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Abstract

In this work, we propose TGLS, a novel framework for unsupervised Text
Generation by Learning from Search. We start by applying a strong search algorithm
(in particular, simulated annealing) towards a heuristically defined objective that
(roughly) estimates the quality of sentences. Then, a conditional generative model
learns from the search results, and meanwhile smooth out the noise of search. The
alternation between search and learning can be repeated for performance bootstrap-
ping. We demonstrate the effectiveness of TGLS on two real-world natural language
generation tasks, unsupervised paraphrasing and text formalization. Our model
significantly outperforms unsupervised baseline methods in both tasks. Especially,
it achieves comparable performance to strong supervised methods for paraphrase
generation.1

1 Introduction

Text generation refers to a wide range of tasks involving generating natural language, including
machine translation [19, 20, 18], sentence simplification [29, 41], and text summarization [5, 1].
Recent success of neural text generation relies heavily on large parallel data for training, which
may not be available in real-world natural language processing (NLP) applications. In this work,
we consider unsupervised text generation, where no parallel data is available. This setting is more
challenging, and has significant potential in both scientific research (e.g., low-resource language
processing) and industrial applications (e.g., cold start for a new NLP application).

Early work tackles unsupervised text generation by rules or templates [47, 27]. While such approaches
do not require parallel corpora, the generated sentences are highly subject to the rules, and hence lack
the flexibility of natural language. Other work constructs pseudo-parallel data, which is only feasible
for certain tasks like unsupervised machine translation [19].

Recently, researchers have developed search-based techniques for unsupervised text generation [28,
17, 37, 23], where a heuristically defined scoring function evaluates the quality of a sentence, involving
language fluency, semantic compliance, and other task-specific aspects. Then, the algorithm performs
word-level edits (such as word deletion, insertion, and replacement) to search towards a (possibly
local) optimum of the scoring function. With a reasonably designed scoring function, such approaches
are shown to be effective in a variety of applications like paraphrase generation [28, 23], sentence
summarization [37], and text simplification [17].

However, the above search-based approach has two major drawbacks: 1) The inference efficiency is
low. To obtain an output sentence, the search algorithm would perform a few hundred steps of local
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edits and re-evaluations. This could be considerably slower than an autoregressive decoder, which
generates words sequentially. 2) The search could yield noisy results, since the scoring function is
defined heuristically and the search is conducted locally in a discrete sentence space.

To this end, we propose a new framework for unsupervised Text Generation by Learning from
Search (TGLS), which contains a strong search module that explores the sentence space, as well as a
learning module that learns from the search results. For the search module, we adopt the simulated
annealing (SA) algorithm. At each step, SA proposes a local edit by a neural network, and then
either accepts or rejects the proposal based on a heuristically defined scoring function. For learning,
we employ two methods to train a conditional generative model, word-level cross-entropy loss and
the sequence-level max-margin loss. Within TGLS, the search and learning can be boosted by each
other in an iterative fashion. That is, the search results serve as the pseudo-reference for training
the conditional generator, which in turn benefits SA search by serving as a more meaningful initial
state. As for implementation, TGLS involves two pretrained language models: 1) the uni-directional
GPT2 [33], which is suitable for likelihood-based fluency evaluation and conditional generation; and
2) the bi-directional RoBERTa [24], which is better at semantic evaluation and contextual word-level
prediction.

The main contributions of our paper include: 1) We propose TGLS, a principled framework for
unsupervised text generation; TGLS can be applied to different tasks if the output resembles the
input and can be roughly estimated by a heuristically defined scoring function. 2) We successfully
incorporate large-scale pretrained language models into our TGLS framework. 3) We conducted
experiments on two different tasks: paraphrasing and text formalization. In both experiments, TGLS
significantly outperforms unsupervised baseline methods. Moreover, TGLS achieves comparable
performance to recent supervised models [7] in the paraphrasing task. 4) For text formalization (an
example of text style transfer), we are also the first to design a search-based method, and further
extend it into the proposed TGLS framework.

