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A Useful Background

A.1 d-Separation

In Section 2 we use separation statements of the form (X??Y | Z) to validate the application of the
rules of �-calculus. Those statements can be read of from the graph using the d-Separation criterion
[14].
Definition 4 (d-Separation). In a graph G a path p is blocked by a set of nodes Z if and only if

1. p contains a chain of nodes A! B ! C or a fork A B ! C such that the middle node
B is in Z (i.e., B is conditioned on), or

2. p contains a collider A ! B  C such that the collision node B is not in Z, and no
descendant of B is in Z.

If Z blocks every path between two nodes X and Y , then X and Y are d-separated, conditional on Z,
that is, (X ?? Y | Z).

A.2 Calculus for Soft Interventions

For the derivation in Sec. 2 we used �-calculus [9], a set of rules that allow us to reason about
probability expressions with soft interventions. We state it next for reference:
Theorem 4. [Inference Rules – �-calculus] Let G be a causal diagram compatible with a structural

causal model M , with endogenous variables V. For any disjoint subsets X,Y,Z ✓ V, two disjoint

subsets T,W ✓ V \ (Z [ Y) (i.e., possibly including X), the following rules are valid for any

intervention strategies �X,�Z, and �
0
Z:

Rule 1 (Insertion/Deletion of observations):

P (y | w, t;�X) = P (y | w;�X) if (Y ??T | W) in G�X . (A.13)

Rule 2 (Change of regimes under observation):

P (y | z,w;�x,�z) = P (y | z,w;�x,�
0
z) if (Y ?? Z | W) in G�X�ZZ and G�X�0

ZZ. (A.14)

Rule 3 (Change of regimes without observation):

P (y | w;�x,�z) = P (y | w;�x,�
0
z) if (Y ?? Z | W) in G�X�ZZ(W) and G�X�0

ZZ(W), (A.15)

where Z(W) ✓ Z is the set of elements in Z that are not ancestors of W in G�X .

B Proofs and further discussion for Section 2

B.1 Detailed derivation of the example in Fig. 2

Here we provide a detail derivation of the causal effect P ⇤(y;�X) for the example presented in
Section 2. All graphs we refer to are shown in Fig. 4.

First by marginalization:

P
⇤(y;�X) =

X
r,x,z

P
⇤(y|z, x, r;�X)P ⇤(z|x, r;�X)P ⇤(x|r;�X)P ⇤(r;�X). (B.16)
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We will transport factor by factor starting from the last.

By rule 3 and the separation (R??X) in G�⇤
XX and GX , we have

P
⇤(r;�X)=P

⇤(r), (B.17)

which is estimable from the input distribution P
⇤(V).

The factor P ⇤(x|r;�X) is determined by �
⇤
X (and the policy’s specification).

For the second factor,

P
⇤(z|x, r;�X) = P

⇤(z|x, r;�X ,�W ) (B.18)

by rule 3 and (Z ??W | X,R) in G�X�WW and G�XW . Then, by rule 2 and (Z ?? X | R) in
G�X�WX and G�WX , we obtain

P
⇤(z|x, r;�X) = P

⇤(z|x, r;�W ). (B.19)

From the graph G�2
�W

, (Z ?? Sr | R,X) hence

P
⇤(z|x, r;�W ) = P

2(z|x, r;�W ) (B.20)

estimable from the given P
2(V;�W = �

2
W ).

For the first factor is equal to

P
⇤(y|z, x, r;�X ,�Z=z) (B.21)

by rule 2 and (Y ?? Z | X,R) in G�X�Z=zZ and G�XZ . We remove the observed X by rule 1 and
(Y ??X | Z,R) in G�X�Z=z .

P
⇤(y|z, r;�X ,�Z=z). (B.22)

Then, by rule 3 and (Y ??X | Z,R) in G�X�Z=zX and G�Z=zX this is equal to

P
⇤(y|z, r;�Z=z). (B.23)

At this point we can transport this factor from ⇡
1 due to (Y ?? Sw | Z,R) in G�1

�Z=z:

P
1(y|z, r;�Z). (B.24)

We sum over X
X

x0

P
1(y|z, x0

, r;�Z=z)P 1(x0 | z, r;�Z=z) (B.25)

and use rule 2 with (Y ?? Z | X,R) in G�Z=zZ and G�ZZ to exchange �Z=z with �Z=�
1
Z

X

x0

P
1(y|z, x0

, r;�Z)P
1(x0 | z, r;�Z=z). (B.26)

Due to (X ?? Z) in G�Z=z the observation of Z can be removed in the second factor in the sum:
X

x0

P
1(y|z, x0

, r;�Z)P
1(x0 | r;�Z=z). (B.27)

Note that (X ?? Z) in G�Z=zZ and G�ZZ , therefore by rule 3 we get
X

x0

P
1(y|z, x0

, r;�Z)P
1(x0 | r;�Z), (B.28)

resulting in a sum estimable from P
1(V;�Z).

Putting all together, we have:

P
⇤(y;�X)=

X

r,x,z

⇣X
x0
P

1(y|z, x0
, r;�Z)P

1(x0|r;�Z)
⌘

| {z }
from �1

Z in ⇡1

P
2(z|x, r;�W )| {z }
from �2

W in ⇡2

P
⇤(x|r;�⇤

X)| {z }
def. �⇤

X

P
⇤(r)| {z }

from ⇡⇤

.

(B.29)
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Figure 4: Graphs used in the derivation of the example in Sec. 2. Edges added by intervention are
shown in green, those removed by intervention in grey, and those cut due to the application of the
rule are shown in faded red.
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B.2 Proof of the Reduction

Theorem 1. Let Y,X ✓ V be any two sets of variables, and let �
⇤
X be an atomic, conditional or

stochastic intervention. Then, the effect of �
⇤
X on Y can be written as

P
⇤(y;�X=�

⇤
X) =

X
d\y

P
⇤(d \ x;�X=x)

Y
X2X\D

P
⇤(x | pax;�X=�

⇤
X). (5)

Moreover, this effect is transportable from hG�
,Zi if and only if P

⇤(d \ x;�X=x) is transportable

from hG�
,Zi, where D = An(Y)G�X

.

Proof. We can start by summing over the D \Y:

P
⇤(y;�X=�

⇤
X) =

X

d\y

P
⇤(d;�X=�

⇤
X). (B.30)

Let V1 < V2 < . . . be a topological order of the variables in D in the graph G�X and let V<i be the
set of variables in D that comes before Vi in the order. Then we can write

P
⇤(y;�X=�

⇤
X) =

X

d\y

Y

Vi2D

P
⇤(vi | v<i;�X=�

⇤
X). (B.31)

For every Vi /2 X let X<i = X \V<i and X>i = X \V<i. First we will use rule 3 of �-calculus
to exchange �⇤

X with an atomic intervention for the variables in X that go after Vi. This is allowed by
(Vi ??X>i | V<i) in both G�XX>i and G�X<i (�X>i=x>i)X>i .

