
Supplementary Material for
Smooth And Consistent Probabilistic Regression Trees

We provide in this supplementary file detailed results for the experiments (Section A), a sufficient condition
for the invertibility of PTP (Section B), and finally the proof for the consistency of probabilistic regression
trees (Section C).
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A Experiments

A.1 Datasets
We present in this section the datasets used in Section 4 of the main paper. We perform our experiments on
several classical dasets of the litterature, namely Abalone12 (AB) , which was used in [Meinshausen, 2006],
Riboflavin 1(RI) which was used in [Bühlmann et al., 2014] as well as Ailerons2 (AL), Bike-Day1 (BD),

1available at archive.ics.uci.edu/ml/datasets.php
2available at www.gagolewski.com/resources/data/ordinal-regression
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Bike-Hour1 (BH), Boston3 (BO), Diabetes14 (DI), Facebook Comments1 (FC), Forest Fires1 (FF), Ozone5
(OZ), E20066, Skill (SK), Super Conductor1 (SC) and Video Transcoding7 (VT). Table 6 below provides the
main characteristics of these datasets.

Table 1: Benchmark data sets with their characteristics, sorted by the sample size.

Data set RI OZ DI AB BO BD E2006 SK AL BH SC FC VT
Features 4088 10 10 7 11 16 9000 18 40 16 81 40 20
Samples 71 112 441 500 505 730 3308 3337 7154 17389 21263 40949 68785

A.2 Computational considerations
For the construction of the probabilistic regression tree, the most time consuming operation is the one that
determines the best split to be taken at each current leaf. The computation of P can be done incrementally,
with a complexity of O(n) each time a node is subdivided into two nodes. As the number of leaves is
usually small compared to the number of training examples, the computation of (PTP)−1PT requires O(K2n)
operations, if K regions have already been constructed. Let Sk = ∪j, 1≤j≤pSjk (where Sjk denotes as before
the set of splitting points for region Rk and for variable j) and let us assume that, ∀k, 1 ≤ k ≤ K, |Sk| < S
where S is a constant. Note that one can always define S by taking the maximum number of potential
split points for all variables. Then, the overall complexity for computing the best split is O(pSK2n). This
contrasts with the complexity for finding the best split in a given region in standard regression trees that
only amounts to O(pSDn,k) where Dn,k denotes the number of training examples in the region.

Note that the computational complexity of probabilistic regression trees is linear in p, the number of
features; they can thus be used on datasets for which p is large. This said, in practice, one can be faster by
considering a smaller number, V , of potential variables to split. We consider the top V variables according to
the splitting criterion of standard regression trees (this last step is negligible when the tree is of depth 2 or
more). This leads to an overall complexity of O(V SK2n), where typical values of V are 1, 3 and 5. In the
experiments, we have seen no significant difference between considering all variables (V=p) or only three
(V=3). Table 2 summarizes the results.

Table 2: Difference in prediction (RMSE, mean and sd in parenthesis) between V = p and V = 3.

Dataset AB BD BO DI OZ
Top V=3 3.11(0.27) 374.2(43.2) 4.47(1.04) 55.92(3.97) 18.66(3.65)
Top V=p 3.1(0.28) 373.6(43.86) 4.15(0.57) 55.73(4.17) 18.69(3.75)

For prediction, one needs to compute Ψ(x;Rk,σ), which can be done, for each region, in O(p) operations
using a standard normal table. The overall time complexity for prediction is thus O(Kp).

Table 3: Time computation in seconds.

Dataset PR V=3 Soft Tree BooST MARS Std Tree
BD 5,68 5,75 0,24 0,17 0,00065
BO 3,19 14,41 0,20 0,27 0,0007507901
DI 2,75 0,73 0,19 0,17 0,0005473019
SC 411,43 32087 33,91 212,93 0,2108744748

3available at http://lib.stat.cmu.edu/datasets/boston
4available at https://www4.stat.ncsu.edu/ boos/var.select/diabetes.tab.txt
5available at https://www.rdocumentation.org/packages/missMDA/versions/1.14/topics/ozone
6available at https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/regression.html
7available at http://dash.ipv6.enstb.fr/dataset/transcoding/
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A.3 Results for tree-based methods
We add details about the results given in Figure 2 of the experimental results of Section 4. In particular, we
give in Table 6 the full results related to the performance of the different regression tree state-of-art methods,
that we compare to PR Tree. We added a ’*’ subscript, to indicate when a method significantly outperforms
the others. In this table, we keep 3 values for V the number of top variables to select in the PR tree. It
highlights that even if there is no general rule, V = 3 has the best results for a reasonable computation time.
We will keep V = 3 in the other experiments.

Table 4: Results for one tree obtained with 10 stratified cross-validation on PR, standard, Soft and STR
trees. ’*’ corresponds to the best result, and bold represents results that are not significantly different than

the best one according to a two-sided t-test at 5%..

Dataset PR Tree PR Tree PR Tree Standard Tree Soft Tree STR tree
V=1 V=3 V=5 M=1

RI 0.86(0.12) 0.67(0.13) 0.69(0.15) 1.04(0.15) 0.66(0.17)* 0.85(0.21)
OZ 17.82(2.4)* 18.66(3.65) 18.88(3.23) 18.9(3.39) 34.44(43.27) 24.5(3.58)
DI 57.05(3.82) 55.92(3.97) 55.76(3.96)* 60.95(3.92) 64.18(4.15) 67.89(1.99)
AB 3.08(0.29) 3.11(0.27) 3.08(0.28) 3.15(0.29) 3.11(0.23) 3.03(0.24)*
BO 4.7(0.88) 4.47(1.04) 4.21(0.88)* 5.27(0.61) 4.54(0.97) 7.91(0.42)
BD 925.18(70.79) 898.11(55.43)* 918.46(47.95) 1006.73(52.07) 1376.74(165.24) 1661.4(54.23)

E2006 0.37(0.02) 0.37(0.02)* 0.37(0.02) 0.39(0.02) 0.47(0.02) 0.48(0.02)
SK 1(0.04) 0.98(0.05) 0.98(0.03) 1.06(0.03) 0.95(0.02)* 1.3(0.03)
AL 1.23(0.03)* 1.24(0.02) 1.24(0.02) 1.65(0.03) 1.57(0.7) 2.28(0.03)
BH 128.12(1.29) 128.52(1.84) 126.69(1.1)* 128.12(1.29) 148.63(33.42) 169.67(1.54)
SC 18.79(0.21) 17.89(0.28)* 18.1(0.37) 18.79(0.21) 21.96(1.27) 29.58(0.16)
FC 28.77(3.32)* 28.87(3.32) 28.9(3.35) 33.12(3.82) 31.68(3.47) 31.94(3.5)
VT 11.44(0.16) 11.08(0.18)* 11.16(0.19) 11.87(0.17) 15.98(0.24) 13.82(0.23)

A.4 Results for ensemble methods
We now give some details about our two ensemble extensions of PR-Tree, namely PR-RF and PR-GBT
extending respectively PR Tree to Random Forests and Gradient Boosting Trees. In all the experiments,
we fix to t = 100 the number of trees considered in each ensemble method. As mentioned before, we fix the
number of top variables selected to V = 3. As in Section A.4, we added a ’*’ subscript, to indicate when a
method significantly outperform the other ones. Note that on one fold, BooST get very bad results for Bike,
which leads to an high mean with no significance difference with the other methods.
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Table 5: Results for ensemble methods with t=100.
V=3 were used for PR-RF and PR-GBT.