2 Approach

Our TGLS framework involves two stages of search and learning. In the first stage, we perform
simulated annealing (SA) search [23] and treat the obtained output sentences as pseudo-references.
Then, we train an autoregressive GPT2 as the text generator [33] by word-level cross-entropy (CE)
supervised learning, which enables our model to learn quickly. In the second stage, the GPT2
performs beam search and the output is taken as the initial state of the SA algorithm again for iterative
performance improvement. Later, we perform max-margin (MM) learning to better distinguish
between higher-scored sentences and other high-probability but sub-optimal sentences. Figure 1
provides an overview of the two stages of search and learning in TGLS.

2.1 Simulated Annealing Search

The search-based text generation [28, 23] relies on a heuristic-based objective function s(y|x) that
(roughly) evaluates the quality of an output sequence y given the input x (usually, one or a few
sentences). Typically, the objective involves language modeling fluency slm(x), semantic compliance
ssemantic(x, y), and other task-specific scorers stask(y, ·). These individual scorers are combined by
the product of experts [13]:

s(y|x) = slm(y) · ssemantic(x, y) · stask(y, ·). (1)

We adopt simulated annealing (SA) [16, 23], which performs local stochastic search to maximize the
objective. Concretely, SA starts from an initial candidate output sentence y(0), which is set to the
input x in our first-stage SA. For the second stage, it will be the output of our GPT2 model.

At a search step t, SA iteratively proposes a new candidate y0 by local edits of y(t), namely,
word insertion, deletion, and replacement. The proposal y0 is accepted with probability
p(accept|y0, y(t), x, T ) = min

�
1, exp( s(y

0|x)�s(y(t)|x)
T )

 
. Then, y(t+1) = y0 if y0 is accepted, or

otherwise, y(t+1) = y(t). In SA, T is a temperature controlling how greedy the search algorithm is.
Usually, T is high at the beginning of search so as to be more explorative, and then T is cooled down
to achieve a better (local) optimum. Although we follow the generic SA framework of text generation
as in [23], the objective function and proposal are largely redesigned, detailed below.
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Figure 1: Overview of TGLS. (a) First-stage search by simulated anealing (SA). (b) First-stage
learning by cross-entropy (CE) loss. (c) Second-stage search by SA. (d) Second-stage learning by
max-margin (MM) loss. The horizontal axis represents the sentence space.

Fluency scorer (slm). The fluency of a sentence can oftentimes be approximated by a language
model’s predicted probability. Previous search-based work uses recurrent neural networks for
fluency evaluation [28, 23]. In our work, we use the large-scale pretrained GPT2 model [33].
For an output y = y1 · · · yn, the language fluency scorer is the joint likelihood of y, given by
slm(y) = (

Qn
i=1 p(yi|y1, · · · , yi�1))↵, where ↵ is a hyperparameter balancing slm with other scorers

in (1). In fact, we use the vocabulary of GPT2 with bype-pair encoding (BPE), and yi here is a token
after BPE segmentation. Our GPT2 is fine-tuned with non-parallel in-domain corpora to learn the
specificity of a task.

Semantic scorer (ssemantic). In this part, we extend the semantic scorers in [23] with a RoBERTa [24].
Fine-tuning details are presented in Appendix A. Compared with autoregressive GPT2 used for
fluency evaluation, RoBERTa is pretrained by masked language modeling, and is better at feature rep-
resentation. Let x = (x1, · · · , xm) be a sentence. RoBERTa computes a contexualized representation
of a word in the sentence as RoBERTa(xi, x).

A word-level semantic scorer evaluates how much keyword information (detected by Rake [36]) is
preserved, given by the least matched keyword of x:

sword(y, x) = min
k2keyword(x)

max
yi2y

RoBERTa(k, x)>RoBERTa(yi, y). (2)

A sentence-level semantic scorer evaluates the cosine similarity of two sentence vectors ssent(y, x) =
y>x

kykkxk , where the sentence vector is given by the RoBERTa feature of the padded token [BOS] at the
beginning end of a sentence, i.e., x = RoBERTa([BOS], x) and y is computed analogously.

Finally, the semantic scorer is the product of both word- and sentence-level scores as

ssemantic(y, x) = sword(y, x)
� · ssent(y, x)

� , (3)

where � and � are weighting hyperparameters.

Task-specific scorers. We apply TGLS to two tasks: paraphrasing and text formalization.