P
⇤(vi | v<i;�X=�

⇤
X) = P

⇤(vi | v<i;�X<i=�
⇤
X<i ,�X>i=x>i), (B.32)

In other words, Vi is not affected by interventions on variables that come before as long as we don’t
condition on their descendants.

Next, we will do the same for variables in X>i. The difference is that those are observed because
they belong to V<i. The statement (Vi ?? X<i | V<i \ X) holds in G(�X>i=x>i)�X<iX<i and
G(�X>i=x>i)(�X<i=x<i)X<i . To see why consider any X 2 X<i that may be connected to Vi by an
active path in those graphs. The path must have arrows into X and the arrow is not bidirected because
under intervention �X no such edge appears in the graph. Then, the arrow must be direct and the
observable variable at the tail is in V<i, so the path is blocked. By those separations and rule 2 it
follows:

P
⇤(vi | v<i;�X=�

⇤
X) = P

⇤(vi | v<i;�X<i=x<i
,�X>i=x>i) (B.33)

= P
⇤(vi | v<i;�X=x). (B.34)

At this point all interventions are atomic. Using the definition of conditional probability:

P
⇤(vi | v<i;�X=x) =

P
⇤(vi | v<i \ x<i;�X=x)P ⇤(x<i | vi,v<i \ x<i;�X=x)

P ⇤(x<i | v<i \ x<i;�X=x).
(B.35)

The second factor in the numerator and the denominator are equal to 1 because under �X=x the
intervened variables always take the specified values, in summary

P
⇤(vi | v<i;�X=�

⇤
X) = P

⇤(vi | v<i \ x<i;�X=x). (B.36)

Then we can write the original effect as

P
⇤(y;�X=�

⇤
X) =

X

d\y

Y

Vi2D\X

P
⇤(vi | v<i \ x<i;�X=x)

Y

Vi2D\X

P
⇤(vi | v<i;�X=�

⇤
X).

(B.37)

The first product can be simply written as P ⇤(d \ x;�X=x) by virtue of the product/chain rule of
probabilities. In the second product, for every Vi 2 X we have (Vi ??V<i \Pai | Pai). Finally we
get

P
⇤(y;�X=�

⇤
X) =

X

d\y

P
⇤(d \ x;�X=x)

Y

X2D\X

P
⇤(x | pax;�X=�

⇤
X), (B.38)
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which corresponds to Eq. (5).

Since every variable in X has its own C-component in G�X , Lemma 1 give us
Q

⇤[D;�⇤
X] = Q

⇤[D \X;�⇤
X]Q⇤[X \D;�⇤

X]. (B.39)
Then by Lemma 2,

Q
⇤[D \X;�⇤

X] = Q
⇤[D \X] = Q

⇤[D \X;�X=x]. (B.40)
If Q⇤[D \X;�⇤

X] is not transportable Q⇤[D;�X=x] is also not transportable, because whenever the
latter is transportable the former can be computed via Eq.(B.39). Moreover, Q⇤[D \X;�X=x] is
the same as P ⇤(d \ x;�X=x).

Then, to show the necessity P
⇤(d \ x;�X=x) consider Thm. 2 with W = ;. In this case this case

A = An(Y)G�X
= D, then we have that the effect of P ⇤(y;�X=�

⇤
X) is transportable if and only if

Q
⇤[D;�X] is transportable.

B.3 Subtleties of using the reduction with do-calculus or transportability algorithms for

atomic interventions

As discussed towards the end of Sec. 2 known algorithms for transportability are not well-suited to
produce estimands as functions of soft-experimental interventions.

Consider GTR in [23] which is the closest algorithm to ours. Clearly, it cannot be used directly
because there is mismatch in the format of the inputs due to the non-atomic nature of the interventions
in the query and available distributions. Queries such as P ⇤(y,x;�X) are usually trivial in the case
of atomic interventions where they are either 0 or 1 depending on whether x is consistent with the
constants enforced by the atomic intervention, yet they could have meaning in a soft-intervention
setting.

For the query side the possible issues can be solved via the reduction that we have provided in Thm. 1
which offers a mapping between a marginal soft-intervention query to a marginal atomic-interventions
query. However, conditional queries need extra care. For instance, P ⇤(y;�X) is a different query
that P ⇤(y | x;�X). Actually, they are guaranteed to match only for do-interventions, as shown next:

P (y | x;�X=x) =
P (y,x;�X=x)

P (x;�X=x)
(B.41)

=
P (y;�X=x)P (x | y;�X=x)

P (x;�X=x)
(B.42)

=
P (y;�X=x)(1)

(1)
(B.43)

= P (y;�X=x). (B.44)
This equality does not hold in general for any intervention, and particularly it does not hold for �X=;.
Similarly, other variations such as P ⇤(y | w;�X) and P

⇤(y | w,x;�X) are also not the same. Note
that in �-TR the set W could intersect X. In this case Thm. 2 could be used to bypass GTR and use
its marginal version directly GTRU “truncating” the available experiments by pretending they are
from atomic interventions.

Nevertheless, when GTR outputs terms with “truncated” experimental distributions, care is needed to
translate those expressions into their original soft-intervention counterparts. In Sec. 2 we described
how for the instance in Fig. 1 GTRU produces the following result when used after the reductions
described so far:

P
⇤(y;�⇤

X1,X2
) =

X
x1,z,x2

P
2(y|x1, do(x2))P

1(z|do(x1, x2))P (x2|z, x1;�
⇤)P (x1;�

⇤).

(B.45)
As we saw from Eq. (1) the second factor should be P

2(z | x1;�X1,X2=�
1
X1,X2

). Notice that this
term is not necessarily equal to P

1(z;�1) nor P 1(z|x1, x2;�1), so even though the intervention is
on both X1 and X2, only X1 should appear as an observation after the translation is done. The same
reasoning needs to be applied to every term.

The topics of discussion in this section motivated us to propose �-TR as a straightforward algorithm
that can handle the task from end to end and subsumes GTR and previous algorithms such as GID
[22], Z-ID [3] and ID, IDC [32, 33].
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C Proofs for Section 3

Lemma 2. Let X,Z ⇢ V be disjoint sets of variables, �X and �Z be any two interventions, and

C ✓ V. Then, Q[C;�X,�Z] = Q[C;�X] whenever C \ Z = ;.