Data set PR-RF RF PR-GBT GBT BooST
RI 0.64(0.16)* 0.71(0.19) 0.68(0.13) 0.68(0.12) 0.52(0.09)*
OZ 16.08(2.37)* 16.28(2.59) 15.96(3.06)* 16.11(2.65) 17.59(4.1)
DI 54.32(3.29)* 56.53(2.61) 57.14(3.65)* 57.33(3.72) 57.28(3.97)
AB 3.07(0.26)* 3.09(0.27) 3.15(0.29) 3.15(0.29) 3.26(0.37)
BO 4.01(0.73)* 4.7(0.64) 3.4(0.6)* 3.77(0.65) 4.1(1.94)
BD 838.23(51.07) 907.54(42.44) 682.95(36.58)* 695.83(40.86) 1232.09(1587.92)

E2006 0.36(0.02)* 0.38(0.03) 0.36(0.02)* 0.37(0.02) 0.635(0.395)
SK 0.95(0.03)* 1(0.03) 0.9(0.03) 0.91(0.03) 0.91(0.04)
AL 1.19(0.02)* 1.57(0.04) 1.11(0.02)* 1.15(0.03) 2.28(0.03)
BH 128.47(1.28) 127.15(1.34)* 82.21(0.98)* 84.97(1.16) 89.04(1.64)
SC 17.72(0.3)* 18.41(0.2) 13.96(0.2)* 14.07(0.17) 14.52(0.26)
FC 28.76(3.51)* 32.03(3.43) 26.61(3.47) 29.12(3.5) 20.85(3.31)*
VT 11.06(0.19)* 11.79(0.19) 6.55(0.15) 8.26(0.2) 4.59(0.12)*

A.5 Interpretability
To illustrate how observations are linked to the different regions, we display in Fig. 1, for three data sets
(Boston (BO), Ailerons (AI) and Video Transcoding (VT)) the boxplots, with respect to the observations, of
Ψ(.;RK∗1 ,σ) (left), of Ψ(.;RK∗1 ,σ) + Ψ(.;RK∗2 ,σ) (middle), and Ψ(.;RK∗1 ,σ) + Ψ(.;RK∗2 ,σ) + Ψ(.;RK∗3 ,σ)
(right), where K∗1 denotes the most probable region for any observation, K∗2 the second most probable region
and K∗3 the third most probable region. For the three data sets and for most observations, roughly 75% of
their distribution is concentrated on these three regions, the most probable one concentrating more than 40%
of the distribution. As the number of regions is, in all cases, equal to 8, the three most probable regions are
by far the most important ones and can be used to provide a first explanation for the values predicted.

Figure 1: Boxplots for the values of Ψ(.;R(n)
k ,σ) on the three main regions for three datasets.

A.6 Choice of φ
A key feature of our probabilistic version of Regression Trees, Random Forest and Gradient Boosting Trees is
the introduction of the distribution φ involved in our smooth prediction. In Table 6, we provide an extensive
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study of the impact of the choice of φ on the performance of the method. Note that interestingly, significant
differences are observed depending on the dataset. Notably, the choice of a Gaussian distribution φ is in
some cases significantly outperformed by other ones.

Table 6: Several distributions

Dataset Gamma df=3 Gamma df=5 Laplace Lognorm Normal Student df=3 Student df=5
OZ 18.38(3.5) 19.17(3.9) 18.16(3.32) 17.87(2.59) 18.66(3.65) 18.53(3.43) 19.02(3.53)
DI 58.98(2.02) 61.56(3.75) 56.01(3.73) 60.83(3.2) 55.92(3.97) 55.88(3.97)* 55.95(3.69)
AB 3.07(0.24) 3.04(.24) 3.11(0.26) 3.05(0.25) 3.11(0.27) 3.09(0.26) 3.1(0.26)
BO 5.05(0.69) 5.24(0.56) 4.51(0.87) 5.14(0.85) 4.47(1.04) 4.43(1.02)* 4.43(1.04)*
BD 400.17(31.69) 397.04(41.09) 371.16(41.29)* 415.43(47.28) 374.2(43.23) 372.46(42.73) 373.21(42.94)
SK 1.04(0.03) 1.06(0.03) 0.97(0.04)* 1.07(0.03) 0.98(0.05) 0.98(0.05) 0.97(0.04)*
AL 1.63(0.04) 1.65(0.03) 1.25(0.02) 1.65(0.03) 1.24(0.02) 1.23(0.02)* 1.24(0.02)

B Invertibility of PTP

We introduce here a sufficient condition for the matrix PTP ∈MK,K(R) to be invertible. Using the same
notations as the ones in the main paper and denoting by qα the α quantile, we first note that, provided that
the uncertainties are sufficiently small, the association Ψ(x(i);Rk,σ) between a training example x(i) and
the region Rk to which it belongs is above 0.5:

Lemma B.1. Using the same notations as before, let x(i) ∈ Dn and Rk be the region to which it belongs so
that ∀j, 1 ≤ j ≤ p, ak,j < x

(i)
j < bk,j.

If ∀j, 1 ≤ j ≤ p, σj <
bk,j − ak,j
2q 1+0.51/p

2

, thenPik > 0.5.

Proof. Denoting P(Uj ∈ [ajk, b
j
k]|x(i)j , σj) the quantity 1

σj
√
2π

∫ bk,j
ak,j

e
−

(u−xj)
2

2σ2
j du where 1 ≤ j ≤ p, a sufficient

condition for Pik > 0.5 is:
∀j, P(Uj ∈ [ajk, b

j
k]|x(i)j , σj) > 0.51/p.

The above inequality is true if:

∀j, 1 ≤ j ≤ p, P

(
Uj − x(i)j

σj
<
bjk − x

(i)
j

σj
|x(i)j , σj

)
− P

(
Uj − x(i)j

σj
<
ajk − x

(i)
j

σj
|x(i)j , σj

)
> 0.51/p.

This last condition is satisfied if one has, for all 1 ≤ j ≤ p:
P
(
Uj−x(i)

j

σj
<

bjk−x
(i)
j

σj
|x(i)j , σj

)
> 1+0.51/p

2 ,

P
(
Uj−x(i)

j

σj
<

ajk−x
(i)
j

σj
|x(i)j , σj

)
< 1−0.51/p

2 ,

which is equivalent to:
ajk − x

(i)
j

σj
< q 1−0.51/p

2

and
bjk − x

(i)
j

σj
> q 1+0.51/p

2

.

