
In Appendix A, we review some statistical results for sparse linear regression. In Appendix B,
we provide the proof of main theorems as well as main claims. In Appendix C, we include some
supporting lemma for the sake of completeness.

A Sparse linear regression

We review some classical results in sparse linear regression. Consider the following sparse linear
regression model:

yi = 〈xi, θ∗〉+ εi, i = 1, . . . , n, (A.1)
where θ∗ ∈ Rd and ‖θ∗‖0 = s ≤ d and the noise {εi}ni=1 independently follows a zero-mean,
σ-sub-Gaussian distribution. Let the design matrix be X = (x1, . . . , xn)> ∈ Rn×d. Define the
Lasso estimator as follows:

θ̂n = argmin
θ

( 1

n

n∑
i=1

(yi − 〈xi, θ〉)2 + λ‖θ‖1
)
.

Condition A.1 (Restricted eigenvalues). Define the cone:

C(S) := {∆ ∈ Rd|‖∆Sc‖1 ≤ 3‖∆S‖1},

where S is the support set of θ∗. Then there exists some positive constant κ such that the design
matrix X ∈ Rn×d satisfied the condition

‖Xθ‖22
n

≥ κ‖θ‖22,

for all θ ∈ C(S).

Condition A.2 (Column normalized). Using Xj ∈ Rn to denote the j-th column of X , we say that
X is column-normalized if for all j = 1, 2, . . . , d,

‖Xj‖2√
n
≤ 1.

Theorem A.3. Consider an s-sparse linear regression and assume design matrix X ∈ Rn×d satisfies
the RE condition (Condition A.1) and the column normalization condition (Condition (A.2)). Given
the Lasso estimator with regularization parameter λn = 4σ

√
log(d)/n, then with probability at least

1− δ,

• the estimation error under `1-norm (Theorem 7.13 in Wainwright [2019]) of any optimal
solution θ̂n satisfies ∥∥θ̂n − θ∗∥∥1

≤ σs

κ

√
2 log(2d/δ)

n
;

• the mean square prediction error (Theorem 7.20 in Wainwright [2019]) of any optimal
solution θ̂n satisfies

1

n

n∑
i=1

(
x>i (θ̂n − θ)

)2 ≤ 9

κ

s log(d/δ)

n
.

B Proofs of main theorems and claims

B.1 Proof of Claim 3.5

We first prove the first part. By standard calculations, we have

Rθ(n) = Eθ
[ n∑
t=1

〈x∗, θ〉
]
− Eθ

[ n∑
t=1

〈At, θ〉
]

= Eθ
[
n(s− 1)ε−

n∑
t=1

1(At ∈ H)〈At, θ〉 −
n∑
t=1

1(At ∈ S)〈At, θ〉
]
,
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where the last equation is from the definition of x∗ in Eq. (3.3). From the definition ofH in Eq. (3.2),
the following holds for small enough ε,

n∑
t=1

1(At ∈ H)〈At, θ〉 ≤ Tn(H)(κ(s− 1)ε− 1) ≤ 0, (B.1)

where Tn(H) =
∑n
t=1 1(At ∈ H). Since 〈At, θ〉 =

∑s
j=1Atjε for At ∈ S, then it holds that

Rθ(n) ≥ Eθ
[
n(s− 1)ε−

n∑
t=1

1(At ∈ S)

s−1∑
j=1

Atjε
]

≥ Eθ
[(
n(s− 1)ε−

n∑
t=1

1(At ∈ S)

s−1∑
j=1

Atjε
)
1(D)

]
≥
(
n(s− 1)ε− n(s− 1)ε

2

)
Pθ(D)

=
n(s− 1)ε

2
Pθ(D).

(B.2)

Second, we derive a regret lower bound of alternative bandit θ̃. Denote x̃∗ as the optimal arm of
bandit θ̃. By a similar decomposition in Eq. (B.2),

Rθ̃(n) = Eθ̃
[ n∑
t=1

〈x̃∗, θ̃〉
]
− Eθ̃

[ n∑
t=1

〈At, θ̃〉
]

= Eθ̃
[
2n(s− 1)ε−

n∑
t=1

1(At ∈ H)〈At, θ̃〉 −
n∑
t=1

1(At ∈ S)〈At, θ̃〉
]

≥ Eθ̃
[
2n(s− 1)ε−

n∑
t=1

1(At ∈ S)〈At, θ̃〉
]
.