Proof. (Adapted from [9]) By definition of Q[C;�X,�Z] (Eq. (7)) we have

Q[C;�X,�Z](v) =
X

u(C)

Y
{i|Vi2C}

P (vi | pai,ui;�X,�Z)P (u(C);�X,�Z), (C.46)

since no variable in C is in Z every term P (vi | pai,ui;�X,�Z) = P (vi | pai,ui;�X) and inter-
ventions cannot affect the distribution of variables in U, hence P (u(C);�X;�Z) = P (u(C);�X) =
P (u(C)). Replacing those terms, we obtain exactly the definition of Q[C](v).

Lemma 3. Let G�
be a selection diagram for

⌦
M

k
,M

l
↵
, then Q

k[C;�X] = Q
l[C;�X] if G�

does

not contain selection nodes Svi pointing to any variable in Vi 2 C, that is, Vi /2 �k,l
.

Proof. From the definition Q[.] we have

Q
(j)[C;�X](v)=

X

u(C)

Y

{i|Vi2C}

P
(j)(vi | pai,ui;�X)P (j)(u(C)), j = k, l. (C.47)

A selection node Si in G� points to a variable in Vi 2 C only if f (k)
i 6= f

(l)
i or if P (k)(Ui) 6=

P
(l)(Ui). Thus, the absence of Si ! Vi implies P (k)(vi | pai,ui;�X) = P

(l)(vi | pai,ui;�X)
and P

(k)(Ui) = P
(l)(Ui). Then, every term in equation (C.47) is the same in both domains and the

claim follows.

Corollary 1. Let Y,X ✓ V be any two sets of variables, and let �X=�
⇤
X be an atomic, conditional

or stochastic intervention. The effect of �X on Y is given by

P
⇤(y;�X= �

⇤
X) =

X
d\y

Q
⇤[X \D;�X=�

⇤
X]Q⇤[D \X], (9)

where D = An(Y)G�X
. Furthermore, this effect is transportable from hG�

,Zi if and only if

Q
⇤[D \X] is transportable from hG�

,Zi.

Proof. From [38] we have that Q⇤[D \X] = P
⇤(d \ x;�X=x) and by definition of C-factor:

Q
⇤[X;�X=�

⇤
X] =

X

ux

Y

X2X

P (x | pax,ux;�X=�
⇤
X)P (ux). (C.48)

Since the unobservable parents for intervened variables are assumed to be disjoint from any other
such set,

Q
⇤[X;�X=�

⇤
X] =

Y

X2X

X

ux

P
⇤(x | pax,ux;�X=�

⇤
X)P ⇤(ux) (C.49)

=
Y

X2X

P
⇤(x | pax;�X=�

⇤
X). (C.50)

This proves that Eq. (9) is equal to Eq. (5) and implies the claim.

C.1 Conditional Queries

C.1.1 Auxiliary lemmas

Lemma 4. Suppose Q[A;�X] is not identifiable from a set of available distributions in a causal

diagram G. Let A1, A2 2 A such that there exists an edge A1 ! A2 in G. Then
P

a1
Q[A] is not

identifiable from the same input either.
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Proof. Let M1 and M2 be the two models witnessing the non-identifiability of Q[A;�X], they
agree on available distributions, but for some value-assignment v0 we have Q

1[A;�X](v0) = ↵,
Q

2[A;�X](v0) = � with ↵ 6= �. Assume, without loss of generality that ↵ > �. We will extend a
strategy used by [17] to construct two models M0

1 and M0
2 where the domain of A2 is DA2 ⇥ {0, 1},

where DA2 is the domain of A2 in M1,M2. Let F (A1) be a probability function from DA1 to {0, 1},
such that P (F (a1) = i) > 0, i = 0, 1 and P (F (a1) = 0) = 1�P (F (a1) = 1). In M0

i, i = 1, 2 we
define:

P
M 0

i
i ((a2, k) | paa2

, ua2) = P
Mi(a2 | paa2

, ua2)P (F (a1)=k). (C.51)

And for Vj 2 V \ {A2} let PM 0
i (vj |paj , uj) = P

Mi(vj |paj , uj). We can verify that for any
�Zj 2 Z

P
M 0

1(v \ a2, (a2, k);�Zj )

= Q
M 0

1 [V \ {A2}, (A2,K);�Zj ](v \ a2, (a2, k)) (C.52)

= Q
M1 [V \ {A2}, (A2,K);�Zj ](v)P (F (a1) = k) (C.53)

= Q
M2 [V \ {A2}, (A2,K);�Zj ](v)P (F (a1) = k) (C.54)

= Q
M 0

2 [V \ {A2}, (A2,K);�Zj ](v \ a2, (a2, k)) (C.55)

= P
M 0

2(v \ a2, (a2, k);�Zj ). (C.56)

Consider the assignment v0 \ {a2}, (a02, 0), by construction we have

Q
M 0

i [A;�X](v0 \ {a2}, (a02, 0))
= Q

Mi [A;�X](v0)P (F (a01) = 0). (C.57)

Let P (F (a01) = 0) = 1/2 and P (F (a1) = 0) = (↵� �)/4, for a1 6= a
0
1. It yields:

X

a1

Q
M 0

i [A;�X](v0 \ {a1, a2}, (a02, 0))

=
X

a1

Q
Mi [A;�X](v0 \ {a1, a2})P (F (a1) = 0) (C.58)

For M0
1 this means

X

a1

Q
M 0

1 [A;�X](v0 \ {a1, a2}, (a02, 0))

= 1
2↵+

⇣
↵��
4

⌘ X

a1 6=a0
1

Q
Mi [A;�X](v0 \ {a1, a2}) (C.59)

>
1
2↵ (C.60)

As for M0
2:

X

a1

Q
M 0

1 [A;�X](v0 \ {a1, a2}, (a02, 0))

= 1
2b+

�
a�b
4

� X

a1 6=a0
1

Q
Mi [A;�X](v0 \ {a1, a2}) (C.61)

<
1
2� + ↵��

4 (C.62)

<
1
2↵. (C.63)

Then, M0
1 and M0

2 are compatible with G, match in the available distributions and yield differentP
a1

Q[A;�X].

Lemma 5. Let A,B and C be binary random variables causally related as given by the chain

A ! B ! C. And suppose P (B = 1 | A = 1) = ↵ and P (B = 1 | A = 0) = 1 � ↵, for some

↵ 2 [0, 1]. Then, for any � such that |1/2� �|  |1/2� ↵| there is always a function fC such that

P (C = 1 | A = 1) = �, P (C = 1 | A = 0) = 1� � and P (A,B,C) is a positive distribution.
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Proof. Let P (C = 1 | B = 1) = x and P (C = 1 | B = 0) = 1� x, then

� = P (C = 1 | A = 1) =
X

b

P (C = 1 | b)P (b | A = 1) = 1� ↵+ x(2↵� 1) (C.64)

x =
↵+ � � 1

2↵� 1
. (C.65)

Since x must belong to the interval (0, 1), we can bound � 2 (1�↵,↵) if ↵  1/2 and � 2 (↵, 1�↵)
if ↵ > 1/2. Both conditions are satisfied when |1/2� �|  |1/2� ↵| as assumed, so any solution x

is a valid probability.