Note that q 1−0.51/p

2

= −q 1+0.51/p

2

< 0. A sufficient condition is then: for all 1 ≤ j ≤ p,

∀j, 1 ≤ j ≤ p, σj < min
1≤k≤K

min
(
x
(i)
j − a

j
k, b

j
k − x

(i)
j

)
q 1+0.51/p

2

 .
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Since ajk < x
(i)
j < bjk, a more conservative condition is:

∀j, 1 ≤ j ≤ p, σj <
bjk − a

j
k

2q 1+0.51/p

2

,

which concludes the proof.

We can now state the main condition for invertibility.

Theorem B.1. If the following condition is satisfied:

∀j, 1 ≤ j ≤ p, σj <
min

1≤k≤K
(bjk − a

j
k)

2q
1+0.5

1
p

2

,

then the matrix PTP is invertible.

To prove Theorem B.1, we prove that P is of full rank. To do so, we first prove the following result:

Proposition B.1. Let us assume that the condition in Lemma B.1 holds. Then, the set Ik = {1 ≤ i ≤
n, Pik > 0.5} is non-empty. Let us consider, for all 1 ≤ k ≤ K, ik a representative of this set and let us
introduce the matrix Q ∈MK,K(R) defined, for all 1 ≤ l, k ≤ K, by:

Qlk = Pilk.

The K ×K matrix Q is invertible.

Proof. We first show that Q is a strictly dominant diagonal matrix, i.e.:

∀k, Qkk >
∑
k′ 6=k

Qkk′ .

Indeed, by Lemma B.1, we know that Pikk > 0.5 and k is the only region where it is true:∑
l 6=k

Qlk ≤
∑
l 6=k

Pilk = 1− Pikk < 0.5 < Pikk = Qkk.

According to Hadamard’s Lemma, we know that a strictly dominant diagonal matrix is invertible, which
concludes the proof.

As Q is invertible, P is of full rank, leading to the fact that PTP is invertible, which proves Theorem B.1.
Note that the proofs of Lemma (B.1) and Theorem B.1 do not rely on the Gaussian assumption. The above

development can thus be extended to any function Ψ that can be written as the product of p independent
distributions. Lastly, one can interpret the above results as stating that if regions are not too small with
respect to σ, then the estimator of γ is well defined.
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C Consistency of probabilistic regression trees

C.1 Notation and assumptions
We recall that, for s > 0, the spaces Hs(Rp) are defined as

Hs(Rp) = {g ∈ L2(Rp), ω 7→ (1 + |ω|2)s/2|F(g)(ω)| ∈ L2(Rp)}

where we consider the Fourier transform and its inverse defined by, for any g ∈ L2(Rp),

∀ω ∈ Rp,F(g)(ω) =

∫
Rp
g(t)e−iω.tdt,

∀t ∈ Rp,F−1(g)(t) =
1

(2π)p

∫
Rp
g(ω)e+it.ωdω.

For the sake of simplicity, we consider that the observations lie in [0, 1]p, the extension to any compact
subspace X of Rp being direct. We then assume that X ∈ [0, 1]p and that the link function is also defined on
[0, 1]p.

A function f defined on [0, 1]p belongs to Hs([0, 1]p) if there exists g ∈ Hs(Rp) s.t. g|[0,1]p = f . We define
the norm on Hs([0, 1]p) by

‖f‖Hs([0,1]p) = inf{‖g‖Hs(Rp), g ∈ Hs(Rp), s.t. f = g|[0,1]p}.

Since the space Hs([0, 1]p) is defined as the restriction of functions of Hs(Rp), the proof first provides
some results for functions defined on Rp, and thereafter extend these results to functions defined on [0, 1]p

which leads to the consistency.
In the sequel we are given φ, a probability distribution function, weighting as a probability measure the

belonging of each observation to each region. To simplify notations, in this supplementary material, for σ
fixed, we define φσ as

∀u ∈ Rp, φσ(u) :=
1∏
j σj

φ

(
u1
σ1
, · · · , up

σp

)
,

and set φ[2]σ := φσ ? φσ, where ? denotes the convolution product.
We then assume that for any σ, the support of its Fourier transform is Rp: supp(Fφσ) = Rp. Remark

that φσ ∈ L1, as φ is a pdf. We also assume that there exists an r > 0 which guides its decreasing:
supv∈Rp |v|1+r+p/2|φσ(v)| <∞, which ensures that φσ ∈ L2. Finally, we assume that φσ ∈ C1.

Thereafter, we introduce for all x ∈ Rp

Ψ̃(x;R(n)
k ,σ) =

∫
R(n)
k

φσ(u− x)du.

Its restriction on [0, 1]p will be denoted Ψ(·;R(n)
k ,σ). We also define Ṽn as

Ṽn =

{
Kn∑
k=1

AkΨ̃(·;R(n)
k ,σ), (Ak) ∈ RKn

}
,

and its restriction to [0, 1]p as

Vn =

{
Kn∑
k=1

AkΨ(·;R(n)
k ,σ), (Ak) ∈ RKn

}
.

To control the estimation error (Section C.3), we first focus on the truncated estimator: for (βn) a sequence
of non negative numbers such that limn→+∞ βn = +∞, let T̃ (n)

s = Tβn T̂
(n)
s be the truncated estimator defined

by:

Tβnu =

{
u if |u| < βn,

sign(u)βn if |u| ≥ βn.
We also define TβnVn = {g ∈ Vn : ‖g‖∞ ≤ βn}.
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C.2 Proof of Proposition 1: density of Vn in Hs([0, 1]p) and approximation error
We first provide a proposition which describes the density of Vn in Hs([0, 1]p) with an explicit expression of
the rate of approximation.

Our approach is similar to [Devore and Ron, 2010]. The proof is decomposed onto several steps:

A.1.1 we first introduce a set Hλ ⊂ Hs(Rp) and its restriction to [0, 1]p and we derive some specificity of this
space;

A.1.2 we prove the density of Ṽn in Hλ, considering functions defined on Rp;

A.1.3 we deduce the approximation error of our procedure for functions belonging to Hs([0, 1]p).

C.2.1 The space Hλ
For any λ > 0, we introduce the set

Hλ :=
{
g ∈ L2(Rp), supp(Fg) ⊂ [−λ, λ]p

}
. (1)

Note that Hλ ⊂ Hs(Rp) for any s > 0. We also define

Hλ|[0,1]p =
{
f ∈ L2([0, 1]p) s.t. there exists g ∈ Hλ satisfying g|[0,1]p = f

}
.

We provide an integral representation of any function belonging to Hλ.

Lemma C.1. Let λ > 0, σ ∈ (R∗+)p and g ∈ Hλ. Set

Tσg(ω) = F−1
[
Fg(ω)

Fφ[2]σ (ω)

]
.

