
LoCo: Local Contrastive Representation Learning

Yuwen Xiong
Uber ATG

University of Toronto
yuwen@cs.toronto.edu

Mengye Ren
Uber ATG

University of Toronto
mren@cs.toronto.edu

Raquel Urtasun
Uber ATG

University of Toronto
urtasun@cs.toronto.edu

Abstract

Deep neural nets typically perform end-to-end backpropagation to learn the
weights, a procedure that creates synchronization constraints in the weight update
step across layers and is not biologically plausible. Recent advances in unsuper-
vised contrastive representation learning invite the question of whether a learning
algorithm can also be made local, that is, the updates of lower layers do not directly
depend on the computation of upper layers. While Greedy InfoMax [39] separately
learns each block with a local objective, we found that it consistently hurts readout
accuracy in state-of-the-art unsupervised contrastive learning algorithms, possibly
due to the greedy objective as well as gradient isolation. In this work, we discover
that by overlapping local blocks stacking on top of each other, we effectively
increase the decoder depth and allow upper blocks to implicitly send feedbacks to
lower blocks. This simple design closes the performance gap between local learning
and end-to-end contrastive learning algorithms for the first time. Aside from stan-
dard ImageNet experiments, we also show results on complex downstream tasks
such as object detection and instance segmentation directly using readout features.

1 Introduction

Most deep learning algorithms nowadays are trained using backpropagation in an end-to-end fashion:
training losses are computed at the top layer and weight updates are computed based on the gradient
that flows from the very top. Such an algorithm requires lower layers to “wait” for upper layers, a
synchronization constraint that seems very unnatural in truly parallel distributed processing. Indeed,
there are evidences that weight synapse updates in the human brain are achieved through local
learning, without waiting for neurons in other parts of the brain to finish their jobs [8, 6]. In addition
to biological plausibility aims, local learning algorithms can also significantly reduce memory
footprint during training, as they do not require saving the intermediate activations after each local
module finish its calculation. With these synchronization constraints removed, one can further enable
model parallelism in many deep network architectures [45] for faster parallel training and inference.

One main objection against local learning algorithms has always been the need for supervision from
the top layer. This belief has recently been challenged by the success of numerous self-supervised
contrastive learning algorithms [54, 22, 44, 11], some of which can achieve matching performance
compared to supervised counterparts, meanwhile using zero class labels during the representation
learning phase. Indeed, Löwe et al. [39] show that they can separately learn each block of layers
using local contrastive learning by putting gradient stoppers in between blocks. While the authors
show matching or even sometimes superior performance using local algorithms, we found that their
gradient isolation blocks still result in degradation in accuracy in state-of-the-art self-supervised
learning frameworks, such as SimCLR [11]. We hypothesize that, due to gradient isolation, lower
layers are unaware of the existence of upper layers, and thus failing to deliver the full capacity of a
deep network when evaluating on large scale datasets such as ImageNet [16].

Work done at Uber ATG

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



To bridge the gradient isolation blocks and allow upper layers to influence lower layers while
maintaining localism, we propose to group two blocks into one local unit and share the middle block
simultaneously by two units. As shown in the right part of Fig. 1. Thus, the middle blocks will receive
gradients from both the lower portion and the upper portion, acting like a gradient “bridge.” We found
that such a simple scheme significantly bridges the performance gap between Greedy InfoMax [39]
and the original end-to-end algorithm [11].

On ImageNet unsupervised representation learning benchmark, we evaluate our new local learning
algorithm, named LoCo, on both ResNet [25] and ShuffleNet [40] architectures and found the
conclusion to be the same. Aside from ImageNet object classification, we further validate the
generalizability of locally learned features on other downstream tasks such as object detection and
semantic segmentation, by only training the readout headers. On all benchmarks, our local learning
algorithm once again closely matches the more costly end-to-end trained models.

We first review related literature in local learning rules and unsupervised representation learning in
Section 2, and further elaborate the background and the two main baselines SimCLR [11] and Greedy
InfoMax [39] in Section 3.2. Section 4 describes our LoCo algorithm in detail. Finally, in Section 5,
we present ImageNet-1K [16] results, followed by instance segmentation results on MS-COCO [37]
and Cityscapes [15].

2 Related Work

Neural network local learning rules: Early neural networks literature, inspired by biological
neural networks, makes use of local associative learning rules, where the change in synapse weights
only depends on the pre- and post-activations. One classic example is the Hebbian rule [27], which
strengthens the connection whenever two neurons fire together. As this can result in numerical
instability, various modifications were also proposed [49, 7]. These classic learning rules can be
empirically observed through long-term potentiation (LTP) and long term depression (LTD) events
during spike-timing-dependent plasticity (STDP) [1, 8], and various computational learning models
have also been proposed [6]. Local learning rules are also seen in learning algorithms such as restricted
Boltzmann machines (RBM) [53, 28, 29], greedy layer-wise training [5, 3] and TargetProp [4]. More
recently, it is also shown to be possible to use a network to predict the weight changes of another
network [32, 41, 57], as well as to learn the meta-parameters of a plasticity rule [43, 42]. Direct
feedback alignment [46] on the other hand proposed to directly learn the weights from the loss to each
layer by using a random backward layer. Despite numerous attempts at bringing biological plausibility
to deep neural networks, the performances of these learning algorithms are still far behind state-of-
the-art networks that are trained via end-to-end backpropagation on large scale datasets. A major
difference from prior literature is that, both GIM [39] and our LoCo use an entire downsampling stage
as a unit of local computation, instead of a single convolutional layer. In fact, different downsampling
stages have been found to have rough correspondence with the primate visual cortex [51, 60], and
therefore they can probably be viewed as better modeling tools for local learning. Nevertheless, we
do not claim to have solved the local learning problem on a more granular level.

