
Thank reviewers for detailed comments. Our main contribution is the novel search-and-learning for1

UnsupTextGen, achieving remarkable performance (sometimes even better than SupTextGen). Our2

novelty, clarity, and performance are recognized by different reviewers. Despite some borderline score,3

we find reviewers’ concerns can all be resolved and do not diminish our contributions, addressed below.4

R1: Thanks for recognizing our novelty and performance. 3.1 (generic UnsupTextGen framework):5

By “generic” we mean the model can be applied to different tasks that share the same problem structure. In6

fact, search-based UnsupTextGen has shown promising results for summarization[36], simplification[27,41],7

grammar correction[26]. Our framework differs from application-specific UnsupTextGen. For example,8

the rules/heuristics in [18] only applies to sentiment style transfer. Future work MT: Thanks for9

suggesting the future work. We are currently considering MT by using word-level dictionary and10

performing search and learning. We’re happy to revise the terminology and highlight what applications11

TGSL is appropriate for, namely, those where the input and output show certain resemblance. We expect,12

however, this can be relaxed by using different search algorithms other than local search. 3.2 (SA+MM):13

We mentioned in Line 269 that SA+MM cannot achieve reasonable performance. This is because MM is14

hard to train without warm start (training signal is too sparse merely by several negative samples).15

R2: 3 (Novelty): Our main novelty is the search-and-learning framework TGSL for UnsupTextGen,16

where our learning is non-trivial and involves two stages with different losses, well motivated and17

supported by ablation study. To our best knowledge, we are the first to work in this direction. The scorers18

highlighted by the reviewer are additional engineering contributions of this paper; TGSL also largely19

differs from all previous RL models (see §2.4 for detailed discussion). 4 (no human eval): human eval20

is in Appendix D, summarized in Line 258, main paper. 6 (How...differs from previous unsupervised21

search TextGen): We propose a search-and-learning framework§2.2-2.3 for UnsupTextGen; previous22

work is search only. Component wise comparison of UnsupTextGen: We’re unsure what “component23

wise comparison" is; Tab 3 presents a rigorous ablation study of our model with previous work, where24

model capacity is strictly controlled. 8 (future work MT/QuestionGen): See response to R1. Thanks!25

R3: 1 (only replaces original scoring): Our main contribution is the search-and-learning26

framework[§2.2-2.3]. Improving the original scorer[§2.1] is our additional contribution. 3.1 (motivation):27

UnsupTextGen has wide applications, e.g., low-resource language and cold-start for new applications,28

where large-scale parallel corpora are unavailable[Line16]. Motivation for search-and-learning (main29

contribution) is to improve efficiency by avoiding search and to improve performance by smoothing30

out search noise[Line30]. 3.2 (search-based UnsupTextGen): Search component is simulated annealing31

(SA)[Line66]. UnsupTextGen is feasible with a manually defined objective function for the strong SA32

search. We used SA but further proposed the novel search-and-learning framework. 3.3 Conclusion (and33

clarity): Thanks for saying the overall clarity is “very good.” Due to space limit, we omitted Conclusion34

for submission. We’ll expand the details and include the conclusion should the paper be accepted.35

R4: 3.1 (additional compute/latency): Our inference efficiency is as low as a conditional text generator,36

but 5–10x faster than previous search UnsupTextGen[Tab 3]; training efficiency ≈ 2×(SA+finetuneGPT2).37

3.2 (controlling #parameters): Yes, the number of parameters is strictly controlled in Tab 3; our 5–10x38

speedup is under the same model capacity. 3.3 (inference times of other baseline methods): In Tab 3,39

we compared the efficiency with the SA algorithm[20]. For other baselines, we either quoted results from40

previous work or tested published output[Appendex C]; thus, we don’t have the inference time. However,41

our efficiency is comparable to any conditional text generator (when model capacity is controlled),42

because we essentially distill the knowledge of searching into a conditional text generator. �While43

our training efficiency is roughly 2×(SA+finetuneGPT2), we do not view it as a disadvantage. First,44

training is usually done off-line; when trained, our model is very efficient for deployment. Second, it’s45

understandable that we sacrifice some training efficiency compared with supervised models, since we46

do not have parallel data. In fact, our approach should be more efficient (and labor-saving) than data47

collection plus human annotation in the supervised setting, as explained in “Broader Impact.” We hope48

our explanation could address the review’s concern of efficiency. We will discuss this in the revision.49

R5: 3.1: Thanks for understanding the significant substance of our work! See response to 5.1–5.4. 3.250

(search-based): Yes, simulated annealing can be thought of as stochastic search, because it aims to51

maximize a function. We’ll explain more. 3.3/3.4: Ablation study is in Tab 3, showing SA performance52

within TGSL. We briefly discussed StructuredPrediction (and RL) in §2.4: StructPredict in the supervised53

setting requires expert demonstrations, but we only have pseudo-reference given by SA. We’ll include the54

suggested papers and discuss StructPredict more in the revision. 4.1: Thanks for pointing this out. Yes,55

we’ve already realized this typo and corrected it in our local version. 4.2: Energy E(x)∈(−∞,∞) is56

indeed unbounded and unnormalized. Probability is thus defined as p(x)∝exp{−E(x)}. We’ll present57

it when revising the paper. 5.1: ∆=1 like most applications. 5.2: Epoch=6[Line233] by early stop on58

validation. 5.3: Beam size=5[Line 285]. 5.4: Yes. N is the length of y for a sample. Thanks! Will clarify.59

1