Then,
g = φ[2]σ ? Tσg.

The proof of this lemma comes directly from the fact that for any function g in Hλ, one can define thanks to
the assumption supp(Fφσ) = Rp

Fg(ω)

Fφ[2]σ (ω)
,

and that this function in a square integrable function. The remainder of the proof is left to the reader.

C.2.2 Approximation of Hλ by Ṽn

For any g ∈ Hλ, we introduce an approximation πg ∈ Ṽn, constructed through its coefficient (A
(M)
k )1≤k≤Kn ,

for M > 0 fixed. This section ends with Proposition C.1, which controls the difference between g and πg.
In what follows, we denote for any k ∈ {1, · · · ,Kn}, ξ(k,M) the center of R(n)

k ∩ [−M,M ]p.

Definition of an approximation of any g ∈ Hλ belonging to Ṽn

Lemma C.2. Let g ∈ Hλ. Then

(i) For any k ∈ {1, · · · ,Kn}, the coefficients

A
(M)
k :=

∫
Rp
φσ(ξ(k,M) − t)Tσg(t)dt (2)

are well defined.
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(ii) For any k ∈ {1, · · · ,Kn},

max |A(M)
k | ≤

∫
Rp

∣∣∣∣ F [g](ω)

F [φσ](ω)

∣∣∣∣ dω.
(iii) Define for all x ∈ Rp,

πg(x) =

Kn∑
k=1

A
(M)
k Ψ̃(x;R(n)

k ,σ).

Then
sup
x∈Rp

|πg(x)| ≤
∫
Rp

∣∣∣∣ F [g](ω)

F [φσ](ω)

∣∣∣∣ dω.
Proof:

(i) Observe that formally

A
(M)
k = [φσ ? Tσg](ξ(k,M)) = F−1[F [g]/F [φσ]](ξ(k,M)).

Since g ∈ Hλ, F [Tσg] belongs to L2(Rp) and F [φσ] ∈ L2(Rp) then

F [φσ]F [Tσg] ∈ L1(Rp) .

In particular the function F−1[F [g]/F [φσ]] is continuous on Rp, which implies that the coefficients
A

(M)
k are well defined by (2), for all k ∈ {1, . . . ,Kn}.

(ii) Using the explicit expression of A(M)
k given in (i), one deduces that for any k ∈ {1, · · · ,Kn},

|A(M)
k | ≤ ‖F−1[F [g]/F [φσ]]‖∞ ≤ ‖F [g]/F [φσ]‖1 =

∫
Rp

∣∣∣∣ F [g](ω)

F [φσ](ω)

∣∣∣∣ dω.
(iii) By definition of πg, one has for any x ∈ Rp,

|πg(x)| ≤ max
k∈{1,...,Kn}

|A(M)
k | ·

[
Kn∑
k=1

Ψ̃(x;R(n)
k ,σ)

]
.

Observe that, for all x ∈ Rp,

Kn∑
k=1

Ψ̃(x;R(n)
k ,σ) =

∫
Rp
φσ(u− x)du = 1,

by assumption on φσ. We now use the bound of the coefficients A(M)
k proved in (ii) to deduce (iii).

Approximation of functions of Hλ with functions belonging to Ṽn

Proposition C.1. Let M,λ > 0 fixed and g ∈ Hλ. Then, there exists some constant C(σ, p, φ) > 0, such
that for any s ∈ (1, 2) one has

∀x ∈ [0, 1]p, |g(x)− πg(x)| ≤ C(σ, p, φ)

inf |ω|≤λ |Fφσ(ω)|
‖g‖Hs(Rp)

[
max

k∈{1,...,Kn}
diam(R(n)

k ∩ [−M,M ]p) +M−r
]
.

(3)
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Proof:
Step 1: expression of the approximation error as a sum of integrals
By Lemma C.1, for any g ∈ Hλ, one has, for all x ∈ Rp, g(x) =

∫
Rp φ

[2]
σ (x − t)Tσg(t)dt. We now use the

definition of φσ. As (R(n)
k )1≤k≤Kn is a partition of Rp, one has for all (x, t) ∈ (Rp)2,

φ[2]σ (x− t) =

Kn∑
k=1

∫
R(n)
k

φσ(x− v)φσ(v − t)dv.

Thus,

g(x)− πg(x) =

Kn∑
k=1

∫
v∈R(n)

k

φσ(x− v)

[∫
t∈Rp

[
φσ(v − t)− φσ(ξ(k,M) − t)

]
Tσg(t)dt

]
dv.

By the Mean Value Theorem, we get for any fixed k ∈ {1, . . . ,Kn},

φσ(v − t)− φσ(ξ(k,M) − t) =

p∑
j=1

(vj − ξ(k,M)
j )

∫ 1

z=0

z ×Dvj [φσ]
(
zv + (1− z)ξ(k,M) − t

)
dz.

Since 1R(n)
k

= 1R(n)
k ∩([−M,M ]p)c

+ 1R(n)
k ∩[−M,M ]p

, one has, for all x ∈ Rp,

g(x)− πg(x) =

Kn∑
k=1

p∑
j=1

H
(1)
k,j (x) +

Kn∑
k=1

p∑
j=1

H
(2)
k,j (x),

with for any j ∈ {1, . . . , p}, k ∈ {1, . . . ,Kn},

H
(1)
k,j (x) =

∫ 1

z=0

∫
v∈Rp

zφσ(x−v)× (vj−ξ(k,M)
j )1R(n)

k ∩[−M,M ]p
(v)[Tσg ?Dvj [φσ]]

(
zv + (1− z)ξ(k,M)

)
dvdz,

(4)
and

H
(2)
k,j (x) =

∫ 1

z=0

∫
v∈Rp

zφσ(x−v)× (vj− ξ(k,M)
j )1R(n)

k ∩([−M,M ]p)c
(v)[Tσg ?Dvj [φσ]](zv+(1−z)ξ(k,M))dvdz.

(5)
Step 2: bound of the sum

∑Kn
k=1

∑p
j=1H

(2)
k,j

Eq. (5) implies that for all x ∈ [0, 1]p, as z ∈ [0, 1],

|H(2)
k,j (x)| ≤ ‖Tσg ? Dvj [φσ]‖L2(Rp)

[∫
v∈R(n)

k ∩([−M,M ]p)c
|φσ(x− v)|2 · |vj − ξ(k,M)

j |2 dv

]1/2
≤
C ‖g‖Hs(Rp)M−r

inf |ω|≤λ |Fφσ(ω)|
,

(6)

for some constant C > 0 depending only on φ,σ and p. In the last display, we use Lemma C.5 to bound
‖Tσg ? Dvj [φσ]‖L2(Rp) and Lemma C.3 to bound the integral involving φσ.