Then, we can define the function for C as
fC = B � Uc, (C.66)

where, Uc is a binary unobservable, P (Uc = 0) = x and � is the logical xor operator.

Lemma 6. Let A and B be two variables in a causal graph where A  An  An�1  · · ·  
A1  C ! B1 ! · · · ! Bm�1 ! Bm ! B. The variables A1, . . . , An, B1, . . . , Bm are

observable, C could be observable or unobservable and m,n are non-negative integers. Then we

can define functions for all variables involved such that they are binary and

P (a, b) =

⇢
1
2� if a = b

1
2 (1� �) otherwise

, (C.67)

for any � 2 (0, 1).

Proof. First, if C is unobservable set P (C = 1) = 1/2, else define an unobservable Uc with
P (Uc = 1) = 1/2 and let fC = Uc. Let ↵,� 2 (0, 1) be parameters to decide later.

If n = 0 define fA such that P (A = 1 | C = 1) = ↵, P (A = 1 | C = 0) = 1 � ↵. Similarly, if
m = 0 define fB such that P (B = 1 | C = 1) = ↵, P (B = 1 | C = 0) = 1� ↵.

Suppose n > 0, then we will define the functions for A1, A2, . . . , An, A such that P (Ai = 1 | C = 1)
gets closer to ↵ as i increases. If ↵ < 1/2, set fA1 such that P (A1 = 1 | C = 1) = ↵/(n + 1),
P (A1 = 1 | C = 0) = 1 � ↵/(n + 1). Then use lemma 5 to define fAi , i = 1, . . . , n and fA

such that P (Ai = 1 | C = 1) = i↵/(n + 1), P (Ai = 1 | C = 0) = 1 � i↵/(n + 1) and finally
P (A = 1 | C = 1) = (n+ 1)↵/(n+ 1) = ↵, P (A = 1 | C = 1) = 1� ↵.

If ↵ > 1/2 use the same strategy but starting from P (A1 = 1 | C = 1) = 1 � (1 � ↵)/(n + 1)
and decreasing as P (Ai = 1 | C = 1) = 1 � i(1 � ↵)/(n + 1), to obtain P (A = 1 | C = 1) =
1� (n+ 1)(1� ↵)/(n+ 1) = ↵.

The same procedure is applied for B1, . . . , Bm, B to obtain P (B = 1 | C = 1) = �, P (B = 1 |
C = 0) = 1� �.

Finally,

P (A = 1, B = 1) =
X

c

P (A = 1 | c)P (B = 1 | c)P (c) (C.68)

= 1
2 [↵� + (1� ↵)(1� �)] (C.69)

P (A = 0, B = 0) = 1
2 [(1� ↵)(1� �) + ↵�] (C.70)

P (A = 0, B = 1) = 1
2 [(1� ↵)� + ↵(1� �)] (C.71)

P (A = 1, B = 0) = 1
2 [↵(1� �) + (1� ↵)�]. (C.72)

If � < 1/2 make � = 1� ↵ and ↵ = 1±
p
1�2�
2 . If � � 1/2, let � = ↵ and ↵ = 1±

p
2��1
2 . It is just

a matter of algebra to verify that P (A,B) results in the intended distribution.

C.1.2 Proof of Theorem 2

Theorem 2. Let Y,X,W ⇢ V, W \Y = ;, �X be any intervention, and G�X the corresponding

interventional causal graph. Then, the effect of �X on Y conditioned on W is given by

P (y|w;�X) = P (y|wy;�X,�Wy=wy) =
X

a\(y[wy)
Q[A;�X]

�X
a\wy

Q[A;�X] , (10)
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where Wy ✓W is the set of variables in W connected to any Y 2 Y by any path (regardless of the

directionality) in G�X[D]W , with D=An(Y[W)G�X
, Wy = W\Wy, and A=An(Y[Wy)G�XW .

Furthermore, this effect is transportable from hG�
,Zi iff Q[A;�X] is transportable from hG�

,Zi.

Proof. First we argue that (Y ??Wy | Wy) in G�XWy and G�XWyWy
. The separation in the latter

graph is obvious since we are cutting both the incoming and outgoing edges to Wy. For the first
graph suppose the separation does not hold, then let q be the path between Y 2 Y and W 2Wy

that is active in G�XWy given Wy. Path q must not have any edge going out of Wy else it would be
blocked by conditioning on that set. Then, q exists in G�XW, but this would make W , by definition,
part of Wy, a contradiction. Since the stated separation holds we can use rule 2 of �-calculus to infer

P (y | w;�X) = P (y | w;�X,�Wy=wy). (C.73)

By definition of conditional probability:

P (y | w;�X) = P (y | wy,wy;�X,�Wy=wy) (C.74)

=
P (y,wy | wy;�X,�Wy=wy)

P (wy | wy;�X,�Wy=wy)
(C.75)

=
P (y | wy;�X,�Wy=wy)P (wy | y,wy;�X,�Wy=wy)

P (wy | wy;�X,�Wy=wy)
(C.76)

= P (y | wy;�X,�Wy=wy). (C.77)

The second factor in the numerator and the denominator in Eq. (C.76) are equal to 1 because of the
intervention �Wy=wy. This proves the first part of the equality in Eq. (10).

From [38] we have that for any disjoint sets S,T ✓ V, P (s | do(t)) =
P

d\s Q[D], where
D = An(S)G[V\T]

. It is easy to verify that the ancestors of Y [Wy in G�XW, A, are the same as in
G�X[V\Wy], then keeping �X fixed we could write

P (y,wy;�X,�Wy=wy) =
X

a\(y[wy)

Q[A;�X], (C.78)

and then

P (y | w;�X) =

P
a\(y[w) Q[A;�X]
P

a\w Q[A;�X]
. (C.79)

which proves the second equality in Eq. (10).

Let G�0 be the same as G� after removing all edges out of Wy and any edge out of Y does is not
part of a directed path between Y and Wy. G�0 and G� have the same C-component structure and
all variables in A are still ancestors of Y [W; therefore and by the same reasoning, Q[A;�X] is
not transportable from hG�0

,Zi either. Without loss of generality let

M(i) = {Mi,k}⇡k2⇧, i = 1, 2, be sets of models witnessing the non-transportability of Q[A;�X]

from hG�0
,Zi. Since every variable in A \ (Y [Wy) has a children in A, we can apply Lemma 4

in a topological order over A \ (Y [Wy) and conclude that Q[A;�X] transportable if and only if
P (y,wy;�X,�Wy=wy) =

P
a\(y[wy)

Q[A;�X] is transportable.