(B.3)

where the inequality comes similarly in Eq. (B.1) to show
∑n
t=1 1(At ∈ H)〈At, θ̃〉 ≤ 0. Next, we

will find an upper bound for
∑n
t=1 1(At ∈ S)〈At, θ̃〉. From the definition of θ̃ in Eq. (3.6),

n∑
t=1

1(At ∈ S)〈At, θ̃〉 =

n∑
t=1

1(At ∈ S)〈At, θ + 2εx̃〉

=

n∑
t=1

1(At ∈ S)〈At, θ〉+ 2ε

n∑
t=1

1(At ∈ S)〈At, x̃〉

≤
n∑
t=1

1(At ∈ S)〈At, θ〉+ 2ε

n∑
t=1

1(At ∈ S)
∑

j∈supp(x̃)

|Atj |,

(B.4)

where the last inequality is from the definition of x̃ in Eq. (3.5). To bound the first term, we have

n∑
t=1

1(At ∈ S)〈At, θ〉 =

n∑
t=1

1(At ∈ S)

s−1∑
j=1

Atjε

≤ ε
n∑
t=1

1(At ∈ S)

s−1∑
j=1

|Atj |.

(B.5)

If all the actions At come from S which is a (s− 1)-sparse set, we have

n∑
t=1

d∑
j=1

|Atj | = (s− 1)n,
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which implies

n∑
t=1

1(At ∈ S)
( s−1∑
j=1

|Atj |+
∑

j∈supp(x̃)

|Atj |
)
≤

n∑
t=1

1(At ∈ S)

d∑
j=1

|Atj | ≤ (s− 1)n,

n∑
t=1

1(At ∈ S)

s−1∑
j=1

|Atj | ≤ (s− 1)n−
n∑
t=1

1(At ∈ S)
∑

j∈supp(x̃)

|Atj |.

(B.6)

Combining with Eq. (B.5),

n∑
t=1

1(At ∈ S)〈At, θ〉 ≤ ε
(

(s− 1)n−
n∑
t=1

1(At ∈ S)
∑

j∈supp(x̃)

|Atj |
)

Plugging the above bound into Eq. (B.4), it holds that

n∑
t=1

1(At ∈ S)〈At, θ̃〉 ≤ ε(s− 1)n+ ε

n∑
t=1

1(At ∈ S)
∑

j∈supp(x̃)

|Atj |. (B.7)

When the event Dc (the complement event of D) happen, we have

n∑
t=1

1(At ∈ S)

s−1∑
j=1

|Atj | ≥
n∑
t=1

1(At ∈ S)

s−1∑
j=1

Atj ≥
n(s− 1)

2
.

Combining with Eq. (B.6), we have under event Dc,
n∑
t=1

1(At ∈ S)
∑

j∈supp(x̃)

|Atj | ≤
n(s− 1)

2
. (B.8)

Putting Eqs. (B.3), (B.7), (B.8) together, it holds that

Rθ̃(n) ≥ n(s− 1)ε

2
Pθ̃(D

c). (B.9)

This ends the proof.

B.2 Proof of Claim 3.6

From the divergence decomposition lemma (Lemma C.2 in the appendix), we have

KL
(
Pθ,Pθ̃

)
=

1

2
Eθ
[ n∑
t=1

〈At, θ − θ̃〉2
]

= 2ε2Eθ
[ n∑
t=1

〈At, x̃〉2
]
.

To prove the claim, we use a simple argument “minimum is always smaller than the average”. We
decompose the following summation over action set S ′ defined in Eq. (3.4),

∑
x∈S′

n∑
t=1

〈At, x〉2 =
∑
x∈S′

n∑
t=1

( d∑
j=1

xjAtj

)2

=
∑
x∈S′

n∑
t=1

( d∑
j=1

(
xjAtj

)2
+ 2

∑
i<j

xixjAtiAtj

)
.