Step 3: bound of the sum
∑Kn
k=1

∑p
j=1H

(1)
k,j

10



The definition (4) of H(1)
k,j implies that for all x ∈ [0, 1]p, as z ∈ [0, 1],

Kn∑
k=1

p∑
j=1

H
(1)
k,j ≤

Kn∑
k=1

p∑
j=1

∫ 1

z=0

∫
v∈Rp

|φσ(x− v)| ×
∣∣∣vj − ξ(k,M)

j

∣∣∣
×
∣∣∣[Tσg ? Dvj [φσ]](zv + (1− z)ξ(k,M))

∣∣∣1R(n)
k ∩[−M,M ]p

(v)dvdz

≤
[

max
k∈{1,...,Kn}

diam(R(n)
k ∩ [−M,M ]p)

]
×

Kn∑
k=1

p∑
j=1

∫ 1

z=0

∫
v∈Rp

|φσ(x− v)|

×
∣∣∣[Tσg ? Dvj [φσ]](zv + (1− z)ξ(k,M))

∣∣∣× 1R(n)
k ∩[−M,M ]p

(v)dvdz

≤
[

max
k∈{1,...,Kn}

diam(R(n)
k ∩ [−M,M ]p)

]
×

Kn∑
k=1

p∑
j=1

∫ 1

z=0

[∫
v∈Rp

|φσ(x− v)|

×
∣∣∣Tσg ? Dvj [φσ](zv + (1− z)ξ(k,M))− Tσg ? Dvj [φσ](v)

∣∣∣1R(n)
k ∩[−M,M ]p

(v)dv
]
dz

+

[
max

k∈{1,...,Kn}
diam(R(n)

k ∩ [−M,M ]p)

]
×

Kn∑
k=1

p∑
j=1

[∫
v∈Rp

|φσ(x− v)|
∣∣[Tσg ? Dvj [φσ]](v)

∣∣1R(n)
k ∩[−M,M ]p

(v)dv

]
.

We now bound each part. One first observes that

Kn∑
k=1

p∑
j=1

∫
v∈Rp

|φσ(x− v)|
∣∣[Tσg ? Dvj [φσ]](v)

∣∣1R(n)
k ∩[−M,M ]p

(v)dv

=

∫
v∈Rp

|φσ(x− v)|
p∑
j=1

∣∣[Tσg ? Dvj [φσ]](v)
∣∣ dv ≤ C‖g‖Hs(Rp)

inf |ω|≤λ |Fφσ(ω)|
.

where in the last display we used Lemma C.5.
The other term is negligible. By the Cauchy Schwarz inequality, for any z ∈ [0, 1]
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Kn∑
k=1

p∑
j=1

∫
v∈Rp

|φσ(x− v)||Tσg ? Dvj [φσ](zv + (1− z)ξ(k,M))− Tσg ? Dvj [φσ](v)|1R(n)
k ∩[−M,M ]p

(v)dv

=

Kn∑
k=1

p∑
j=1

∫
v∈R(n)

k ∩[−M,M ]p
|φσ(x− v)| × |zv + (1− z)ξ(k,M) − v|s−1

×
|Tσg ? Dvj [φσ](zv + (1− z)ξ(k,M))− Tσg ? Dvj [φσ](v)|

|zv + (1− z)ξ(k,M) − v|s−1
dv

≤ [ max
k∈{1,...,Kn}

diam(R(n)
k ∩ [−M,M ]p)]s−1

×
p∑
j=1

∫
v∈Rp

|φσ(x− v)| ×
|Tσg ? Dvj [φσ](zv + (1− z)ξ(k,M))− Tσg ? Dvj [φσ](v)|

|zv + (1− z)ξ(k,M) − v|s−1
dv

≤ p[ max
k∈{1,...,Kn}

diam(R(n)
k ∩ [−M,M ]p)]s−1

[∫
v∈Rp

|φσ(x− v)|2 1R(n)
k ∩[−M,M ]p

(v)dv

]1/2
×

[∫
v∈Rp

|Tσg ? Dvj [φσ](zv + (1− z)ξ(k,M))− Tσg ? Dvj [φσ](v)|2

|zv + (1− z)ξ(k,M) − v|2(s−1)
dv

]1/2
≤ C[ max

k∈{1,...,Kn}
diam(R(n)

k ∩ [−M,M ]p)]s−1
‖φσ‖ · ‖g‖Hs(Rp)

inf |ω|≤λ |Fφσ(ω)|
.

where the last inequality comes from Lemma C.5 and Lemma C.3, with C is a constant depending only on
φ,σ and p. As φσ is a probability distribution function, we then deduce the following bound for (4):

Kn∑
k=1

p∑
j=1

H
(1)
k,j ≤

C(σ, p, φ)‖g‖Hs(Rp)
inf |ω|≤λ |Fφσ(ω)|

· [ max
k∈{1,...,Kn}

diam(R(n)
k ∩ [−M,M ]p)]. (7)

The respective bounds (6) and (7) end the proof of Eq. (3).

Extension to the density of Vn in Hs([0, 1]p)
We are now given f ∈ Hs([0, 1]p). As we are considering

‖f‖Hs([0,1]p) = inf{‖g‖Hs(Rp), g ∈ Hs(Rp), s.t. f = g|[0,1]p},

we consider g an extension of f on Rp belonging to Hs(Rp). Let (λn) be a non decreasing sequence converging
to +∞. As in [Schaback, 1995], we consider gλn ∈ Hλn the approximation of g defined in Lemma C.6. We set

fλn = gλn |[0,1]p and hλn = (πgλn)|[0,1]p .

By definition fλn ∈ Hλn |[0,1]p . Moreover,

‖hλn‖L∞([0,1]p) = ‖πgλn‖L∞([0,1]p) ≤
λ
p/2
n ‖g‖Hs(Rp)

inf |ω|≤λn |Fφσ(ω)|
,

where the last inequality comes from Lemma C.6[(ii)]. If we assume that

βn >
‖f‖Hs([0,1]p) · λ

p/2
n

inf |ω|≤λn |F [φσ](ω)|
, (8)
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and consider an extension g such that ‖g‖Hs(Rp) norm is sufficiently close from ‖f‖Hs([0,1]p), one has
hλn ∈ TβnVn. Hence, one has

inf
h∈TβnVn

‖f − h‖L2([0,1]p) ≤ ‖f − hλn‖L2([0,1]p) ≤ ‖f − fλn‖L2([0,1]p) + ‖fλn − hλn(x)‖L2([0,1]p)

= ‖g − gλn‖L2([0,1]p) + ‖gλn − πgλn‖L2([0,1]p)

≤ 1

(1 + |λn|2)s/2
‖g‖Hs(Rp)

+
C(σ, p, φ)‖gλn‖Hs(Rp)

inf |ω|≤λn |Fφσ(ω)|

(
[ max
k∈{1,...,Kn}

diam(R(n)
k ∩ [−M,M ]p)] +M−r

)
≤ C(σ, p, φ)‖g‖Hs(Rp)

