‖ã‖2

H̃−1
p?

+ 〈āp? − āp, θ〉
)
.

Taking the expectation over a ∼ p? on both sides above and rearranging leads to

〈āp − āp? , θ〉 ≤ d̃−
tr(H̃p?H̃

−1
p )

1 + η
= d̃−

tr(H̃
1
2
p?H̃

−1
p H̃

1
2
p?)

1 + η
.

From the definition of G(p), this implies that

G(p)−G(p?) ≤ d̃−
tr(H̃

1
2
p?H̃

−1
p H̃

1
2
p?)

1 + η
+ log det(H̃

1
2
p?H̃

−1
p H̃

1
2
p?),

where we recall that det(H̃
1
2
p?H̃

−1
p H̃

1
2
p?) = det(H̃p?H̃

−1
p ) > 0, since H̃p? , H̃p � 0. Now, let

(λi)i=1,...,d̃ be the eigenvalues of H̃
1
2
p?H̃

−1
p H̃

1
2
p? . Then we have

G(p)−G(p?) =

d̃∑
i=1

1− λi
1 + η

+ log(λi) ≤ d̃max
λ>0

{
1− λ

1 + η
+ log(λ)

}
= d̃ log(1 + η) .

Our next lemma lower bounds the rate at which the suboptimality gap improves at each iteration.
Lemma 7. In each iteration of Algorithm 6, the suboptimality gap improves by at least

G(pk−1)−G(pk) ≥ Ω
(
min{ηk, 1}2/d

)
, (29)

where we recall that ηk := ‖ak‖2p′k−1
/(d̃+ 〈ak− āp′k−1

〉). Furthermore, if ηk ≥ 2d̃, then it also holds
that

G(pk)−G(p?) ≤
(

1− 1

2d̃

)
(G(pk−1)−G(p?)) . (30)

Proof. We first prove that Eq. (29) holds. Let k be fixed, and let α ∈ [0, 1] such that pk =
(1− α)p′k−1 + αeak . Then we have

G(pk) = 〈āpk , θ〉 − log det
(
H̃pk

)
= (1− α)〈āp′k−1

, θ〉+ α〈ãk, θ〉 − log det
(

(1− α)H̃p′k−1
+ αãkã

>
k

)
= 〈āp′k−1

, θ〉+ α〈ãk − āp′k−1
, θ〉 − log

(
det
(

(1− α)H̃p′k−1

)
·
(

1 +
α

1− α
‖ãk‖2p′k−1

))
= G(p′k−1) + α〈ãk − āp′k−1

, θ〉 − (d̃− 1) log(1− α)− log
(

1− α+ α‖ãk‖2p′k−1

)
,

where the third equality uses the matrix determinant lemma. Now, recall that by the definition of ak,
we have ‖ãk‖2p′k−1

= (1 + ηk)(d̃+ 〈ãk − āp′k−1
, θ〉). Let us abbreviate Zk := ‖ãk‖2p′k−1

≥ 1 + ηk.
We proceed as
G(pk−1)−G(pk) ≥ G(p′k−1)−G(pk)

= α〈āp′k−1
− ãk, θ〉+ (d̃− 1) log(1− α) + log

(
1− α+ α‖ãk‖2p′k−1

)
= α

(
d̃− Zk

1 + ηk

)
+ (d̃− 1) log(1− α) + log (1 + α(Zk − 1))

= max
α′∈[0,1]

{
α′
(
d̃− Zk

1 + ηk

)
+ (d̃− 1) log(1− α′) + log (1 + α′(Zk − 1))

}
,

(31)
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where the last equality uses that α is chosen such that G(pk) is minimized. Next, recalling the
elementary fact that for all x ≥ − 1

2 , log(1 + x) ≥ x− x2, we have in particular that

G(pk−1)−G(pk)

≥ max
α′≥ 1

2

{
α′
(
d̃− Zk

1 + ηk

)
+ (d̃− 1)(−α′ − α′2) + α′(Zk − 1)− α′2(Zk − 1)2

}
= max
α′≥ 1

2

{
α′

ηkZk
1 + ηk

− α′2
(
d̃− 1 + (Zk − 1)2

)}
.