We bound the above two terms separately.
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1. To bound the first term, we observe that

∑
x∈S′

n∑
t=1

d∑
j=1

(
xjAtj

)2
=
∑
x∈S′

n∑
t=1

1(At ∈ S)

d∑
j=1

|xjAtj |+
∑
x∈S′

n∑
t=1

1(At ∈ H)

d∑
j=1

(xjAtj)
2,

(B.10)

since both xj , Atj can only take −1, 0,+1 if At ∈ S. If all the At come from S, we have

n∑
t=1

d∑
j=1

|Atj | = (s− 1)n.

This implies
n∑
t=1

1(At ∈ S)

d∑
j=1

|Atj | ≤ (s− 1)n.

Since x ∈ S ′ that is (s− 1)-sparse, we have
∑d
j=1 |xjAtj | ≤ s− 1. Therefore, we have

∑
x∈S′

n∑
t=1

1(At ∈ S)

d∑
j=1

|xjAtj | ≤ (s− 1)n

(
d− s− 1

s− 2

)
. (B.11)

In addition, since the action in S ′ is s− 1-sparse and has 0 at its last coordinate, we have

∑
x∈S′

n∑
t=1

1(At ∈ H)

d∑
j=1

(xjAtj)
2 ≤ κ2|S ′|Tn(H)(s− 1). (B.12)

Putting Eqs. (B.10), (B.11) and (B.12) together,

∑
x∈S′

n∑
t=1

d∑
j=1

(
xjAtj

)2 ≤ (s− 1)n

(
d− s− 1

s− 2

)
+ κ2|S ′|Tn(H)(s− 1). (B.13)

2. To bound the second term, we observe∑
x∈S′

n∑
t=1

2
∑
i<j

xixjAtiAtj = 2

n∑
t=1

∑
i<j

∑
x∈S′

xixjAtiAtj .

From the definition of S ′, xixj can only take values of {1 ∗ 1, 1 ∗ −1,−1 ∗ 1,−1 ∗ −1, 0}.
This symmetry implies ∑

x∈S′

xixjAtiAtj = 0,

which implies ∑
x∈S′

n∑
t=1

2
∑
i<j

xixjAtiAtj = 0. (B.14)

Combining Eqs. (B.13) and (B.14) together, we have

∑
x∈S′

n∑
t=1

〈At, x〉2 =
∑
x∈S′

n∑
t=1

d∑
j=1

|xjAtj |

≤ (s− 1)n

(
d− s− 1

s− 2

)
+ κ2|S ′|Tn(H)(s− 1).
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Therefore, we use the fact that the minimum of n points is always smaller than its average,

Eθ
[ n∑
t=1

〈At, x̃〉2
]

= min
x∈S′

Eθ
[ n∑
t=1

〈At, x〉2
]

≤ 1

|S ′|
∑
x∈S′

Eθ
[ n∑
t=1

〈At, x〉2
]

= Eθ
[ 1

|S ′|
∑
x∈S′

n∑
t=1

〈At, x〉2
]

≤
(s− 1)n

(
d−s−1
s−2

)
+ Eθ[Tn(H)](s− 1)

(
d−s
s−1

)(
d−s
s−1

)
≤ (s− 1)2n

d
+ κ2Eθ[Tn(H)](s− 1).

This ends the proof of the claim of Eq. (3.7).

B.3 Proof of Theorem 4.2: regret upper bound

Step 1: regret decomposition. Suppose Rmax is an upper bound of maximum expected reward such
that maxx∈A〈x, θ〉 ≤ Rmax. We decompose the regret of ESTC as follows:

Rθ(n) = Eθ
[ n∑
t=1

〈
θ, x∗ −At

〉]
= Eθ

[ n1∑
t=1

〈
θ, x∗ −At

〉
+

n∑
t=n1+1

〈
θ, x∗ −At

〉]
≤ Eθ

[
2n1Rmax +

n∑
t=n1+1

〈
θ − θ̂n1 , x

∗ −At
〉

+

n∑
t=n1+1

〈
θ̂n1 , x

∗ −At
〉]
.