[
1

(1 + |λn|2)s/2
+ βn[ max

k∈{1,...,Kn}
diam(R(n)

k ∩ [−M,M ]p) +M−r]

]
where in the last inequality we use Assumption (8) on (βn), Lemma C.6 and Proposition C.1. Since

‖f‖Hs([0,1]p) = inf{‖g‖Hs(Rp), g ∈ Hs(Rp), s.t. f = g|[0,1]p};

it leads to the following proposition:

Proposition C.2. Let s ∈ (1, 2), M > 0 and f ∈ Hs([0, 1]p). Let (βn) be a non decreasing sequence
converging to ∞. Consider a non decreasing sequence (λn) such that for n sufficiently large,

βn >
‖f‖Hs([0,1]p) · λ

p/2
n

inf |ω|≤λn |F [φσ](ω)|
. (9)

Then, for some C(σ, p, φ) > 0, one has

inf
h∈TβnVn

‖f − h‖L2([0,1]p) ≤ C(σ, p, φ)‖f‖Hs(Rp)
[

1

(1 + |λn|2)s/2
+ βn[ max

k∈{1,...,Kn}
diam(R(n)

k ∩ [−M,M ]p) +M−r]

]
.

C.2.3 Extension to Proposition 1 in the main paper

Setting f = E(Y |X = ·), one can easily deduce the following proposition.

Proposition C.3 (Proposition 1 in the main paper). Assume that for some s ∈ (1, 2), a.s. E(Y |X = ·) ∈
Hs([0, 1]p). Let M > 0 and (βn) be a non decreasing sequence converging to ∞. Consider a non decreasing
sequence (λn) such that for n sufficiently large, Condition (9) holds. Then, one has for an absolute constant
C,

inf
g∈TβnVn

‖E(Y |X = ·)− g‖2L2([0,1]p) ≤ C‖E(Y |X = ·)‖2Hs([0,1]p) an, (10)

with

an =

(
1

(1 + |λn|2)s/4
+ βnE

[(
max

k=1,...,Kn
diam(R(n)

k ∩ [−M,M ]p)

)]
+ βnM

−r
)2

.

C.2.4 Technical lemmas

Lemma C.3. Let (σ1, · · · , σp) ∈ (R∗+)p. Assume that

sup
v∈Rp

|v|1+r+p/2|φσ(v)| < +∞. (11)

Then there exists a constant C > 0 depending only on φ,σ and p such that for any (x, ξ) ∈ ([0, 1]p)2 and
M ≥ 2. ∫

v∈([−M,M ]p)c
|φσ(x− v)|2 |vj − ξj |2dv ≤ CM−2r (12)
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Proof: Since M ≥ 2, for each j and any (x, ξ) ∈ ([0, 1]p)2 and v ∈ ([−M,M ]p)c, observe that for M > 0
sufficiently large

([−M,M ]p)c − x ⊂ ([−M/2,M/2]p)c

and
|vj − ξj | ≤ C|vj − xj | .

where the constant C > 0. Hence, combining the change of variable v ← x− v and the previous remarks,
one deduces that∫

v∈([−M,M ]p)c
|φσ(x− v)|2 |vj − ξj |2dv ≤ C

∫
v∈([−M,M ]p)c

|φσ(x− v)|2 |vj − xj |2dv

≤ C

∫
v∈([−M/2,M/2]p)c

|φσ(v)|2 |vj |2dv

≤ C

∫
v∈([−M/2,M/2]p)c

|v|−2r−pdv;

where the last display comes from Assumption (12) on φσ. It ends the proof.
We also give an approximation result of any function belonging to Hs(Rp) by a function in Hλ.

Lemma C.4. Let λ > 0, s > 1 and f ∈ Hs(Rp). One has, for any α ∈ (0, s− 1),∥∥∥∥∥x 7→ f(x)− (2π)−p
∫
|ω|≤λ

F(f)(ω)eiω·xdω

∥∥∥∥∥
∞

≤ C(α)(2π)−p

(1 + |λ|2)(s−1−α)/2
‖f‖Hs(Rp).

Proof:
We follow the same line as [Schaback, 1995]. One has, for all x ∈ Rp,∣∣∣∣∣f(x)− (2π)−p

∫
|ω|≤λ

F(f)(ω)eiω·xdω

∣∣∣∣∣ ≤ (2π)−p
∫
|ω|≥λ

|F(f)(ω)|dω

≤ (2π)−p

(1 + |λ|2)(s−1−α)/2

∫
|ω|≥λ

(1 + |ω|2)s/2

(1 + |ω|2)(1+α)/2
|F(f)(ω)|dω ≤ C(α)(2π)−p

(1 + |λ|2)(s−1−α)/2
‖f‖Hs(Rp),

using Cauchy-Schwarz in the last inequality.

Lemma C.5. Let λ > 0 and g ∈ Hλ. Then, for all j ∈ {1, . . . , p}, s ∈ (1, 2), one has

‖Tσg ? Dvj [φσ]‖L2(Rp) + sup
|h|≤1

∫
v∈Rp

|Tσg ? Dvj [φσ](v + h)− Tσg ? Dvj [φσ](v)|2

|h|2(s−1)
dv ≤

C‖g‖Hs(Rp)
inf |ω|≤λ |Fφσ(ω)|

,

where C is a positive constant depending only on φ,σ and p.

Proof:
One has, for ω ∈ Rp and any s > 1,

‖Tσg ? Dvj [φσ]‖Hs−1(Rp) =

(∫
(1 + |ω|2)s−1|F [Tσg ? Dvj [φσ]](ω)|2dω

)1/2

.

However, for all ω ∈ Rp,

(1 + |ω|2)s−1|F [Tσg ? Dvj [φσ]](ω)|2 = (1 + |ω|2)s−1|F [Tσg](ω)|2|F [Dvj [φσ]](ω)|2

≤ C(1 + |ω|2)s|F [Tσg](ω)|2|F [φσ](ω)|2

≤ C(1 + |ω|2)s|F [g](ω)|2/|F [φσ](ω)|2.
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where C is a positive constant depending only on σ. In the last display we use the explicit expressions of
Tσg and that of the Fourier transform of Dvj [φσ]. Since φσ ∈ L1(Rp), F [φσ] ∈ L∞(Rp). In addition, the
band limited assumption g ∈ Hλ implies

|F [Tσg](ω)|2 ≤ C|F [g](ω)|2

inf |ω|≤λ |Fφσ(ω)|2

Hence we get the result.

Lemma C.6. Let g ∈ Hs(Rp) and λ > 0. Set for all x ∈ Rp, gλ(x) = (2π)−p
∫
|ω|≤λ Fg(ω)eiω·xdω. Then

for some C > 0 depensing only on s, one has

(i) ‖gλ‖2L2(Rp) ≤ C‖g‖
2
Hs(Rp);

(ii) ‖πgλ‖L∞([0,1]p) ≤
‖g‖Hs(Rp)·λp/2

inf|ω|≤λ |F [φσ ](ω)| ;

(iii) ‖gλ − g‖2L2(Rp) ≤
C

(1+|λ|2)s · ‖g‖
2
Hs(Rp).