Unsupervised & self-supervised representation learning: Since the success of AlexNet [35],
tremendous progress has been made in terms of learning representations without class label su-
pervision. One of such examples is self-supervised training objectives [20], such as predicting
context [17, 47], predicting rotation [18], colorization [59] and counting [48]. Representations
learned from these tasks can be further decoded into class labels by just training a linear layer.
Aside from predicting parts of input data, clustering objectives are also considered [61, 9]. Un-
supervised contrastive learning has recently emerged as a promising direction for representation
learning [55, 54, 22, 44, 11], achieving state-of-the-art performance on ImageNet, closing the gap
between supervised training and unsupervised training with wider networks [11]. Building on top
of the InfoMax contrastive learning rule [55], Greedy InfoMax (GIM) [39] proposed to learn each
local stage with gradient blocks in the middle, effectively removing the backward dependency. This
is similar to block-wise greedy training [3] but in an unsupervised fashion.

Memory saving and model parallel computation: By removing the data dependency in the
backward pass, our method can perform model parallel learning, and activations do not need to
be stored all the time to wait from the top layer. GPU memory can be saved by recomputing the

2



activations at the cost of longer training time [12, 21, 19], whereas local learning algorithms do
not have such trade-off. Most parallel trainings of deep neural networks are achieved by using
data parallel training, with each GPU taking a portion of the input examples and then the gradients
are averaged. Although in the past model parallelism has also been used to vertically split the
network [35, 34], it soon went out of favor since the forward pass needs to be synchronized. Data
parallel training, on the other hand, can reach generalization bottleneck with an extremely large batch
size [52]. Recently, [31, 45] proposed to make a pipeline design among blocks of neural networks, to
allow more forward passes while waiting for the top layers to send gradients back. However, since
they use end-to-end backpropagation, they need to save previous activations in a data buffer to avoid
numerical errors when computing the gradients. By contrast, our local learning algorithm is a natural
fit for model parallelism, without the need for extra activation storage and wait time.

3 Background: Unsupervised Contrastive Learning

In this section, we introduce relevant background on unsupervised contrastive learning using the
InfoNCE loss [55], as well as Greed InfoMax [39], a local learning algorithm that aims to learn each
neural network stage with a greedy objective.

3.1 Unsupervised Contrastive Learning & SimCLR

Contrastive learning [55] learns representations from data organized in similar or dissimilar pairs.
During learning, an encoder is used to learn meaningful representations and a decoder is used to
distinguish the positives from the negatives through the InfoNCE loss function [55],

Lq,k+,{k−} = − log
exp(q·k+/τ)

exp(q·k+/τ) +
∑
k−

exp(q·k−/τ)
. (1)

As shown above, the InfoNCE loss is essentially cross-entropy loss for classification with a tempera-
ture scale factor τ , where q and {k} are normalized representation vectors from the encoder. The
positive pair (q, k+) needs to be classified among all (q, k) pairs. Note that since the positive samples
are defined as augmented version of the same example, this learning objective does not need any class
label information. After learning is finished, the decoder part will be discarded and the encoder’s
outputs will be served as learned representations.

Recently, Chen et al. proposed SimCLR [11], a state-of-the-art framework for contrastive learning of
visual representations. It proposes many useful techniques for closing the gap between unsupervised
and supervised representation learning. First, the learning benefits from a larger batch size (~2k to
8k) and stronger data augmentation. Second, it uses a non-linear MLP projection head instead of
a linear layer as the decoder, making the representation more general as it is further away from the
contrastive loss function. With 4× the channel size, it is able to match the performance of a fully
supervised ResNet-50. In this paper, we use the SimCLR algorithm as our end-to-end baseline as
it is the current state-of-the-art. We believe that our modifications can transfer to other contrastive
learning algorithms as well.

3.2 Greedy InfoMax

As unsupervised learning has achieved tremendous progress, it is natural to ask whether we can
achieve the same from a local learning algorithm. Greedy InfoMax (GIM) [39] proposed to learn
representation locally in each stage of the network, shown in the middle part of Fig. 1. It divides
the encoder into several stacked modules, each with a contrastive loss at the end. The input is
forward-propagated in the usual way, but the gradients do not propagate backward between modules.
Instead, each module is trained greedily using a local contrastive loss. This work was proposed prior
to SimCLR and achieved comparable results to CPC [55], an earlier work, on a small scale dataset
STL-10 [14]. In this paper, we used SimCLR as our main baseline, since it has superior performance
on ImageNet, and we apply the changes proposed in GIM on top of SimCLR as our local learning
baseline. In our experiments, we find that simply applying GIM on SimCLR results in a significant loss
in performance and in the next section we will explain our techniques to bridge the performance gap.

3



res2

res3

End-to-End Greedy InfoMax

res4

res5

L

res2

res3

res4

res5

L

L

L

L

L

Ours

L

res2

res3

res4

res5

res3

res4L
Forward pass

Backward pass

LContrastive loss

Legend

Weight sharing

Figure 1: Comparison between End-to-End, Greedy InfoMax (GIM) and LoCo

4 LoCo: Local Contrastive Representation Learning

In this section, we will introduce our approach to close the gap between local contrastive learning
and state-of-the-art end-to-end learning.