Note that d̃ ≥ 3 and maxx>0
x

2+(x−1)2 ≤ 1, so if we choose

α′ =
ηkZk

2(1 + ηk)
(
d̃− 1 + (Zk − 1)2

) ≤ 1

2
,

we get the lower bound

G(pk−1)−G(pk) ≥ η2
kZ

4
k

4(1 + ηk)2
(
d̃− 1 + (Zk − 1)2

) .
The proof of Eq. (29) now follows by noting that x2

d+(x−1)2 ≥
1
d for all x ≥ 1.

We now prove that the second part of the lemma, Eq. (30), holds. Suppose ηk > 2d̃. We return to
Eq. (31) and this time select

α′ =

√
ηk

Zk − 1
≤ 1
√
ηk
≤ 1

2
.

Using the approximation log(1 + x) ≥ x− x2 only for the first term in (31), we get

G(pk−1)−G(pk) ≥ α′
(
d̃− Zk

1 + ηk

)
− (d̃− 1)(α′ + α′2) + log (1 + α′(Zk − 1))

≥ −
√
ηk

1 + ηk
− d̃− 1

ηk
+ log(1 +

√
ηk)

= −
√
ηk

1 + ηk
− d̃− 1

ηk
+ log(1 +

√
ηk)− 1

4
log(1 + ηk) +

1

4
log(1 + ηk)

≥ −
√
ηk

1 + ηk
− 1

2
+

1

ηk
+ log(1 +

√
ηk)− 1

4
log(1 + ηk) +

1

4
log(1 + ηk) ,

where the last line uses that ηk ≥ 2d̃. Now observe that for x ≥ 6

∂

∂x

(
−
√
x

1 + x
+

1

x
+ log(1 +

√
x)− 1

4
log(1 + x)

)
=

x− 1

2
√
x(1 + x)2

− 1

x2
+

1

2(
√
x+ x)

− 1

4(1 + x)

=
x

7
2 + x3 + 5x

5
2 − 7x2 − 12x

3
2 − 8x− 4x

1
2 − 4

4x2(1 +
√
x)(1 + x)2

≥ 7x2 + 60x
3
2 − 7x2 − 12x

3
2 − 8x− 4x

1
2 − 4

4x2(1 +
√
x)(1 + x)2

≥ 0 .

Hence

−
√
ηk

1 + ηk
− 1

2
+

1

ηk
+ log(1 +

√
ηk)− 1

4
log(1 + ηk)

≥ −
√

6

1 + 6
− 1

2
+

1

6
+ log(1 +

√
6)− 1

4
log(1 + 6) > 0 .

It follows that

G(pk−1)−G(pk) ≥ 1

4
log(1 + ηk).
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The next lemma ensures we can efficiently find a good initial distribution p0.
Lemma 8 (Kumar and Yildirim [32], Lemma 3.1). There exists an algorithm that terminates in
O(|A|d2) time and finds a distribution p0 ∈ ∆(A) with support | supp(p0)| ≤ 2d̃ such that

− log det(H̃p0) + min
p∈∆(A)

log det(H̃p) = O(d log(d)) .

The memory requirement of this routine is O
(
d2 + log(|A|d)

)
.

Corollary 4. The distribution of Lemma 8 has an initial suboptimality gap of

G(p0)−G(p?) = O(d log(d) + γ) .

Proof. Recall that

G(p0)−G(p?) = 〈āp0 − āp? , θ〉 − log det(H̃p0) + log det(H̃p?).

The difference between the log-det terms is bounded by O(d log(d)) using Lemma 8, while the
difference between the linear terms is bounded by

〈āp0 − āp? , θ〉 ≤ ‖āp0 − āp?‖ · ‖θ‖ ≤ 2γ .

Theorem 7. If Algorithm 6 is initialized using the distribution of Lemma 8, then it requires
O(d(log(d) + log(γ)) iterations to reach a 2d-rounding. Moreover,

• After reaching the 2d-rounding above, the algorithm requires O
(
log(d)d2

)
additional

iterations to reach a 1-rounding.