For paraphrasing, the goal is to generate a semantically similar but lexically different sentence.
Previous work [23] uses the BLEU score to penalize the n-gram overlapping between the output
and input: sparaphrase(y, x) = (1 � BLEU(y, x))�, which is also adopted in our work. Here, � is a
weighting hyperparameter for the task-specific scorer.

For text formalization, the goal is to transform an informal sentence to the formal style [35], which
is an example of text style transfer. We follow the setting of most text style-transfer work [14],
where we assume the style labels are available, but no parallel supervision is given. We train a
classifier that predicts the probability of the style, also based on the RoBERTa features. Then,
the task-specific scorer becomes sformality(y) = p(formal |RoBERTa([BOS], y))�, where � is the
weighting hyparaparameter for this task.

Proposal of local edits. At a step t of SA search, a new candidate y0 is proposed from y(t) by local
editing. SA randomly picks a position to edit, as well as one of the following operators: Replace,
Insert, and Delete.

For Replace, the model suggests a candidate word at xi based on the posterior distribution induced by
s(y|x). For efficiency concerns, previous work [28, 23] evaluates top-K candidate words, suggested
by a forward and backward language model. In our work, we adopt RoBERTa to evaluate the
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posterior probability of a word, where the word embedding layer of RoBERTa at this slot is randomly
masked. The Insert edit also suggests a word from the posterior, predicting a word given the newly
added [MASK] token and the context. This complies with RoBERTa’s pretraining criteria of masked
language modeling and is able to suggest high-quality candidate words. The Delete operator simply
removes the word at a chosen position.

In text formalization, we also have rule-based local edits (e.g., “we are” substituting “we’re”)
which are retrieved from PPDB [30]. Previous sequence-to-sequence approaches on this task adopt
manually designed rules as a preprocessing step [35] or as additional input concatenated with the raw
sentence [46]. Our unsupervised TGLS, on the other hand, can easily make use of the off-the-shelf
resources, and can easily filter out the noise by rejecting bad candidates.

In short, the SA search component in our TGLS mainly follows [23], but we re-design the scoring
functions and the proposals. The main focus of this paper is to couple search and learning, especially
the methods of training a machine learning model that learns from the search results, as follows.

2.2 Word-Level Cross-Entropy (CE) Learning

As mentioned in Section 1, the local search algorithm is computationally inefficient during inference
time, because it requires a few hundred steps of edits and re-evaluations for each sample.

Our intuition is to train a conditional generative model, GPT2, based on SA’s search results. Specifi-
cally, we concatenate an input x and SA’s searched sequence y(SA) with a special separating token
[SEP] in between, and train GPT2 with losses on the y-part. Therefore, the GPT2 would be able to
generate an output sequence directly from p(y|x) in an autoregressive way.

Given a source sequence x, the objective is the word-by-word cross-entropy (CE) loss, given by

JCE = �
NX

i=1

X

v2V
y(SA)
i,v log p(GPT2)

i,v , (4)

where y(SA)
i,v is a binary value, indicating whether the ith word is v or not in the SA’s output for this

data sample, N is the length of y, and p(GPT2)
i,v = Pr

⇥
yi = v | y(SA)

<i , x
⇤
, which is predicted by the

GPT2.

The word-level CE learning in TGLS adopts standard teacher-forcing technique with SA’s output
being the pseudo-reference, i.e., during training, the GPT2 model learns the probability p(GPT2)

i,v at
step i, assuming all previous words are correctly predicted as y(SA)

<i . Thus, word-by-word CE trains
all predictions in the sequence simultaneously, and is able to quickly adapt a generic pretrained GPT2
to the text generation task at hand.

It is also noted that minimizing the cross-entropy loss (4) is equivalent to minimizing
KL(by(SA)

i kp(GPT2)
i ), i.e., the KL-divergence between by(SA)

i and p(GPT2)
i , if viewed as distributions

over the vocabulary. Due to the asymmetry nature, minimizing the KL-term makes the second slot
p(GPT2)
i more wide-spreading than the first slot by(SA)

i , illustrated in Figure 1(b). This provides an
explanation of why the CE-trained GPT2 could smooth out the noise of the stochastic SA search. As
will be shown in experiments, training a GPT2 from SA’s output alone can outperform SA.