In the left part of Fig. 1, we show a regular end-to-end network using backpropagation, where each
rectangle denotes a downsample stage. In ResNet-50, they are conv1+res2, res3, res4, res5. In the
middle we show GIM [39], where an InfoNCE loss is added at the end of each local stage, and
gradients do not flow back from upper stages to lower stages. Our experimental results will show
that such practice results in much worse performance on large-scale datasets such as ImageNet. We
hypothesize that it may be due to a lack of feedback from upper layers and a lack of depth in terms of
the decoders of lower layers, as they are trying to greedily solve the classification problem. Towards
fixing these two potential problems, on the right hand side of Fig. 1 we show our design: we group
two stages into a unit, and each middle stage is simultaneously shared by two units. Next, we will go
into details explaining our reasonings behind these design choices.

4.1 Bridging the Gap between Gradient Isolation Blocks

First, in GIM, the feedback from high-level features is absent. When the difficulty of the contrastive
learning task increases (e.g., learning on a large-scale dataset such as ImageNet), the quality of
intermediate representations from lower layers will largely affect the final performance of upper
layers. However, such demand cannot be realized because lower layers are unaware of what kind of
representations are required from above.

To overcome this issue, we hypothesize that it is essential to build a “bridge” between a lower stage
and its upper stage so that it can receive feedback that would otherwise be lost. As shown in Fig. 1,
instead of cutting the encoder into several non-overlapping parts, we can overlap the adjacent local
stages. Each stage now essentially performs a “look-ahead” when performing local gradient descent.
By chaining these overlapped blocks together, it is now possible to send feedback from the very top.

It is worth noting that, our method does not change the forward pass, even though res3 and res4
appear twice in Fig. 1, they receive the same inputs (from res2 and res3, respectively). Therefore the
forward pass only needs to be done once in these stages, and only the backward pass is doubled.

4.2 Deeper Decoder

Second, we hypothesize that the receptive field of early stages in the encoder might be too small to
effectively solve the contrastive learning problem. As the same InfoNCE function is applied to all
local learning blocks (both early and late stages), it is difficult for the decoder to use intermediate
representation from the early stages to successful classify the positive sample, because of the limitation
of their receptive fields. For example, in the first stage, we need to perform a global average pooling
on the entire feature map with a spatial dimension of 56× 56 before we send it to the decoder for
classification.

In Section 5, we empirically verify our hypothesis by showing that adding convolutional layers into
the decoder to enlarge the receptive field is essential for local algorithms. However, this change
does not show any difference in the end-to-end version with a single loss, since the receptive field of
the final stage is already large enough. Importantly, by having an overlapped stage shared between
local units, we effectively make decoders deeper without introducing extra cost in the forward pass,
simultaneously solving both issues described in this section.

4



Method Architecture Acc. Local

Local Agg. [61] ResNet-50 60.2
MoCo [22] ResNet-50 60.6
PIRL [44] ResNet-50 63.6
CPC v2 [55] ResNet-50 63.8
SimCLR* [11] ResNet-50 69.3

SimCLR [11] ResNet-50 69.8
GIM [39] ResNet-50 64.7 X
LoCo (Ours) ResNet-50 69.5 X

SimCLR [11] ShuffleNet v2-50 69.1
GIM [39] ShuffleNet v2-50 63.5 X
LoCo (Ours) ShuffleNet v2-50 69.3 X

Table 1: ImageNet accuracies of lin-
ear classifiers trained on representations
learned with different unsupervised meth-
ods, SimCLR* is the result from the Sim-
CLR paper with 1000 training epochs.

Method Arch COCO Cityscapes
APbb AP APbb AP

Supervised R-50 33.9 31.3 33.2 27.1

Backbone weights with 100 Epochs

SimCLR R-50 32.2 29.9 33.2 28.6
GIM R-50 27.7 (-4.5) 25.7 (-4.2) 30.0 (-3.2) 24.6 (-4.0)
Ours R-50 32.6 (+0.4) 30.1 (+0.2) 33.2 (+0.0) 28.4 (-0.2)

SimCLR Sh-50 32.5 30.1 33.3 28.0
GIM Sh-50 27.3 (-5.2) 25.4 (-4.7) 29.1 (-4.2) 23.9 (-4.1)
Ours Sh-50 31.8 (-0.7) 29.4 (-0.7) 33.1 (-0.2) 27.7 (-0.3)

Backbone weights with 800 Epochs

SimCLR R-50 34.8 32.2 34.8 30.1
GIM R-50 29.3 (-5.5) 27.0 (-5.2) 30.7 (-4.1) 26.0 (-4.1)
Ours R-50 34.5 (-0.3) 32.0 (-0.2) 34.2 (-0.6) 29.5 (-0.6)

SimCLR Sh-50 33.4 30.9 33.9 28.7
GIM Sh-50 28.9 (-4.5) 26.9 (-4.0) 29.6 (-4.3) 23.9 (-4.8)
Ours Sh-50 33.6 (+0.2) 31.2 (+0.3) 33.0 (-0.9) 28.1 (-0.6)

Table 2: Mask R-CNN results on COCO and Cityscapes.
Backbone networks are frozen. “R-50” denotes ResNet-
50 and “Sh-50” denotes ShuffleNet v2-50.

5 Experiments

In this section, we conduct experiments to test the hypotheses we made in Section 4 and verify
our design choices. Following previous works [59, 55, 2, 33, 22], we first evaluate the quality
of the learned representation using ImageNet [16], followed by results on MS-COCO [37] and
Cityscapes [15]. We use SimCLR [11] and GIM [39] as our main baselines, and consider both
ResNet-50 [25] and ShuffleNet v2-50 [40] backbone architectures as the encoder network.