For simplicity, let

⇢(y,w) = P (y,wy;�X,�Wy=wy) =
X

a\(y[wy)

Q[A;�X], (C.80)

then

P (y | w;�X) =
⇢(y,w)P
y ⇢(y,w)

. (C.81)

If ⇢(w) =
P

y ⇢(y,w) is transportable then P (y | w;�X) must be non-transportable, else

⇢(y,w) = P (y | w;�X)⇢(w), (C.82)
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contradicting the assumption that the ⇢(y,w) is not transportable. Therefore, we can further assume
⇢(w) is not transportable, for the rest of the argument.

Let (y0
,w0) be an assignment such that ⇢(y0

,w0) among M(1) and M(2), then let

W Y ⇢
(1)(W,Y) ⇢

(2)(W,Y)

w0 y0
a b

w0 6= y0
c d

6= w0 y0
e f

6= w0 6= y0
g h

Due to the non-transportability of ⇢(y,w) we have a 6= b and without loss of generality we can
assume a > b. Similarly, due to the non-transportability of ⇢(w) we have a+ c 6= b+ d. For M(1)

and M(2):
⇢
(1)(y0 | w0) =

a

a+ c
(C.83)

⇢
(2)(y0 | w0) =

b

b+ d
. (C.84)

These probabilities are equal if and only if ad = bc. Hence, if they are not equal we are done
because ⇢

(1)(y0 | w0) 6= ⇢
(2)(y0 | w0). If they are equal, let W 2Wy be such that there exists a

path p between it and Y 2 Y in G�0 that does not contain any W \ {W}. Such p exists because
by assumption every element in Wy is connected to some element of Y in G�X[D]W (which is a
subgraph of G�0), so W could be just the closest to some Y .

Add a bit to every variable in p and denote them with subscript p. Define independent functions for
the bits which we will parametrize later.

We define two new models M(1)0 and M(2)0, based on M(1) and M(2). For every variable in p

except for W and Y , append the corresponding extra bit defined in p with the original variables in
M(1) and M(2). Rename W and Y as fW, eY and make them unobservable, then define W in the
new models with the functions:

f
0
w =

(
w

0 if Wp = 1
fW otherwise,

(C.85)

where Wp is unobservable too and w
0 is the assignment to W consistent with w0 for which the query

disagrees in M(1) and M(2).

Analogously, define

f
0
y =

(
y
0 if Yp = 1
eY otherwise.

(C.86)

The path p must have a common ancestor to W and Y . Such ancestor could be observable or
unobservable. That is, either there exists Z 2 p \ An(W ) \ An(Y ) (possibly Y itself) or there
exists Z1, Z2 2 p with Z1 2 An(W ), Z2 2 An(Y ) and there is an edge Z1 L9999K Z2 in p. For the
parametrization of the extra bits in p define a new unobservable U and let Zp = U if the common
ancestor is observable or let U be the unobservable parent of Z1p and Z2p in the second. Notice that
Z1 and Z2 may be equal to W and Y themselves.

Using lemma 6 we will parametrize p such that

W0 Y0 P (W0, Y0)

1 1 1
2�

1 0 1
2 (1� �)

0 1 1
2 (1� �)

0 0 1
2�
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for some � 2 (0, 1) that we will pick later.

Claim 1 (Disagreement on the query). M(1)0
and M(2)0

disagree on the query for any � such that

c� d 6= [(a+ c+ 1)h� (b+ d+ 1)g](1� �).

Proof. For M(1)0 and M(2)0 we have

⇢
0(w0

,y0) =
X

wp,yp, ew,ey

⇢
0(w0

,y0
, ew, ey | wp, yp)P (wp, yp). (C.87)

Going over each possible combination of Wp and Yp first we get

⇢
0(w0

,y0) = ⇢(W = w0
,Y = y0)P (Wp = 0, Yp = 0) (C.88)

+ ⇢(Y = y0)P (Wp = 1, Yp = 0) (C.89)
+ ⇢(W = w0)P (Wp = 0, Yp = 1) (C.90)
+ P (Wp = 1, Yp = 1). (C.91)

Similarly,

⇢
0(w0) = ⇢(W = w0)P (Wp = 0) + P (Wp = 1). (C.92)

For M(1)0

⇢
(1)0(y0 | w0) =

1
2a� + 1

2 (a+ e)(1� �) + 1
2 (a+ c)(1� �) + 1

2�

1
2 (a+ c) + 1

2

(C.93)

=
a� + (2a+ c+ e)(1� �) + �

a+ c+ 1
(C.94)

=
a� (a+ c+ e)(� � 1) + �

a+ c+ 1
(C.95)

=
a+ (a+ c+ e)(1� �)� (1� �) + 1

a+ c+ 1
(C.96)

=
a� (1� (a+ c+ e))(1� �) + 1

a+ c+ 1
(C.97)

=
a� g(1� �) + 1

a+ c+ 1
(C.98)

Analogously for M(2)0:

⇢
(2)0(y0 | w0) =

b� h(1� �) + 1

b+ d+ 1
(C.99)

Those two are equal if and only if

ab� bg(1� �) + b+ ad� dg(1� �) + d+ a� g(1� �) + 1

= ab� ah(1� �) + a+ bc� ch(1� �) + c+ b� h(1� �) + 1 (C.100)
()

�bg(1� �) + ad� dg(1� �) + d+�g(1� �)

= �ah(1� �) + bc� ch(1� �) + c+�h(1� �) (C.101)

Recall that we have ad = bc, which also implies that c 6= d, else a = b which is a contradiction.
Then, the condition for equality can be further simplified as

c� d = [(a+ c+ 1)h� (b+ d+ 1)g](1� �). (C.102)

The left hand side is non-zero, all a, b, c, d, g and h are fixed, and � is a free parameter. Therefore,
as long as we pick a � such that the equality doesn’t hold, we get that ⇢(y0 | w0) = P (y0 | w0;�X)

does not match in M(1)0 and M(2)0.
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Claim 2 (Agreement on any agreed distribution). Let Z ⇢ V be any subset of observable variables

and let �Z 2 Zk 2 Z. If M(1)
and M(2)

agree on P
k(V;�Z), then M(1)0

and M(2)0
also agree on

P
k(V;�Z).

Proof. For simplicity we omit the superscript k for the domain, which is fixed with �Z. The
superscript (1) and (2) indicate to which of the sets of models under consideration the expression
refers to.