2.3 Sequence-Level Maximum-Margin (MM) Learning

Our next insight is to perform alternations between search and learning to bootstrap performance
of TGLS. In the first stage, SA starts local search with the initial candidate being the input (i.e.,
y(0) = x), because we have no other meaningful candidate output yet. Starting with x takes advantage
of the resemblance between input and output. But if a higher-quality candidate is available, SA may
perform better than from x.

Therefore, we propose another stage of search and learning alternations. SA starts from an initial
candidate being GPT2’s output, i.e., y(0) = y(GPT2), shown in Figure 1(c). Then, GPT2 is further
fine-tuned to learn from the newly searched result. For the learning method, we propose to employ
sequence-level max-margin (MM) training, instead of CE training, in this stage. Such alternation can
be performed for multiple epochs for performance bootstrapping.
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Algorithm 1: Training TGLS

Input: A non-parallel corpus X
Output: A fine-tuned GPT2 model
B First-stage learning from search
for an input x 2 X do

y
(SA)

= SA(x, x)
B SA is detailed in Algorithm 2. In the first stage, SA starts with input x as the initial candidate

for all epochs do
for an input x with its SA output y(SA) do

Fine-tune GPT2 by cross-entropy loss (4) with pseudo-reference y
(SA), conditioned on x

B Second-stage learning from search
for all epochs do

for an input x do
Y (GPT2)

= BeamSearch(GPT2(x)) B Y (GPT2) is a set of output by beam search

y
(SA-S2)

= SA(x, y(GPT2)
) for some y

(GPT2) 2 Y (GPT2)

B In the second stage, SA starts with GPT2’s output (any output in the beam is fine)
eY = Y (GPT2) [ {y(SA-S2)}
Fine-tune GPT2 with max-margin loss (5) with

positive sample: y+
= argmaxy2eY s(y|x), and

negative samples: eY \{y+}

Return: Resulting GPT2 (denoted by GPT2-S2 after two stages of search and learning)

Concretely, the GPT2 trained with CE learning performs beam search (beam size B) and obtain a
set of output sequences Y (GPT2) = {y(GPT2,1), · · · , y(GPT2,B)}. A randomly picked (for efficiency
purpose) output in Y (GPT2) is taken as initial candidate in SA search, yielding a new sample y(SA-S2).
We consider the set eY = Y (GPT2) [ {y(SA-S2)} as the positive and negative samples for MM learning.
In fact, the positive sample y+ is the best sequence scored by (1), i.e., y+ = argmaxy2eY s(y|x). In
most cases, we have y+ = y(SA-S2), but this is not necessarily true because SA is not greedy. All
other sentences in eY are collected as negative samples. We use the average of GPT2’s pre-softmax
logit as the negative energy.2 In other words, we have �E(y) = 1

N

PN
i=1 zi,yi of a sequence

y = (y1, · · · , yN ), where zi,yi is the logit for the word yi at the ith step. The max-margin loss for
this data sample is

JMM =
X

y�2eY , y� 6=y+

max
�
0, E(y+)� E(y�) +�

 
, (5)

where � (set to 1) is the margin hyperparameter.

In fact, the energy implicitly defines a globally normalized distribution as p(y) = 1
Z exp{�E(y)},

where Z is the partition function. The MM training increases the probability of the positive sample,
while decreasing the probability of negative ones. In our MM training, the negative samples are given
by beam search on GPT2, highly resembling the positive one. This makes TGLS more sensitive to the
sequence-level scorer (1) in its probable region of the output space, illustrated in Figure 1(d).

By contrast, word-level CE increases the probability of the target (analogous to the positive sample)
step-by-step, while decreasing the probability of other samples due to local normalization. Thus, it
cannot explicitly correct the prediction of a highly-probable but low-scored sample, and performs
worse than MM in the second stage.

In summary, the training of TGLS involves two stages of search and learning, where CE and MM
are used as the learning objective in different stages. Notice that, for the second stage, search
and learning are alternated within the epoch loop. Thus, another stage of search and learning is
unnecessary, because our second stage already allows multiple epochs for performance bootstrapping.
For inference, we do not perform SA search, but directly use the fine-tuned GPT2 for autoregressive
prediction. Appendix B further provides a detailed diagram of our TGLS.