Proof:

(i) Using Parseval equality one has

‖gλ‖2L2(Rp) = ‖Fgλ‖2L2(Rp) =

∫
|ω|≤λ

|Fg(ω)|2dω

≤
∫
Rp
|Fg(ω)|2dω

≤ ‖g‖2L2(Rp).

By usual Sobolev embedding, one has ‖g‖2L2(Rp) ≤ C‖g‖
2
Hs(Rp) and deduce (i).

(ii) Observe that

‖πgλ‖L∞([0,1]p) ≤
∫
Rp

|F [gλ](ω)|
|F [φσ](ω)|

dω

≤

(∫
Rp

1|ω|≤λ

|F [φσ](ω)|2
dω

)1/2

×
(∫

Rp
|F [gλ](ω)|2 dω

)1/2

≤ λp/2

inf |ω|≤λ |F [φσ](ω)|
· ‖gλ‖L2(Rp)

≤ C
λp/2 · ‖g‖Hs(Rp)

inf |ω|≤λ |F [φσ](ω)|
;

where the last display comes from (i).

(iii) In the same way

‖gλ − g‖2L2(Rp) = ‖Fgλ −Fg‖2L2(Rp) =

∫
|ω|≥λ

|Fg(ω)|2dω

=

∫
|ω|≥λ

1

(1 + |ω|2)s
· (1 + |ω|2)s|Fg(ω)|2dω

≤ 1

(1 + |λ|2)s
· ‖g‖2Hs(Rp).
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C.3 Proof of Proposition 2 of the main paper: estimation error
This part is based on [Györfi et al., 2002].
We define Yβn = TβnY , Y (i)

βn
= TβnY (i) with the truncated operator T introduced before. We are also

given U = (X, Y ), and we consider U (1) = (X(1), Y (1)), . . . , U (n) = (X(n), Y (n)) a sequence of iid copies of
U = (X, Y ), and (u(1), . . . , u(n)) the corresponding realizations of these random variables.

Proposition C.4 (Proposition 2 of the main paper). Let (βn) be a sequence of non negative numbers such
that limn→+∞ βn = +∞. For any n ∈ N, for η > 0,

E

[
sup

g∈TβnVn

∣∣∣∣∣ 1n
n∑
i=1

|g(X(i))− TβnY (i)|2 − E[|g(X)− TβnY |2]

∣∣∣∣∣
]
≤ bn, (13)

with bn = η + 64β2
n exp [−cn],

cn =
n

β4
n

{
η2

2048
− β4

n(Kn − 1) log(pn)

n
− 2β4

nKn

n
log

(
C ′β2

n

η

)}
;

and C ′ > 0 is a universal constant.

Proof:

We recall here the main steps and the specific extension we need in our setting.
Let

An = {a : Rp × R→ R : ∃g ∈ TβnVn s.t. a(x, y) = |g(x)− Tβn(y)|2}.
First, remark that for all a ∈ An, 0 ≤ a(x, y) ≤ 4β2

n.
Let η > 0. For any set G of functions defined on [0, 1]p × R, we denote by N1(η,G, (u(1), . . . , u(n))) an

L1([0, 1]p ×R) η-cover of G on (u(1), . . . , u(n)), corresponding to the minimum number of functions needed to
approximate any function of G, with respect to the L1([0, 1]p × R)-norm on observed points (u(1), . . . , u(n))
through the empirical measure νn, ‖f‖L1(νn) =

∑n
i=1 |f(u(i))|/n, up to η. From [Györfi et al., 2002, Theorem

9.1], we get

P

(
sup

g∈TβnVn

∣∣∣∣∣ 1n
n∑
i=1

|g(X(i))− Y (i)
βn
|2 − E[|g(X)− Yβn |2]

∣∣∣∣∣ > η

)

≤ 8N1(η/8,An, (U (1), . . . , U (n))) exp

(
− nη2

128(4β2
n)2

)
.

We now bound N1(η/8,An, (U (1), . . . , U (n))).
Using [Györfi et al., 2002, Problem 10.4] for the first inequality and [Györfi et al., 2002, Lemma 13.1,

Theorem 9.4] for the second inequality,

N1

(η
8
,An, (U (1), . . . , U (n))

)
≤ N1

(
η

32βn
, TβnVn, (X(1), . . . ,X(n))

)
≤ (pn)Kn−1

{(
C ′β2

n

η

)2
}Kn

,

where C ′ is a universal constant. It comes from several combinatorial considerations: there are Kn nodes in
the tree, the estimator constructed in each region is a constant, and the partition is constructed by choosing a
direction (among p) and a split value (among n) at each step (til Kn regions, so Kn − 1 steps). Then, we get

P

(
sup

g∈TβnVn

∣∣∣∣∣ 1n
n∑
i=1

|g(X(i))− Y (i)
βn
|2 − E[|g(X)− Yβn |2]

∣∣∣∣∣ > η

)

≤ 8(pn)Kn−1
(
C ′β2

n

η

)2Kn

exp

(
− nη2

2048β4
n

)
≤ 8 exp

[
− n

β4
n

{
η2

2048
− β4

n(Kn − 1) log(pn)

n
− 2β4

nKn

n
log

(
C ′β2

n

η

)}]
:= b(1)n .
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Observe that since g ∈ TβnVn, one has ‖g‖∞ ≤ βn. Similarly, |Yβn | ≤ βn. Hence

sup
g∈TβnVn

∣∣∣∣∣ 1n
n∑
i=1

|g(X(i))− Y (i)
βn
|2 − E[|g(X)− Yβn |2]

∣∣∣∣∣ ≤ 8β2
n,

so we get the following:

E

(
sup

g∈TβnVn

∣∣∣∣∣ 1n
n∑
i=1

|g(X(i))− Y (i)
βn
|2 − E[|g(X)− Yβn |2]

∣∣∣∣∣
)

≤E

(
sup

g∈TβnVn

∣∣∣∣∣ 1n
n∑
i=1

|g(X(i))− Y (i)
βn
|2 − E[|g(X)− Yβn |2]

∣∣∣∣∣1supg∈TβnVn

∣∣∣ 1n ∑n
i=1 |g(X(i))−Y (i)

βn
|2−E[|g(X)−Yβn |2]

∣∣∣≤η
)

+ E

(
sup

g∈TβnVn

∣∣∣∣∣ 1n
n∑
i=1

|g(X(i))− Y (i)
βn
|2 − E[|g(X)− Yβn |2]

∣∣∣∣∣1supg∈TβnVn

∣∣∣ 1n ∑n
i=1 |g(X(i))−Y (i)

βn
|2−E[|g(X)−Yβn |2]

∣∣∣≥η
)

≤η + 8β2
nb

(1)
n := bn.