Let C1,C2, . . . be the C-components of G�Z . By assumption we have Q
(1)[V;�Z] = Q

(2)[V;�Z],
and since any Q[Cj ;�Z] is identifiable from Q[V;�Z], we have Q

(1)[Cj ;�Z] = Q
(2)[Cj ;�Z] for

any Cj .

M(k)0 is identical to M(k), k = 1, 2, except for the functions of the observables in the path p. For
any variable T not in p, but with a parent on it, the function fT remains the same and it simply ignores
the extra bit that its parent has in M(k)0.

Let Cj be a C-component containing some set of variables R in p different to W and Y (the endpoints
of p). First, by definition

Q
(k)0 [Cj ;�Z](v) =

X

u(Cj)

Y

Vi2Cj

P
(k)0(vi | pai,ui;�X)P (k)0(u(Cj)). (C.103)

For any S /2 p, R 2 R, W and Y that could be in Cj in Mk0, their corresponding factors in the
previous expression can be re-written in terms of probabilities of Mk, as follows:

P
(k)0(s | pas, us;�X) = P

(k)(s | pas, us;�X), (C.104)

P
(k)0(r | par, ur;�X) = P

(k)(r | par, ur;�X)P (rp | (par)p), (C.105)

P
(k)0(y | pay, uy;�X) = P

(k)(y | pay, uy;�X)P (Yp = 0 | (pay)p)
+ 1[y = y

0]P (Yp = 1 | (pay)p)), (C.106)

P
(k)0(w | paw, uw;�X) = P

(k)(w | paw, uw;�X)P (Wp = 0 | (paw)p)
+ 1[w = w

0]P (Wp = 1 | (paw)p)). (C.107)

It follows that

Q
(k)0 [Cj ;�Z](v) =

 
Y

R2R

P (rp | (par)p)
!

Q
(k)[Cj ;�Z](v)P (Yp = 0 | (pay)p)P (Wp = 0 | (paw)p)

+Q
(k)[Cj \ {Y };�Z](v)P (Yp = 1 | (pay)p)P (Wp = 0 | (paw)p)1[y = y

0] (C.108)

+Q
(k)[Cj \ {W};�Z](v)P (Yp = 0 | (pay)p)P (Wp = 1 | (paw)p)1[w = w

0]

+Q
(k)[Cj \ {W,Y };�Z](v)P (Yp = 1 | (pay)p)P (Wp = 1 | (paw)p)1[w = w

0
, y = y

0]
�
.

Since W and Y have no descendants in G,

Q
(k)[Cj \ {W,Y };�Z](v) =

X

w,y

Q
(k)[Cj ;�Z](v) (C.109)

Q
(k)[Cj \ {W};�Z](v) =

X

w

Q
(k)[Cj ;�Z](v) (C.110)

Q
(k)[Cj \ {Y };�Z](v) =

X

y

Q
(k)[Cj ;�Z](v), (C.111)

all match between M(1) and M(2). Consequently, every C-factor in the right-hand side of (C.108) is
the same in those models, and since every other term is also the same in both M(1)0 and M(2)0, we
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conclude that Q(1)0 [Cj ;�Z](v) = Q
(2)0 [Cj ;�Z](v), which in turn implies our claim since

P
(k)0(v;�Z) =

Y

j

Q
(k)0 [Cj ;�Z](v). (C.112)

In summary, M(1)0 and M(2)0 induce G� and matching Z, yet they differ on the value for P (y0 |
w0;�X), proving the non-transportability of the query.

C.2 Proof of Completeness of the Algorithm

Theorem 3. [�-TR Completeness] The effect P (y | w;�X) is transportable from Z in G�
if and

only if the algorithm �-TR (Alg. 1) outputs an estimand for it.

Proof. �-TR fails when there exists some C-component Ai of G�X[A], a C-component Ci of
G�

[An(Ai)], and for every �Z 2 Zk 2 Z at least one of the following three conditions occur:

(i) Ai \�k 6= ;, that is, at least one variable in Ai has a different mechanism in ⇡
k, or

(ii) Ai \ Z 6= ;, meaning at least one of the variables in Ai have been intervened by �Z in ⇡
k, or

(iii) there exists some Ti s.t. Ai ⇢ Ti ✓ Ci, G�Z[Ti] has a single C-component.

Notice that IDENTIFY is called with Bi which is a C-component in G�Z . IDENTIFY (in line 4) fails to
obtain Q

⇤[Ai]=Q
k[Ai;�Z] from Q

k[Bi;�Z] in G�Z only if there exists some Ti s.t. Ai ⇢ Ti ✓ Bi

[17, Thm. 3]. Let B0
i ✓ Bi be the variables in Bi that are ancestors of Ai in G�Z[Bi]. Since the first

step identify IDENTIFY takes is to sum out the variables in Bi \B0
i, Ti ✓ B0

i.

Furthermore, we show that Ti ✓ B0
i ✓ Ci using an argument by contradiction. Suppose there exists

some B 2 B0
i \Ci, then B is not an ancestor of Ai in G because Ci contains all such ancestors that

are in the same C-component as Ai in G. Since G�Z could have only less bidirected arrows than
G, B must be in the same C-component as Ai in G. Then, for B to be an ancestor of Ai only after
intervention �Z, there must be some Z 2 Z such that �Z added an edge B1 ! Z, B1 2 B0

i, but in
any intervened Z forms its own C-component in GZ and cannot be part of Bi, a contradiction.

By lemma 10 we have that if the conditions just described are satisfied, there exists a subgraph of Ci

that is an s-Thicket for P ⇤(ai | do(v \ ai)) = Q
⇤[Ai] = Q

⇤[Ai;�X=x].

This implies the existence of two sets of models M(i) = {Mi,k}⇡k2⇧, i = 1, 2, such that for every
�Z 2 Zk 2 Z the corresponding models agree on P

k(v|do(z)), but disagree on P
⇤(ai | do(v \ ai)).

From Eq. (2), and for any conditional or stochastic intervention �Z the distribution P (v;�Z) is given
by

P (v;�Z) =
X

u⇤

Y

{i|Vi2Z}

P (vi|pai,ui;�Z)P (u⇤\u;�Z)
Y

{i|Vi2V\Z}

P (vi|pai,ui)P (u)

= P (v \ z|do(zj))
X

u⇤\u

Y

{i|Vi2Z}

P (vi|pai,ui;�Z)P (u⇤\u;�Z).

Given M(1) and M(2), we are free to specify any conditional or stochastic intervention �Z, for any
such Z, by setting P (Vi|Pai, Ui;�Z) for every Vi 2 Z in the previous expression, and P (v;�Z) will
be the same as well.