2Energy is what MM learning would like to minimize for positive samples.
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2.4 Discussion: TGLS vs. Reinforcement Learning and Structured Prediction

One of the most popular algorithms of reinforcement learning (RL) in text generation is the RE-
INFORCE, which maximizes the expected reward (such as the BLEU score [34] or an adversarial
discriminator [53]) by sampling a sequence of actions from its learned policy and reweighing the
likelihood training of the sampled sequence. REINFORCE is known to have high variance, and
previous REINFORCE-based text generation involves groundtruth pretraining [53]. Without a warm
start, the sampling-based REINFORCE does not work with such a large action space as the vocabulary.
Our TGLS would also optimize an external scoring function (analogous to the reward in RL), but
does not have grountruth for pretraining. We instead perform SA search and learn from SA’s (local)
optima step-by-step.

Monte-Carlo Tree Search (MCTS) [39] is another paradigm of search and learning, where a search
tree is maintained with each non-leaf node being a partial configuration (e.g., a partial sentence in
text generation). Again, it suffers from the large branching factor, which is the vocabulary size in
our applications. Our TGLS adopts local search, which maintains a full configuration and evaluates
the candidate at each search step. The resemblance between input and output also largely eases the
search task.

The Learning-to-Search (L2S) framework has been successfully applied to various NLP applica-
tions, such as structured prediction [6, 4] and text generation [48, 54]. L2S allows the model to
explore/search in the space, collects the score (cost) for possible actions, and optimizes the model.
Usually, L2S assumes that an expert demonstration (groundtruth sequence and/or dynamic oracle)
is available as a reference policy. For instance, a LaSO-like algorithm forces the model to search
towards the groundtruth sequence; when the groundtruth is out of the search range, a learning update
is performed, where the search effort serves as the negative samples and the groundtruth as positive
examples for learning [6, 48]. By contrast, TGLS does not have groundtruth, but uses a strong search
algorithm to find higher-scored sentences, which serve as positive samples.

Our approach is also related to learning an inference network for energy-based structured predic-
tion [42, 43]. They perform adversarial learning on the energy model (analogous to a discriminator)
and the inference network (analogous to a generator), with the access of groundtruth target. We
instead face an unsupervised setting, where we define the heuristic scorer for discrete search; our
conditional generator further learns from the search results.

3 Experiments

3.1 Datasets and Settings

Paraphrase Generation. Paraphrase generation is to rephrase input text with different expressions,
while keeping the semantics. Following previous work [8, 12], we conducted experiments on the
Quora benchmark dataset.3 We followed the unsupervised setting in [23] and used 500K sentences to
fine-tune GPT2 and RoBERTa for fluency and semantic scorers. For validation and testing, we had
500 and 170K samples, respectively.

We adopt BLEU and iBLEU as evaluation metrics, which are widely used for paraphrase generation.
BLEU measures the length-penalized n-gram overlap between an output and the reference. In
addition, paraphrasing requires that the output should be different from input. Thus, iBLEU [40]
penalizes BLEU by n-gram similarity between output and input. Following most work, we consider
iBLEU as the main metric for paraphrasing.

Text Formalization. This task concerns formality transfer of text, and our goal is to rephrase a
given informal text into the formal style. We experimented with the Grammarly’s Yahoo Answers
Formality Corpus (GYAFC) [35] in the domain of Family & Relationships. It is noted that GYAFC
contains 50K informal–formal pairs, but our TGLS follows the setting of most other style-transfer
work [14], which uses non-parallel corpora with style labels, but does not have parallel supervision.
Our pretrained language models are additionally fine-tuned on automatically labeled non-parallel
corpus [50]. In GYAFC, there are 3K samples for validation and 1K for test.

3https://www.kaggle.com/c/quora-question-pairs
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Table 1: Automatic evaluation results on
paraphrasing.

Methods iBLEU BLEU

Supervised

RL-NN [32] 14.83 20.98
DAGGER† [7] 18.88 28.42
GPT2† [33] 19.19 26.92

Distant supervised

Round-Trip MT (GPT2)† [11] 11.24 16.33
Round-Trip MT (Transformer)† [26] 14.36 20.85

Unsupervised

VAE [3] 8.16 13.96
CGMH [28] 9.94 15.73
UPSA [23] 12.02 18.18
SA w/ PLM (Ours)† 14.52 21.08
TGLS (Ours)† 17.48 25.00

Table 2: Automatic evaluation results on formality transfer.
#The smaller, the better.