5.1 ImageNet-1K

Implementation details: Unless otherwise specified, we train with a batch size of 4096 using the
LARS optimizer [58]. We train models 800 epochs to show that LoCo can perform well on very long
training schedules and match state-of-the-art performance; we use a learning rate of 4.8 with a cosine
decay schedule without restart [38]; linear warm-up is used for the first 10 epochs. Standard data
augmentations such as random cropping, random color distortion, and random Gaussian blurring are
used. For local learning algorithms (i.e., GIM and LoCo), 2-layer MLPs with global average pooling
are used to project the intermediate features into a 128-dim latent space, unless otherwise specified in
ablation studies. Following [59, 55, 2, 33, 22], we evaluate the quality of the learned representation
by freezing the encoder and training a linear classifier on top of the trained encoders. SGD without
momentum is used as the optimizer for 100 training epochs with a learning rate of 30 and decayed by
a factor of 10 at epoch 30, 60 and 90, the same procedure done in [22].

Main results: As shown in Table 1, SimCLR achieves favorable results compared to other previous
contrastive learning methods. For instance, CPC [55], the contrastive learning algorithm which
Greedy InfoMax (GIM) was originally based on, performs much worse. By applying GIM on top of
SimCLR, we see a significant drop of 5% on the top 1 accuracy. Our method clearly outperforms
GIM by a large margin, and is even slightly better than the end-to-end SimCLR baseline, possibly
caused by the fact that better representations are obtained via multiple training losses applied at
different local decoders.

5.2 Performance on Downstream Tasks

In order to further verify the quality and generalizability of the learned representations, we use the
trained encoder from previous section as pre-trained models to perform downstream tasks, We use
Mask R-CNN [24] on Cityscapes [15] and COCO [37] to evaluate object detection and instance
segmentation performance. Unlike what has been done in MoCo [22], where the whole network is
finetuned on downstream task, here we freeze the pretrained backbone network, so that we better
distinguish the differences in quality of different unsupervised learning methods.

Implementation details: To mitigate the distribution gap between features from the supervised
pre-training model and contrastive learning model, and reuse the same hyperparameters that are
selected for the supervised pre-training model [22], we add SyncBN [50] after all newly added layers

5



Pretrain COCO-10K COCO-1K
Method APbb AP APbb AP

Random Init 23.5 22.0 2.5 2.5
Supervised 26.0 23.8 10.4 10.1

Pretrained weights with 100 Epochs

SimCLR 25.6 23.9 11.3 11.4
GIM 22.6 (-3.0) 20.8 (-3.1) 9.7 (-1.6) 9.6 (-1.8)
Ours 26.1 (+0.3) 24.2 (+0.5) 11.7 (+0.4) 11.8 (+0.4)

Pretrained weights with 800 Epochs

SimCLR 27.2 25.2 13.9 14.1
GIM 24.4 (-2.8) 22.4 (-2.8) 11.5 (-2.4) 11.7 (-2.4)
Ours 27.8 (+0.6) 25.6 (+0.4) 13.9 (+0.0) 13.8 (-0.3)

Table 3: Mask R-CNN results on 10K COCO images and 1K COCO images

in FPN and bbox/mask heads. The two-layer MLP box head is replaced with a 4conv-1fc box head to
better leverage SyncBN [56]. We conduct the downstream task experiments using mmdetection [10].
Following [22], we use the same hyperparameters as the ImageNet supervised counterpart for all
experiments, with 1× (∼12 epochs) schedule for COCO and 64 epochs for Cityscapes, respectively.
Besides SimCLR and GIM, we provide one more baseline using weights pretrained on ImageNet via
supervised learning provided by PyTorch1 for reference.

Results: From the Table 2 we can clearly see that the conclusion is consistent on downstream tasks.
Better accuracy on ImageNet linear evaluation also translates to better instance segmentation quality
on both COCO and Cityscapes. LoCo not only closes the gap with end-to-end baselines on object
classification in the training domain but also on downstream tasks in new domains.

Surprisingly, even though SimCLR and LoCo cannot exactly match “Supervised” on ImageNet, they
are 1 – 2 points AP better than “Supervised” on downstream tasks. This shows unsupervised rep-
resentation learning can learn more generalizable features that are more transferable to new domains.

5.3 Downstream Tasks with Limited Labeled Data

With the power of unsupervised representation learning, one can learn a deep model with much
less amount of labeled data on downstream tasks. Following [23], we randomly sample 10k and
1k COCO images for training, namely COCO-10K and COCO-1K. These are 10% and 1% of the
full COCO train2017 set. We report AP on the official val2017 set. Besides SimCLR and GIM, we
also provide two baselines for reference: “Supervised” as mentioned in previous subsection, and
“Random Init” does not use any pretrained weight but just uses random initialization for all layers
and trains from scratch.

Hyperparameters are kept the same as [23] with multi-scale training except for adjusted learning
rate and decay schedules. We train models for 60k iterations (96 epochs) on COCO-10K and 15k
iterations (240 epochs) on COCO-1K with a batch size of 16. All models use ResNet-50 as the
backbone and are finetuned with SyncBN [50], conv1 and res2 are frozen except “Random Init" entry.
We make 5 random splits for both COCO-10K/1K and run all entries on these 5 splits and take the
average. The results are very stable and the variance is very small (< 0.2).