We conclude that Q⇤[Ai;�X] is not transportable from hG�
,Zi. Moreover, Q[A;�X] is also not

transportable from the same input; were it transportable, Lemma 1 implies that Q[Ai;�X] can be
obtained from Q[A;�X], a contradiction.

Finally, by Thm. 2 we have that P ⇤(y|w;�X) is transportable if and only if Q⇤[A;�X] is trans-
portable.

C.3 Complexity Analysis of the Algorithm

Let n = |V| and z =
P

⇡i |Zi|. Operations in �-TR such as computing the set of ancestors or
finding the set of C-components in a graph can be done in O(n2) time. The number of C-components
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is at most n, hence the total number of times the for-loop in the algorithm could execute, calling
Identify is nz. IDENTIFY (see [38, 16]) recursively reduces the input C-factor at least by a variables
each time, and the operations used can be performed in O(n2); overall it takes O(n3) time to return
an expression or FAIL. Consequently, �-TR runs in O(n4

z).

C.4 Completeness of Sigma Calculus

First we will show that Lemma 1 follows from �-calculus. For simplicity, for any C,X ✓ V and
intervention �

⇤
X we will write

P (c;�X\C=�
⇤
X\C,�V\C=(v \ c)) (C.113)

simply as

P (c;�⇤
X(C)), (C.114)

and Q[C;�X=�
⇤
X] as Q[C;�⇤

X].
Lemma 7 (C-factor – Causal Effect).

Q[C;�⇤
X] = P (c;�⇤

X(C)) (C.115)

Proof. From the model M�X(C)
we have

P (v;�X(C)) =
X

u

Y

i

P (vi | pai,ui;�X(C))P (u). (C.116)

Summing both sides over V \C

P (c;�X(C)) =
X

u

X

an(c)\c

Y

{i|Vi2An(C)}

P (vi | pai,ui;�X(C))P (u). (C.117)

With �
⇤
X(C) any variable in Vi 2 An(C) \ C has been fixed to a constant, so each such factor

P (vi | pai,ui;�X(C)) is 1 when the index of the sum over An(⇤C) \C is consistent with v and 0
otherwise, then

P (c;�X(C)) =
X

u

Y

{i|Vi2C}

P (vi | pai,ui;�X(C))P (u). (C.118)

Moreover, any U that does not appear in U(C) can be summed out, leaving

P (c;�X(C)) =
X

u(c)

Y

{i|Vi2C}

P (vi | pai,ui;�X(C))P (u(c)). (C.119)

For any Vi 2 C the factor P (vi | pai,ui;�X(C)) = 1 if and only if fi in M�⇤
X(C)

evaluates to vi.
The only such fi affected by �

⇤
X(C) = �X=�

⇤
X,�V\C=(v \ c) are those for Vi 2 X \C, and only

because of the �X=�
⇤
X portion, then

P (c;�X(C)) =
X

u(c)

Y

{i|Vi2C}

P (vi | pai,ui;�
⇤
X)P (u(c)), (C.120)

which is exactly Q[C;�⇤
X(C)] by definition.

Lemma 8 (C-component decomposition). Let C1, . . . ,Cl be the C-components of G�X[C], let

C1 < C2 < Cn be any topological order of the variables in C . Then by �-calculus and probability

axioms we have

P (c;�⇤
X(C)) =

Y

j

P (cj ;�
⇤
X(Cj)

), (C.121)

where each

P (cj ;�
⇤
X(Cj)

) =
Y

{Ci2Cj}

P (ci | c1, . . . , ci�1;�
⇤
X(C)). (C.122)
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Proof.

P (c;�⇤
X(C)) =

Y

i

P (ci | c1, . . . , ci�1;�
⇤
X(C)) (C.123)

Let Bi = {C1, . . . , Ci�1} \ Cj (those variables before Ci not in the same C-component as Ci).
Similarly, let Di = {Ci+1, . . . , Cl} \Cj .

We have (Ci ??Di | C1, . . . , Ci�1) in both G�X(C)Di
and G�X({C1,...,Ci}[Cj)

Di
because any relevant

path would start going out of a variable in C
0 2 Di and is either blocked by a non-observed collider

or would entail that Ci goes after C 0 in the order, which is a contradiction. Then by rule 3 we can
exchange �X(C) with �X({C1,...,Ci}[Cj).

Next, (Ci ?? Bi | {C1, . . . , Ci�1} \ Bi) in both G�X({C1,...,Ci}[Cj)
Bi and G�X(Cj)

Bi . Any path
violating these separations must have an into Ci and an arrow into some C

0 2 Bi. Since Ci and C
0

are not in the same C-component, the path must have at least one directed arrow in it; but the variable
at the tail of such arrow is either observed (is in the same C-component as Ci) or has the outgoing
arrows removed (it is in Bi), in any case the path is blocked or non-existent. Then, by rule 2 the
intervention can be changed to �X(Cj) and we have

P (ci | c1, . . . , ci�1;�
⇤
X(C)) = P (ci | c1, . . . , ci�1;�

⇤
X(Cj)

). (C.124)

Under intervention �
⇤
X(Cj)

any variable in Bi has been fixed to a constant then

P (ci|c1, . . . , ci�1;�
⇤
X(Cj)

) =
P (ci|{c1, . . . , ci�1} \ bi;�⇤

X(Cj)
)P (bi|{c1, . . . , ci} \ bi;�⇤

X(Cj)
)

P (bi|{c1, . . . , ci�1} \ bi;�⇤
X(Cj)

)

(C.125)
= P (ci|{c1, . . . , ci�1} \ bi;�

⇤
X(Cj)

), (C.126)

because the second factor of the denominator and the denominator are equal to 1. Reorganizing the
factors by C-components we get

P (c;�⇤
X(C)) =

Y

j

Y

{i|Ci2Cj}

P (ci | {c1, . . . , ci�1} \ bi;�
⇤
X(Cj)

) (C.127)

=
Y

j

P (cj ;�
⇤
X(Cj)

), (C.128)

which matches Eq. (C.122). Eq. (C.127) together with Eq. (C.126) imply Eq. (C.122).

Lemma 9. Each step of IDENTIFY follows from �-calculus.

Proof. As long as the Q and G in the input to IDENTIFY correspond to the same intervention (i.e.,
Q = Q[T;�X], G = G�X , we can keep the context of the intervention implicit.

The input Q = Q[T] corresponds to P (t;�X(T)). In line 2 returns P (c;�X(C)) =P
t\c P (t;�X(T)) if A=An(C)G[T]

=C, that is, every ancestor of C in G[T] is already in C.