Methods† PPL# BLEU Formality H-mean G-mean

Supervised

LSTM-attn [35] 23.42 69.36 87.39 77.34 77.85
Unsupervised

BackTrans [31] 183.7 1.23 31.18 2.37 6.13
StyleEmb [9] 114.6 8.14 12.31 9.80 10.01
MultiDec [9] 187.2 13.29 8.18 10.13 10.42
CrossAlign [38] 44.78 3.34 67.34 6.36 14.99
DelRetrGen [21] 88.52 24.95 56.96 34.70 37.69
Template [21] 197.5 43.45 37.09 40.02 40.14
UnsupMT [56] 55.16 39.28 66.29 49.33 51.02
DualRL [25] 66.96 54.18 58.26 56.15 56.18
TGLS (Ours) 30.26 60.25 75.15 66.88 67.29

† indicates that the results are directly comparable to TGLS on the same data split. Appendix C provides more
details on the baseline models and how these results are obtained.

The performance of formality transfer is measured in different aspects. The language modeling
perplexity evaluates the fluency of the generated text, and a separately trained classifier predicts the
formality accuracy. Particularly, the formality evaluator achieves an accuracy of 94%, being a good
automatic evaluation measure.4 The BLEU score is also computed against the reference to evaluate
n-gram overlap. Finally, we consider the harmonic mean (H-mean) and the geometric mean (G-mean)
of the formality accuracy and the BLEU score as our main metrics for this task.

Hyperparameters. For SA, the initial temperature was set to 1e-2 in both tasks. The total search steps
and temperature cooling were 50, 2e-4 for paraphrasing; and 100 and 1e-4 for text simplification. The
scorers’ weights were tuned by grid search, set as (↵,�, �, �) = (0.8, 1, 0.6, 0.125) for paraphrasing,
and (0.8, 2, 1.25, 0.26) for text formalization. We keep the RoBERTa fixed and further tune the GPT2
model by alternations of search and learning for another 6 epochs.

3.2 Overall Performance

Table 1 presents the results of automatic evaluation for paraphrase generation. Among the unsuper-
vised approaches, the simulated annealing model UPSA [23] achieves the previous state-of-the-art
performance, outperforming both variational sampling [3] and discrete-space Metropolis–Hastings
sampling [28]. We propose to use large-scale pretrained language models for fluency and evaluation
(denoted by SA w/ PLM), and improve iBLEU by 2.5 points from UPSA. Our TGLS framework of
search and learning further improves iBLEU by 2.96 points, being a new state-of-the-art unsupervised
paraphrasing model.

The TGLS also outperforms the paraphrasing systems based on round-trip translation, which is widely
used in real-world applications. Such methods generate a paraphrase by translating a sentence to a
foreign language and translating it back. It is categorized as distant supervision, because it requires
parallel corpora for machine translation, but not for the paraphrasing task of interest.

Noticeably, our unsupervised TGLS performs comparably to a few recent paraphrasing model [32, 7].
Moreover, we train a GPT2 in the supervised setting for a controlled experiment, where the neural
architecture is fixed. We see that the unsupervised TGLS is slightly worse than the supervised setting
by only 1.71 iBLEU, largely closing the gap between supervised and unsupervised paraphrasing.

Table 2 presents the results for formality transfer. Again, we see consistent evidence on the effec-
tiveness of TGLS, as it outperforms existing unsupervised approaches including heuristic marking of
style words and retrieval-based editing [21], unsupervised machine translation approaches [56], and
dual reinforcement learning [25].