Results: Experimental results are shown in Table 3. Random initialization is significantly worse
than other models that are pretrained on ImageNet, in agreement with the results reported by [23].
With weights pretrained for 100 epochs, both SimCLR and LoCo get sometimes better performance
compared to supervised pre-training, especially toward the regime of limited labels (i.e., COCO-
1K). This shows that the unsupervised features are more general as they do not aim to solve the
ImageNet classification problem. Again, GIM does not perform well and cannot match the randomly
initialized baseline. Since we do not finetune early stages, this suggests that GIM does not learn
generalizable features in its early stages. We conclude that our proposed LoCo algorithm is able to
learn generalizable features for downstream tasks, and is especially beneficial when limited labeled
data are available.

Similar to the previous subsection, we run pretraining longer until 800 epochs, and observe noticeable
improvements on both tasks and datasets. This results seem different from the one reported in [13]
that longer iterations help improve the ImageNet accuracy but do not improve downstream VOC

1https://download.pytorch.org/models/resnet50-19c8e357.pth

6

https://download.pytorch.org/models/resnet50-19c8e357.pth


Extra Layers
before MLP Decoder Local Sharing Acc.

None 65.7
None X 60.9

1 conv block 65.6
1 conv block (w/o ds) X 63.6
1 conv block X 65.1

2 conv blocks X 65.8
1 stage X 65.8
full network X 65.8

2-layer MLP 67.1
2-layer MLP X 62.3

Ours X X 66.2
Ours + 2-layer MLP X X 67.5

Table 4: ImageNet accuracies of models with dif-
ferent decoder architecture. All entries are trained
with 100 epochs.

Sharing description Acc.

No sharing 65.1
Upper layer grad only 65.3

L2 penalty (1e-4) 65.5
L2 penalty (1e-3) 66.0
L2 penalty (1e-2) 65.9

Sharing 1 block 64.8
Sharing 2 blocks 65.3
Sharing 1 stage 66.2

Table 5: ImageNet accuracies of models with
different sharing strategies. All entries are
trained with 100 epochs.

detection performance. Using 800 epoch pretraining, both LoCo and SimCLR can outperform the
supervised baseline by 2 points AP on COCO-10K and 4 points AP on COCO-1K.

5.4 Influence of the Decoder Depth

In this section, we study the influence of the decoder depth. First, we investigate the effectiveness
of the convolutional layers we add in the decoder. The results are shown in Table 4. As we can
see from the “1 conv block without local and sharing property” entry in the table, adding one more
residual convolution block at the end of the encoder, i.e. the beginning of the decoder, in the original
SimCLR does not help. One possible reason is that the receptive field is large enough at the very end
of the encoder. However, adding one convolution block with downsampling before the global average
pooling operation in the decoder will significantly improve the performance of local contrastive
learning. We argue that such a convolution block will enlarge the receptive field as well as the
capacity of the local decoders and lead to better representation learning even with gradient isolation.
If the added convolution block has no downsampling factor (denoted as “w/o ds”), the improvement
is not be as significant.

We also try adding more convolution layers in the decoder, including adding two convolution blocks
(denoted as “2 conv blocks”), adding one stage to make the decoder as deep as the next residual stage
of the encoder (denoted as “one stage”), as well as adding layers to make each decoder as deep as the
full Res-50 encoder (denoted as “full network”). The results of these entries show that adding more
convolution layers helps, but the improvement will eventually diminish and these entries achieve the
same performance as SimCLR.

Lastly, we show that by adding two more layers in the MLP decoders, i.e. four layers in total, we can
observe the same amount of performance boost on all of methods, as shown in the 4th to 6th row of
Table 4. However, increasing MLP decoder depth cannot help us bridge the gap between local and
end-to-end contrastive learning.

To reduce the overhead we introduce in the decoder, we decide to add one residual convolution block
only and keep the MLP depth to 2, as was done the original SimCLR. It is also worth noting that
by sharing one stage of the encoder, our method can already closely match SimCLR without deeper
decoders, as shown in the third row of Table 4.

5.5 Influence of the Sharing Strategy

As we argued in Sec. 4.1 that local contrastive learning may suffer from gradient isolation, it is
important to verify this situation and know how to build a feedback mechanism properly. In Table 5,
we explore several sharing strategies to show their impact of the performance. All entries are equipped
with 1 residual convolution block + 2-layer MLP decoders.

7



We would like to study what kind of sharing can build implicit feedback. In LoCo the shared stage
between two local learning modules is updated by gradients associated with losses from both lower
and upper local learning modules. Can implicit feedback be achieved by another way? To answer
this question, we try to discard part of the gradients of a block shared in both local and upper local
learning modules. Only the gradients calculated from the loss associated with the upper module will
be kept to update the weights. This control is denoted as “Upper layer grad only” in Table 5 and
the result indicates that although the performance is slightly improved compared to not sharing any
encoder blocks, it is worse than taking gradients from both sides.

We also investigate soft sharing, i.e. weights are not directly shared in different local learning modules
but are instead softly tied using L2 penalty on the differences. For each layer in the shared stage, e.g.,
layers in res3, the weights are identical in different local learning modules upon initialization, and
they will diverge as the training progress goes on. We add an L2 penalty on the difference of the
weights in each pair of local learning modules, similar to L2 regularization on weights during neural
network training. We try three different coefficients from 1e-2 to 1e-4 to control the strength of soft
sharing. The results in Table 5 show that soft sharing also brings improvements but it is slightly
worse than hard sharing. Note that with this strategy the forward computation cannot be shared and
the computation cost is increased. Thus we believe that soft sharing is not an ideal way to achieve
good performance.