First we argue that (C??T \C) in G�X(C)T\C
and G�X(T)T\C

. In those graphs all arrows incoming
to variables not in C, including T \C, are cut. Then, any path between some T 2 T \C and some
C 2 C must start with an arrow going out from T . If the other end of the edge is not in C then the
path does not exists in the graphs mentioned before. If the edge goes to some variable in C we have
that T is an ancestor of C in G[T] which is assumed not to be the case. Then by rule 3 of �-calculus:

P (c;�X(C)) = P (c;�X(T)), (C.129)

and summing over T \C:

P (c;�X(C)) =
X

t\c

P (t;�X(T)), (C.130)

as desired.
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Algorithm 2 IDENTIFY(C,T, Q,G)
Input: C ✓ T ✓ V, Q = Q[T] and graph G. Assuming G[C] and G[T] are composed of a single c-component.
Output: Expression for Q[C] in terms of Q or Fail.
1: Let A An(C)G[T]

.
2: if A = C then return Q[C] =

P
t\c Q.

3: if A = T then return Fail.
4: if A = C then

5: Let T0 be the C-component containing C in G[A].
6: Compute Q[T0] from Q[A] =

P
t\a Q.

7: return Identify(C,T0, Q[T0],G).
8: end if

In line 6 we follow the same reasoning as above to conclude that P (a;�X(A)) =
P

t\a P (t;�X(T)).
Then by Lemma 8 we can obtain P (t0;�X(T0)) from P (a;�X(A)). Finally, IDENTIFY is called
recursively in line 7.

With this all steps have been shown to follow from �-calculus and standard probability axioms.

Corollary 2. [�-calculus Completeness] The �-calculus together with standard probability axioms

is complete for the task of transportability with soft interventions.

Proof. From the first part of the proof of Thm. 2 it is shown with �-calculus that

P
⇤(y | w;�X) = P

⇤(y | wy;�X,�Wy=wy), (C.131)

and by the definition of conditional probability we can write the effect as

P
⇤(y | w;�X) =

P
⇤(y,wy;�X,�Wy=wy)

P ⇤(wy;�X,�Wy=wy)
. (C.132)

From this point we can focus on transporting P
⇤(y,wy;�X,�Wy=wy). For simplicity, rela-

bel Y to represent both Y [Wy and �
⇤
X being both �X,�Wy=wy and notice that A = D =

An(Y [Wy)G�X�Wy
=wy

, so that we can continue with the marginal effect of the numerator in mind.
Following the same derivation shown in the first part of the proof in Thm. 1 to show Eq. (5) we get

P
⇤(y;�x=�

⇤
X) =

X

a\y

P
⇤(a \ x;�X=x)

X

X2A\X

P
⇤(x | pax;�X=�

⇤
X). (C.133)

The sum
P

X2A\X P
⇤(x | pax;�X=�

⇤
X) is determined by the definition of �⇤

X and justifies line 9.
Then all that is left is to transport P ⇤(a \ x;�X=x). Since A \X = A \ (X \A) and

P
⇤(a \ (x \ a);�X=x) = P

⇤(a \ (x \ a);�X\A=x \ a), (C.134)

because A is ancestral in G�X = GX so there is no active path between any A and X \ A in
G�X\A�X\AX\A and G�X\AX\A; so this equality is justified by rule 3 and (A ??X \A) in those
graphs.

The product in line 11 follows from �-calculus as in Lemma 8 with Ai specified as in line 1.

All that is left is to justify that each Q
⇤[Ai;�⇤

X] can be derived using �-calculus too. To see, notice
that Qk[Bi;�Z] = P

k(bi;�Z(Bi)) is obtainable from P
k(V;�Z) by Lemma 7.

By Lemma 9 we have that if IDENTIFY does not fail to obtain Q
k[Ai;�Z] = P

k(ai;�Z(A)) from
P

k(bi;�Z(Bi)). Due the conditions in line 2 Ai contains no element in Z, then since Ai \X is also
empty:

P
k(ai;�Z(A)) = P

k(ai;�Z\Ai ,�V\Ai
=(v \ ai)) (C.135)

= P
k(ai;�V\Ai

=(v \ ai)) (C.136)

= P
k(ai;�X\Ai ,�V\Ai

=(v \ ai)) (C.137)

= P
k(ai;�X(A)). (C.138)
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Finally, we argue that (Ai ?? {SVi | Vi 2 �k}) in G�
V\Ai

. Also by condition in line 2 no variable
in Ai is also in �k, so any path between an S variable is cut in this graph. Then

P
k(ai;�X(A)) = P

⇤(ai;�X(A)). (C.139)

D Proofs for Section 4

Corollary 3. Given query P
⇤(y;�X=�

⇤
X), selection diagram G�

, and the distribution specified by

Z, let A be defined as in Thm. 2. Then, the query is not transportable from hG�
,Zi if and only if

there exists a C-component Ai of G�⇤
X[A] and a C-component Ci of G�

[An(Ai)] such that for every

�Z 2 Zk 2 Z, Ai satisfies conditions (i), (ii), or (iii).

Proof. The conditions in the corollary are satisfied if and only if �-TR fails, therefore, by Thm. 3 it
follows that the query is not transportable from hG�

,Zi.

Lemma 10 (s-Thicket relation). Let A be defined as in Thm. 2 and let Ai be a C-component of G�X[A].

The condition in Corollary 3 occurs if and only if there exists an s-Thicket T for P
⇤(ai | do(v \ ai)).

Furthermore, the same T is an s-Thicket for P (a \ x | do(x, an(a) \ a)).

Proof. Suppose there exists Ai and Ci satisfying the conditions in the corollary for each �Z 2
Zk 2 Z. Recall that according to Thm. 2 the set A is defined as An(Y [Wy)G�XW and Ai ✓ A.
Let T be a minimal subgraph of G�

[Ci] such that every edge (directed or bidirected) that can be
removed without changing the fact that S has a single C-component and the ancestral relationships
between the variables, have been removed. Then we can verify that T is an s-Thicket [23, Def. 4]
for P ⇤(y,wy; do(x,wy)) relative to G and Z0 where all non-atomic interventions are Z are replaced
with atomic ones. To witness, we argue each part of the definition for s-Thicket:

• T is a minimal subgraph of G made of a single C-component,

• by conditions (i) and (ii) we have �k \R 6= ; and Z \R 6= ; for every Z s.t. �Z=z in Z0.

• Also for every Z, by condition (iii) there exists Ti such that hTi,Aii is a hedge [23].

• T ’s root set R (the variables in T without any child) is exactly Ai, then R ✓
An(Ai)GV\(X[An(A)\A)

✓ An(A)GV\(X[An(A)\A)
.

• Finally, for every hedgelet in those hedges, Ti \Ai has to intersect X [ An(A \A).
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