Admittedly, the unsupervised TGLS is still worse than supervised approaches on this task. This is
probably because our heuristic scorers are mostly designed for the paraphrasing task, and even for

4We reuse the architecture of RoBERTa for formality evaluation and GPT2 for fluency evaluation. However,
they are separately trained, third-party models, and are NOT part of our TGLS.
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Table 3: Model analysis on paraphrase generation. All variants use pretrained language models.
Methods iBLEU BLEU Inference Time

(sec/sample)

SA 14.52 21.08 5.46
SA+CE 14.97 23.25 0.06
SA+CE+SA 15.41 21.48 2.62
SA+CE+SA+CE 15.70 21.70 0.37
SA+CE+SA+MM (full) 17.48 25.00 0.43

large-scale pretrained models, their performance may drop with informal text. More effort could be
made here for future work.

We also conducted human evaluation, reported in Appendix D. Results are consistent with these
automatic metrics.

3.3 Analysis

In this part, we present an in-depth analysis of our model with paraphrase generation as the testbed.

Ablation study. As TGLS involves two stages of search and learning, we conduct an ablation study,
shown in Table 3. We start from a base simulated annealing (SA) approach, where we have already
adopted pretrained language models. Thus, it sets up a fair comparison.

In the first stage of learning, our GPT2 model with word-level cross-entropy (CE) training already
outperforms SA alone. The result is slightly surprising, but it actually makes sense because cross-
entropy loss can smooth out the noise in SA’s heuristically defined search objective.

We also tried to train the GPT2 by max-margin (MM) loss without CE learning, but it fails to escape
from a random policy. It is due to the difficulty of training an energy-based model in comparison to a
locally normalized model [10]. In our work, the negative samples in the beam would be useless when
the model is not warm started.

We compare SA with the initial sentence being input and GPT2’s prediction (SA vs. SA+CE+SA).
We see the latter outperforms both SA and SA+CE. This confirms that the learned GPT2 helps SA
find a better optimum.

The last two lines of Table 3 provide evidence of performance bootstrap by alternating between
search and learning, as they outperform other ablated variants. In particular, MM is better than CE by
a significant margin in the second stage. Our intuition is that MM with negative samples in the beam
makes TGLS more sensitive in distinguishing sentence quality with its highly probable output region.

Efficiency analysis. We report inference time in Table 3. The experiments were conducted on
a cluster with Nvidia Telsa V100 GPUs. The inference time could be noisy due to the multi-
thread nature of clusters, but it provides a conclusive enough comparison between search-based and
autoregressive generation. As seen, SA is inefficient because it requires hundreds of steps of editing
and reevaluation. SA+CE, SA+CE+SA, SA+CE+SA+CE, and SA+CE+SA+MM are all based
on the GPT2 model during inference, and thus are much more computationally efficient. Based on
the validation, SA+CE adopts greedy decoding, whereas the others adopt beam search with a size of
5. We see all GPT2-based generators are at least 6–10⇥ faster than the search-based methods.

The training efficiency of TGLS is roughly twice as much as SA plus GPT2 fine-tuning. We do not
have quantitative comparison, because training efficiency highly depends on hyperparameters and
early stop strategies. While our training is more complex than SA or GPT2, we do not view it as a
disadvantage. First, training is usually done offline; when trained, our model is very efficient for
deployment compared with SA. Second, it is understandable that we sacrifice some training efficiency
compared with supervised models, since we do not have parallel data. In fact, our approach should
be more efficient (and labor-saving) than data collection plus human annotation in the supervised
setting, as explained in “Broader Impact.”

Case study. We present a case study in Appendix E. Typical examples show that TGLS is able to
generate more fluent and more different-appearing paraphrases than search-based methods.
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4 Related Work

Unsupervised text generation. One popular approach to unsupervised text generation is the varia-
tional autoencoder [15], which generates text by manipulated latent space for certain attributes, such
as sentiment [14], topic [45], and syntax [55].

Recently, search-based methods have been developed for various text generation tasks, including text
simplification [17], summarization [37], keyword-to-text generation [28], and paraphrasing [28, 23].
However, these methods are not learnable; hence, the inference is inefficient and the performance
cannot be improved by training.

Most of other work of unsupervised text generation is built upon heuristics of a certain task. For
instance, Narayan and Gardent [29] propose a task-specific pipeline for sentence simplification. Zheng
and Lapata [58] employ a graph-based ranking algorithm to select the most significant sentence
as the summarization of a document. Chu and Liu [5] utilize the overlapping of text as a hint for
multi-document summarization. In our work, the proposed TGLS is a principled search-and-learning
framework, where it is also possible to encoding prior knowledge of a task into the search algorithm.