Finally, we test whether sharing can be done with fewer residual convolution blocks between local
learning modules rather than a whole stage, in other words, we vary the size of the local learning
modules to observe any differences. We try to make each module contain only one stage plus a few
residual blocks at the beginning of the next stage instead of two entire stages. Therefore, only the
blocks at the beginning of stages are shared between different modules. This can be seen as a smooth
transition between GIM and LoCo. We try only sharing the first block or first two blocks of each
stage, leading to “Sharing 1 block” and “Sharing 2 blocks” entries in Table 5. The results show that
sharing fewer blocks of each stage will not improve performance and sharing only 1 block will even
hurt.

5.6 Memory Saving

Although local learning saves GPU memory, we find that the original ResNet-50 architecture prevents
LoCo to further benefit from local learning, since ResNet-50 was designed with balanced computation
cost at each stage and memory footprint was not taken into consideration. In ResNet, when performing
downsampling operations at the beginning of each stage, the spatial dimension is reduced by 1/4
but the number of channels only doubles, therefore the memory usage of the lower stage will be
twice as much as the upper stage. Such design choice makes conv1 and res2 almost occupy 50% of
the network memory footprint. When using ResNet-50, the memory saving ratio of GIM is 1.81×
compared to the original, where the memory saving ratio is defined as the reciprocal of peak memory
usage between two models. LoCo can achieve 1.28× memory saving ratio since it needs to store one
extra stage.

We also show that by properly designing the network architecture, we can make training benefit more
from local learning. We change the 4-stage ResNet to a 6-stage variant with a more progressive
downsampling mechanism. In particular, each stage has 3 residual blocks, leading to a Progressive
ResNet-50 (PResNet-50). Table 6 compares memory footprint and computation of each stage for
PResNet-56 and ResNet-50 in detail. The number of base channels for each stage are 56, 96, 144,
256, 512, 1024, respectively. After conv1 and pool1, we gradually downsample the feature map
resolution from 56x56 to 36x36, 24x24, 16x16, 12x12, 8x8 at each stage with bilinear interpolation
instead of strided convolution [25]. Grouped convolution [35] with 2, 16, 128 groups is used in the
last three stages respectively to reduce the computation cost. The difference between PResNet-56
and ResNet-50 and block structures are illustrated in the supplementary material.

By simply making this modification without other new techniques [26, 30, 36], we can get a network
that matches the ResNet-50 performance with similar computation costs. More importantly, it has
balanced memory footprint at each stage. As shown in Table 7, SimCLR using PResNet-50 gets
66.8% accuracy, slightly better compared to the ResNet-50 encoder. Using PResNet-50, our method
performs on par with SimCLR while still achieving remarkable memory savings of 2.76 ×. By
contrast, GIM now has an even larger gap (14 points behind SimCLR) compared to before with
ResNet-50, possibly due to the receptive field issue we mentioned in Sec. 4.2.

8



Stage PResNet-50 ResNet-50
Mem.
(%)

FLOPS
(%)

Mem.
(%)

FLOPS
(%)

res2 15.46 13.50 43.64 19.39
res3 10.96 14.63 29.09 25.09
res4 19.48 14.77 21.82 35.80
res5 17.31 16.62 5.45 19.73
res6 19.48 20.45 - -
res7 17.31 20.04 - -

FLOPs 4.16G 4.14G

Table 6: Memory footprint and computation per-
centages for PResNet-50 and ResNet-50 on stage
level.

Method Acc. Memory
Saving Ratio

SimCLR 66.8 1×
GIM 52.6 4.56×
LoCo 66.6 2.76×

Table 7: ImageNet accuracies and memory
saving ratio of Progressive ResNet-50 with
balanced memory footprint at each stage. All
entries are trained with 100 epochs.

6 Conclusion

We have presented LoCo, a local learning algorithm for unsupervised contrastive learning. We show
that by introducing implicit gradient feedback between the gradient isolation blocks and properly
deepening the decoders, we can largely close the gap between local contrastive learning and state-
of-the-art end-to-end contrastive learning frameworks. Experiments on ImageNet and downstream
tasks show that LoCo can learn good visual representations for both object recognition and instance
segmentation just like end-to-end approaches can. Meanwhile, it can benefit from nice properties of
local learning, such as lower peak memory footprint and faster model parallel training.

Broader Impact
Our work aims to make deep unsupervised representation learning more biologically plausible by
removing the reliance on end-to-end backpropagation, a step towards a better understanding of the
learning in our brain. This can potentially lead to solutions towards mental and psychological illness.
Our algorithm also lowers the GPU memory requirements and can be deployed with model parallel
configurations. This can potentially allow deep learning training to run on cheaper and more energy
efficient hardware, which would make a positive impact to combat climate change. We acknowledge
unknown risks can be brought by the development of AI technology; however, the contribution of
this paper has no greater risk than any other generic deep learning paper that studies standard datasets
such as ImageNet.

Funding Disclosure

We do not have any third party funding source to disclose.

References
[1] L. F. Abbott and S. B. Nelson. Synaptic plasticity: taming the beast. Nature neuroscience,

3(11):1178–1183, 2000.

[2] P. Bachman, R. D. Hjelm, and W. Buchwalter. Learning representations by maximizing mutual
information across views. In Advances in Neural Information Processing Systems, NeurIPS,
2019.

[3] E. Belilovsky, M. Eickenberg, and E. Oyallon. Greedy layerwise learning can scale to imagenet.
arXiv preprint arXiv:1812.11446, 2018.

[4] Y. Bengio. How auto-encoders could provide credit assignment in deep networks via target
propagation. CoRR, abs/1407.7906, 2014.

[5] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise training of deep
networks. In B. Schölkopf, J. C. Platt, and T. Hofmann, editors, Advances in Neural Information
Processing Systems, NIPS, 2006.