It ends the proof.

C.4 Proof of Theorem 1 of the main paper
C.4.1 Consequence of Propositions C.3 and C.4

We first deduce from Proposition C.3 and C.4 the following result

Theorem C.1. With the assumptions and notations of Proposition and Proposition C.4

EDn
[
E[|T̃ (n)

s (X)− Y |2|Dn]1/2 − E[|E(Y |X)− Y |2]1/2
]

≤4an + 12bn + 12E[|Y − Yβn |2]

+
12

n

n∑
i=1

E[|Y (i) − Y (i)
βn
|2],

with Yβn = TβnY and Y (i)
βn

= TβnY (i).

Proof
Our proof is based on a modified version of [Györfi et al., 2002, Theorem 10.2b]. Recall that T̃ (n)

s = Tβn T̂
(n)
s

is the truncated estimator.

E

[∫
[0,1]d

|T̃ (n)
s (x)− E(Y |X = x)|2dP(x)

]
=
[
E[|T̃ (n)

s (X)− Y |2|Dn]1/2 − E[|E(Y |X)− Y |2]1/2
]2

+2E[|E(Y |X)− Y |2]1/2 ·
[
E[|T̃ (n)

s (X)− Y |2|Dn]1/2 − E[|E(Y |X)− Y |2]1/2
]
.

To get the conclusion of Theorem 1, we then have to bound

EDn
[
E[|T̃ (n)

s (X)− Y |2|Dn]1/2 − E[|E(Y |X)− Y |2]1/2
]
.

We use the following error decomposition used in the proof of [Györfi et al., 2002, Theorem 10.2b] that we
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recall

EDn
[
E[|T̃ (n)

s (X)− Y |2|Dn]1/2 − E[|E(Y |X)− Y |2]1/2
]

≤ 2E[ inf
g∈TβnVn

∫
[0,1]p

|g(x)− E(Y |X = x)|2dx] + 12E[|Y − Yβn |2] +
12

n

n∑
i=1

E[|Y (i) − Y (i)
βn
|2]

+12E

[
sup

g∈TβnVn

∣∣∣∣∣ 1n
n∑
i=1

|g(X(i))− Y (i)
βn
|2 − E[|g(X)− Yβn |2]

∣∣∣∣∣
]

+ 2E

[
inf

g∈TβnVn

∫
[0,1]p

|g(x)− E(Y |X = x)|2dx

]
.

Using Propositions C.3 and C.4 , we deduce that

E
[
E[|T̃ (n)

s (X)− Y |2|Dn]1/2 − E[|E(Y |X)− Y |2]1/2
]
≤ 4an + 12bn + 12E[|Y − Yβn |2] +

12

n

n∑
i=1

E[|Y (i) − Y (i)
βn
|2].

C.4.2 Consistency of the truncated estimator

Theorem C.2. Set M > 0 and βn = ‖E(Y |X)‖∞ + σ̃
√

2(log n)2. Assume that a.s. E(Y |X) ∈ Hs([0, 1]p)
and that (Kn) is a non decreasing sequence such that

Kn →∞ and
Kn(log n)9

n
→ 0. (14)

and that
max

k=1,··· ,Kn

[
diam(R(n)

k ∩ [−M,M ]p)
]
−−−−−→
n→+∞

0.

Then

lim
n→+∞

E[T̃ (n)
s (X)− E(Y |X)]2 = 0.

Proof:
Let us first fix some non increasing sequence (ηn) converging to 0. As we fixed βn, we can choose λn such
that the following holds:

βn >
λ
p/2
n ‖E(Y |X)‖L2([0,1]p)

inf |ω|≤λn |F [φσ](ω)|
.

Then, from Propositions C.3 and C.4 (Proposition 1 and Proposition 2 in the main paper), we deduce that

E

[∫
[0,1]p

|T̃ (n)
s (x)− E(Y |X = x)|2dP(x)

]

≤ (4an + 12bn + 12E[|Y − Yβn |2] +
12

n

n∑
i=1

E[|Y (i) − Y (i)
βn
|2])2

+2E[|E(Y |X)− Y |2]1/2 · (4an + 12bn(βn) + 12E[|Y − Yβn |2] +
12

n

n∑
i=1

E[|Y (i) − Y (i)
βn
|2])

where

an =C‖E(Y |X)‖2Hs([0,1]p)
(

1

(1 + |λn|2)s/2
+ βn

(
E
[

max
k∈{1,...,Kn}

diam(R(n)
k ∩ [−M,M ]p)

]
+M−r

))2

,

bn =ηn + 8β2
n exp

[
− n

β4
n

{
η2n

2048
+
β4
n(Kn − 1) log(pn)

n
+

2Knβ
4
n

n
log

(
C ′β2

n

ηn

)}]
.
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One assumes that ηn = 1/
√

log n. The definition of βn and Condition (14) both imply that

βn →∞ and
Knβ

4
n log(βn) log n

n
→ 0.

We then deduce that bn → 0. Letting firstM tend to infinity and thereafter choosing n so that maxk∈{1,...,Kn} diam(R(n)
k ∩

[−M,M ]p) is sufficiently small implies also that an → 0 as n→∞. Then,

lim
n→+∞

E[T̃ (n)
s (X)− E(Y |X)]2 = 0.

C.4.3 Extension to the untruncated estimator

Now we consider the untruncated estimator T̂ (n)
s . From arguments similar to [Scornet et al., 2015] we are

able to extend the consistency to the untruncated estimator:

E[T̂ (n)
s (X)− E(Y |X)]2 ≤ E[T̂ (n)

s (X)− T̃ (n)
s (X)]2 + E[T̃ (n)

s (X)− E(Y |X)]2.

We focus on the difference between truncated and untruncated estimors. As βn = ‖E(Y |X)‖∞ + σ̃
√

2(log n)2,

E[T̂ (n)
s (X)− T̃ (n)

s (X)]2 ≤ E
(

[T̂ (n)
s (X)− T̃ (n)

s (X)]21
T̃

(n)
s (X)≥βn

)
≤ E

([
2‖E(Y |X)‖2∞ + 2 max

i
|εi|2

]
1maxi εi≥σ̃

√
2(logn)2

)
because |T̃ (n)

s (X)| ≤ ‖E(Y |X)‖∞ + σ̃
√

2(log n)2. Then, following [Scornet et al., 2015] again, we get

E[T̂ (n)
s (X)− T̃ (n)

s (X)]2 ≤ 2E(‖E(Y |X)‖2∞)n1−logn

2
√
π(log n)2

+ 2

(
3nσ̃4 n1−logn

2
√
π(log n)2

)1/2

.

Then,

lim
n→+∞

E[T̂ (n)
s (X)− T̃ (n)

s (X)]2 = 0,

which concludes the proof of Theorem 1 of the main paper.
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