Paraphrase generation. Recent progress on paraphrase generation is largely due to neural models
trained with large-scale parallel data. Researchers have applied search-and-learning approaches
for supervised paraphrasing, such as reinforcement learning (RL) [22, 32, 52] and learning-to-
search (L2S) [7] (see Section 2.4 for discussion on these machine learning models). Our approach is
in the unsupervised setting.

Researchers have proposed roundtrip translation for paraphrasing, i.e., translating a source sentence
into a pivot language, and then translating it back into the original language [57, 26, 11]. Although no
supervision of paraphrases is needed, the success of this approach depends on high-quality machine
translation (MT) systems, hence requiring large-scale parallel MT datasets. This can be thought of as
distant supervision for paraphrasing.

In the unsupervised setting, paraphrases can be generated by either a variational latent-space sam-
pler [2] or a word-space Metropolis–Hastings (MH) sampler [28]. By decreasing the temperature of
the stationary distribution, Liu et al. [23] show that search-based formulation outperforms sampling
for unsupervised text generation. Our work further extends it to the learning-from-search framework,
improving both accuracy and inference efficiency.

Text style transfer. Our text formalization is one application of text style transfer. Other examples
include sentiment [14] and the prose style [51]. Typically, text style transfer can be divided into
three categories: parallel supervised, non-parallel supervised (with only style labels), and purely
unsupervised. Parallel supervised style transfer trains a sequence-to-sequence model [35], whereas
purely unsupervised style transfer replies on disentangling latent space [49].

Most previous work on text style transfer is in the non-parallel supervised setting, assuming style
labels are available. Researchers have developed style embedding-based approaches [38, 9], style-
specific decoders [9], style-word editing approaches [21], among others. Our approach also follows
this setting, but to the best of our knowledge, we are the first to model style transfer as a search
problem, as well as to extend it to the proposed TGLS framework of learning from search.

5 Conclusion

This work proposes a novel learning-from-search framework TGLS to unsupervised text generation.
We show that the simulated annealing search can provide high-quality examples for training a
conditional text generator. Further, the generative model can give a better initial state to the search
algorithm. Experiments demonstrate that the alternation of search and learning can boost the
performance of TGLS on two unsupervised text generation tasks, paraphrase generation and text
formalization. Moreover, our model is considerably more computationally efficient, compared
with search-based generation methods. We note that TGLS opens a few future directions, such as
more effective and efficient search algorithms, more noise-robust learning methods, and a better
combination of search and learning. We would also like to apply the learning-from-search framework
to other sequential prediction tasks in NLP.
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6 Broader Impact

Our TGLS is a new framework of search and learning for natural language processing (NLP) ap-
plications. Typically, an NLP application is different from an agent-based reinforcement learning
(RL) setting, as our “environment” is fixed. Previous work in NLP usually uses the REINFORCE
algorithm, which introduces much noise and is inefficient because actions are sampled from its policy.
Imitation learning (IL), another framework for search and learning, is successful in various NLP
structured prediction tasks, but requires expert demonstrations (i.e., groundtruth). Our work alleviates
the drawbacks of RL and IL by injecting a strong search algorithm in the search-and-learning loop.
With the success in paraphrasing and text formalization in our paper, we expect TGLS would be
potentially applicable to other NLP tasks.

For social aspects, the unsupervised nature of TGLS would have the following potential impact.

• Reducing human annotation labors. Most text generation approaches need parallel data
for supervised training, which oftentimes in turn requires human annotation. Our TGLS
does not rely on annotated parallel data. Experiments show that TGLS largely reduces the
performance gap between supervised and unsupervised text generation, sometimes even
comparable to recent supervised models. This reduces the need of human annotation in the
research and application of text generation.

• Helping low-resource language processing. Previous text generation studies hardly tackle
low-resource language, due to the lack of parallel corpora. Our unsupervised TGLS is easily
applicable to low-resource language, thus benefiting people from different cultures speaking
different languages.

• Supporting small businesses and new applications. Small businesses, different from a
large company, may not have enough human and financial resources to annotate large-scale
corpora. They may apply our unsupervised TGLS as a starting point for a new project, or
even a new application.
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