9



[6] Y. Bengio, D. Lee, J. Bornschein, and Z. Lin. Towards biologically plausible deep learning.
CoRR, abs/1502.04156, 2015.

[7] E. L. Bienenstock, L. N. Cooper, and P. W. Munro. Theory for the development of neuron selec-
tivity: orientation specificity and binocular interaction in visual cortex. Journal of Neuroscience,
2(1):32–48, 1982.

[8] N. Caporale and Y. Dan. Spike timing–dependent plasticity: a hebbian learning rule. Annu. Rev.
Neurosci., 31:25–46, 2008.

[9] M. Caron, P. Bojanowski, A. Joulin, and M. Douze. Deep clustering for unsupervised learning
of visual features. In V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, editors, 15th
European Conference on Computer Vision, ECCV, 2018.

[10] K. Chen, J. Wang, J. Pang, Y. Cao, Y. Xiong, X. Li, S. Sun, W. Feng, Z. Liu, J. Xu, Z. Zhang,
D. Cheng, C. Zhu, T. Cheng, Q. Zhao, B. Li, X. Lu, R. Zhu, Y. Wu, J. Dai, J. Wang, J. Shi,
W. Ouyang, C. C. Loy, and D. Lin. MMDetection: Open mmlab detection toolbox and
benchmark. arXiv preprint arXiv:1906.07155, 2019.

[11] T. Chen, S. Kornblith, M. Norouzi, and G. E. Hinton. A simple framework for contrastive
learning of visual representations. CoRR, abs/2002.05709, 2020.

[12] T. Chen, B. Xu, C. Zhang, and C. Guestrin. Training deep nets with sublinear memory cost.
CoRR, abs/1604.06174, 2016.

[13] X. Chen, H. Fan, R. Girshick, and K. He. Improved baselines with momentum contrastive
learning. arXiv preprint arXiv:2003.04297, 2020.

[14] A. Coates, A. Ng, and H. Lee. An analysis of single-layer networks in unsupervised feature
learning. In 14th International Conference on Artificial Intelligence and Statistics, AISTATS,
2011.

[15] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth,
and B. Schiele. The cityscapes dataset for semantic urban scene understanding. In IEEE
Conference on Computer Vision and Pattern Recognition, CVPR, 2016.

[16] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical
image database. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR,
2009.

[17] C. Doersch, A. Gupta, and A. A. Efros. Unsupervised visual representation learning by context
prediction. In IEEE International Conference on Computer Vision, ICCV, 2015.

[18] S. Gidaris, P. Singh, and N. Komodakis. Unsupervised representation learning by predicting
image rotations. In 6th International Conference on Learning Representations, ICLR, 2018.

[19] A. N. Gomez, M. Ren, R. Urtasun, and R. B. Grosse. The reversible residual network: Back-
propagation without storing activations. In Advances in Neural Information Processing Systems,
NIPS, 2017.

[20] P. Goyal, D. Mahajan, A. Gupta, and I. Misra. Scaling and benchmarking self-supervised visual
representation learning. In 2019 IEEE/CVF International Conference on Computer Vision,
ICCV, 2019.

[21] A. Gruslys, R. Munos, I. Danihelka, M. Lanctot, and A. Graves. Memory-efficient back-
propagation through time. In Advances in Neural Information Processing Systems, NIPS,
2016.

[22] K. He, H. Fan, Y. Wu, S. Xie, and R. B. Girshick. Momentum contrast for unsupervised visual
representation learning. CoRR, abs/1911.05722, 2019.

[23] K. He, R. Girshick, and P. Dollár. Rethinking imagenet pre-training. In IEEE International
Conference on Computer Vision, ICCV, 2019.

10



[24] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick. Mask R-CNN. In IEEE International
Conference on Computer Vision, ICCV, 2017.

[25] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In IEEE
Conference on Computer Vision and Pattern Recognition, CVPR, 2016.

[26] T. He, Z. Zhang, H. Zhang, Z. Zhang, J. Xie, and M. Li. Bag of tricks for image classification
with convolutional neural networks. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR, 2019.

[27] D. O. Hebb. The organization of behavior: a neuropsychological theory. J. Wiley; Chapman &
Hall, 1949.

[28] G. E. Hinton. A practical guide to training restricted boltzmann machines. In Neural networks:
Tricks of the trade, pages 599–619. Springer, 2012.

[29] G. E. Hinton, S. Osindero, and Y. W. Teh. A fast learning algorithm for deep belief nets. Neural
Computation, 18(7):1527–1554, 2006.

[30] J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation networks. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR, 2018.

[31] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen, H. Lee, J. Ngiam, Q. V. Le, Y. Wu,
et al. Gpipe: Efficient training of giant neural networks using pipeline parallelism. In Advances
in Neural Information Processing Systems, NeurIPS, pages 103–112, 2019.

[32] M. Jaderberg, W. M. Czarnecki, S. Osindero, O. Vinyals, A. Graves, D. Silver, and
K. Kavukcuoglu. Decoupled neural interfaces using synthetic gradients. In 34th Interna-
tional Conference on Machine Learning, ICML, 2017.

[33] A. Kolesnikov, X. Zhai, and L. Beyer. Revisiting self-supervised visual representation learning.
In IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2019.

[34] A. Krizhevsky. One weird trick for parallelizing convolutional neural networks. CoRR,
abs/1404.5997, 2014.

[35] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in Neural Information Processing Systems, NIPS, 2012.

[36] X. Li, W. Wang, X. Hu, and J. Yang. Selective kernel networks. In IEEE Conference on
Computer Vision and Pattern Recognition, CVPR, 2019.