• After reaching such a 1-rounding, the algorithm requires O
(
d2/η

)
additional iterations to

reach an η-rounding for any η < 1.

Altogether, for any η > 0, Algorithm 6—when initialized using Lemma 8—requires

O(d log(γ) + d2(log(d) + 1/η))

total steps to reach an η-rounding.

Proof. By Corollary 4 we know that the initial distribution p0 sastisfies

G0 := G(p0)−G(p?) = O(d log(d) + γ) .

We first consider bound the number of steps required to reach a 2d-rounding. Let k0 denote the first
step k in which pk is a 2d-rounding. Then every k < k0 has ηk > 2d, so in light of Lemma 7, all
such k have

G(pk)−G(p0) ≤
(

1− 1

2d̃

)
(G(pk−1)−G(p0))

and
G(pk) ≤ G(pk−1)− Ω(1/d).

It follows that as long as ηk > 2d, the suboptimality gap will reach 1 in most O(d log(G0)) =
O(d(log(d) + log(γ))) iterations. Moreover, since the absolute decrease in function value is
at least Ω(1/d), the gap will reach zero after another O(d) iterations. We conclude that after
O(d(log(d) + log(γ))) iterations, the algorithm must find a 2d-rounding.

We now bound the number of steps to reach a 1-rounding from the first step where we have a 2d-
rounding. By Lemma 6, the suboptimality gap of any 2d-rounding is at most O(d log(d)). Moreover,
as long as we haven’t reached a 1-rounding, Lemma 7 guarantees that the suboptimality gap will
decrease by Ω(1/d) per step. Hence, we must reach a 1-rounding within O(d2 log(d)) iterations.

Finally we bound the number of steps required to reach an η-rounding for any η < 1, starting from the
first iteration where we reach a 1-rounding. We adapt an argument of Kumar and Yildirim [32]. Given
an ηk-rounding for ηk ≤ 1, we need O

(
d2/ηk

)
iterations to reach an (ηk/2)-rounding. This follows

from the same argument as above: the suboptimality gap is at most O(dηk) by Lemma 6 (using that
log(1 + ηk) ≤ ηk) and we reduce it by Ω(η2

k/d) as long as we have not found an (ηk/2)-rounding
(by Lemma 7). Summing up the required number of iterations to get from precision 1 to 1/2 to 1/4
to . . . to 1/2dlog2(1/η)e shows that O(d2/η) total iterations suffice.
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E.2.1 Total Computational Complexity

The computational complexity per iteration for our method is comparable to similar algorithms for
the D-optimal design problem (the case θ = 0) [30, 32, 44]. We walk through the computation
complexity step-by-step for completeness, and to handle differences arising from our generalization
to the θ 6= 0 case.

The first difference is that we have an intermediate optimization along the line conv(pk−1, ea?). This
step increases the computational complexity by a factor of 2. At each iteration, Algorithm 6 computes

argmax
a∈A

‖ã‖2p′k−1

d+ 〈a− āp′k−1
, θ〉

.

For generic action sets, this can be computed in time O(|A|d2), given that H̃−1
p′k−1

has already been
computed.

In the next step, the algorithm solves the one dimensional optimization problem

max
α′∈[0,1]

(
α′
(
d̃− Zk

1 + ηk

)
+ (d̃− 1) log(1− α′) + log (1 + α′(Zk − 1))

)
,

where Zk = ‖ãk‖2p′k−1
. This can be done in time O(1), since it is equivalent to solving the quadratic

problem (
d̃− Zk

1 + ηk

)
− d̃− 1

1− x
+

Zk − 1

1 + x(Zk − 1)
= 0 .

Finally we need to update āp, which costs O(d), and update H̃−1
p , which can be done in time O(d2)

using a rank-one update.

Across all iterations, we require a total of Õ(d4|A|) arithmetic operations, with pk never exceeding a
support of O

(
d2 log(d) + d log(γ)

)
, since we maximally add one arm to the support in any iteration.

We can store pk as a sparse vector of key and value pairs, where each entry has a memory complexity
of O(log(|A|)) to represent the keys.
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