[37] T. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick.
Microsoft COCO: common objects in context. In D. J. Fleet, T. Pajdla, B. Schiele, and
T. Tuytelaars, editors, 13th European Conference on Computer Vision, ECCV, 2014.

[38] I. Loshchilov and F. Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016.

[39] S. Löwe, P. O’Connor, and B. S. Veeling. Putting an end to end-to-end: Gradient-isolated
learning of representations. In Advances in Neural Information Processing Systems, NeurIPS,
2019.

[40] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun. Shufflenet v2: Practical guidelines for efficient cnn
architecture design. In 15th European Conference on Computer Vision, ECCV, 2018.

[41] L. Metz, N. Maheswaranathan, B. Cheung, and J. Sohl-Dickstein. Meta-learning update
rules for unsupervised representation learning. In 7th International Conference on Learning
Representations, ICLR, 2019.

[42] T. Miconi, A. Rawal, J. Clune, and K. O. Stanley. Backpropamine: training self-modifying
neural networks with differentiable neuromodulated plasticity. In 7th International Conference
on Learning Representations, ICLR, 2019.

11



[43] T. Miconi, K. O. Stanley, and J. Clune. Differentiable plasticity: training plastic neural networks
with backpropagation. In J. G. Dy and A. Krause, editors, 35th International Conference on
Machine Learning, ICML, 2018.

[44] I. Misra and L. van der Maaten. Self-supervised learning of pretext-invariant representations.
CoRR, abs/1912.01991, 2019.

[45] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur, G. R. Ganger, P. B.
Gibbons, and M. Zaharia. Pipedream: Generalized pipeline parallelism for dnn training. In
27th ACM Symposium on Operating Systems Principles, SOSP, 2019.

[46] A. Nøkland. Direct feedback alignment provides learning in deep neural networks. In D. D.
Lee, M. Sugiyama, U. von Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural
Information Processing Systems 29: Annual Conference on Neural Information Processing
Systems, NeurIPS, 2016.

[47] M. Noroozi and P. Favaro. Unsupervised learning of visual representations by solving jigsaw
puzzles. In B. Leibe, J. Matas, N. Sebe, and M. Welling, editors, 14th European Conference on
Computer Vision - ECCV, 2016.

[48] M. Noroozi, H. Pirsiavash, and P. Favaro. Representation learning by learning to count. In
IEEE International Conference on Computer Vision, ICCV, 2017.

[49] E. Oja. Simplified neuron model as a principal component analyzer. Journal of mathematical
biology, 15(3):267–273, 1982.

[50] C. Peng, T. Xiao, Z. Li, Y. Jiang, X. Zhang, K. Jia, G. Yu, and J. Sun. Megdet: A large
mini-batch object detector. In IEEE Conference on Computer Vision and Pattern Recognition,
CVPR, 2018.

[51] M. Schrimpf, J. Kubilius, H. Hong, N. J. Majaj, R. Rajalingham, E. B. Issa, K. Kar, P. Bashivan,
J. Prescott-Roy, K. Schmidt, D. L. K. Yamins, and J. J. DiCarlo. Brain-score: Which artificial
neural network for object recognition is most brain-like? bioRxiv, 10.1101/407007, 2018.

[52] C. J. Shallue, J. Lee, J. Antognini, J. Sohl-Dickstein, R. Frostig, and G. E. Dahl. Measuring the
effects of data parallelismon neural network training. Journal of Machine Learning Research,
20, 2019.

[53] P. Smolensky. Information processing in dynamical systems: Foundations of harmony theory.
Technical report, Colorado Univ at Boulder Dept of Computer Science, 1986.

[54] Y. Tian, D. Krishnan, and P. Isola. Contrastive multiview coding. CoRR, abs/1906.05849, 2019.

[55] A. van den Oord, Y. Li, and O. Vinyals. Representation learning with contrastive predictive
coding. CoRR, abs/1807.03748, 2018.

[56] Y. Wu and K. He. Group normalization. In 15th European Conference on Computer Vision,
ECCV, 2018.

[57] Y. Xiong, M. Ren, and R. Urtasun. Learning to remember from a multi-task teacher. CoRR,
abs/1910.04650, 2019.

[58] Y. You, I. Gitman, and B. Ginsburg. Large batch training of convolutional networks. arXiv
preprint arXiv:1708.03888, 2017.

[59] R. Zhang, P. Isola, and A. A. Efros. Colorful image colorization. In B. Leibe, J. Matas, N. Sebe,
and M. Welling, editors, 14th European Conference on Computer Vision, ECCV, 2016.

[60] C. Zhuang, S. Yan, A. Nayebi, M. Schrimpf, M. C. Frank, J. J. DiCarlo, and D. L. K.
Yamins. Unsupervised neural network models of the ventral visual stream. bioRxiv,
10.1101/2020.06.16.155556, 2020.

[61] C. Zhuang, A. L. Zhai, and D. Yamins. Local aggregation for unsupervised learning of visual
embeddings. In IEEE/CVF International Conference on Computer Vision, ICCV, 2019.

12


	Introduction
	Related Work
	Background: Unsupervised Contrastive Learning
	Unsupervised Contrastive Learning & SimCLR
	Greedy InfoMax

	LoCo: Local Contrastive Representation Learning
	Bridging the Gap between Gradient Isolation Blocks
	Deeper Decoder

	Experiments
	ImageNet-1K
	Performance on Downstream Tasks
	Downstream Tasks with Limited Labeled Data
	Influence of the Decoder Depth
	Influence of the Sharing Strategy
	Memory Saving

	Conclusion