Since we take greedy actions when t ≥ n1 + 1, it holds that 〈x∗, θ̂n1
〉 ≤ 〈At, θ̂n1

〉. This implies

Rθ(n) ≤ Eθ
[
2n1Rmax +

n∑
t=n1+1

〈
θ − θ̂n1

, x∗ −At
〉]

≤ Eθ
[
2n1Rmax +

n∑
t=n1+1

∥∥θ − θ̂n1

∥∥
1

∥∥x∗ −At∥∥∞].
(B.15)

Step 2: fast sparse learning. It remains to bound the estimation error of θ̂n1
− θ in `1-norm. Denote

the design matrix X = (A1, . . . , An1
)> ∈ Rn1×d, where A1, . . . , An1

are independently drawn
according to sampling distribution µ̂. To achieve a fast rate, one need to ensure X satisfies restricted
eigenvalue condition (Condition A.1 in the appendix). Denote the uncentered empirical covariance
matrix Σ̂ = X>X/n1. It is easy to see

Σ = E(Σ̂) =

∫
x∈A

xx>dµ̂(x),

where µ̂ is the solution of optimization problem Eq. (4.1). To lighten the notation, we write Cmin =
Cmin(A). Since action set A spans Rd, we know that σmin(Σ) = Cmin > 0. And we also denote
σmax(Σ) = Cmax and the notion of restricted eigenvalue as follows.

Definition B.1. Given a symmetric matrix H ∈ Rd×d and integer s ≥ 1, and L > 0, the restricted
eigenvalue of H is defined as

φ2(H, s, L) := min
S⊂[d],|S|≤s

min
θ∈Rd

{ 〈θ,Hθ〉
‖θS‖21

: θ ∈ Rd, ‖θSc‖1 ≤ L‖θS‖1
}
.
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It is easy to see XΣ−1/2 has independent sub-Gaussian rows with sub-Gaussian norm
‖Σ−1/2A1‖ψ2

= C
−1/2
min (see Vershynin [2010] for a precise definition of sub-Gaussian rows and

sub-Gaussian norms). According to Theorem 10 in Javanmard and Montanari [2014] (essentially
from Theorem 6 in Rudelson and Zhou [2013]), if the population covariance matrix satisfies the re-
stricted eigenvalue condition, the empirical covariance matrix satisfies it as well with high probability.
Specifically, suppose the rounds in the exploration phase satisfies n1 ≥ 4c∗mC

−2
min log(ed/m) for

some c∗ ≤ 2000 and m = 104sC2
max/φ

2(Σ, s, 9). Then the following holds:

P
(
φ(Σ̂, s, 3) ≥ 1

2
φ(Σ, s, 9)

)
≥ 1− 2 exp(−n1/(4c∗C

−1/2
min )).

Noticing that φ(Σ, s, 9) ≥ C1/2
min, it holds that

P
(
φ2(Σ̂, s, 3) ≥ Cmin

2

)
≥ 1− 2 exp(−c1n1),

where c1 = 1/(4c∗C
−1/2
min ). This guarantees Σ̂ satisfies Condition A.1 in the appendix with κ =

Cmin/2. It is easy to see Condition A.2 holds automatically. Applying Theorem A.3 in the appendix
of the Lasso error bound, it implies:∥∥θ̂n1 − θ∗

∥∥
1
≤ 2

Cmin

√
2s2(log(2d) + log(n1))

n1
.

with probability at least 1− exp(−n1).

Step 3: optimize the length of exploration. Define an event E as follows:

E =
{
φ(Σ̂, s, 3) ≥ C

1/2
min

2
,
∥∥θ̂n1

− θ∗
∥∥

1
≤ 2

Cmin

√
2s2(log(2d) + log(n1))

n1

}
.

We know that P(E) ≥ 1− 3 exp(−c1n1). Note that ‖x∗ −At‖∞ ≤ 2. According to Eq. (B.15), we
have

Rθ(n) ≤ Eθ
[(

2n1Rmax +

n∑
t=n1+1

∥∥θ − θ̂n1

∥∥
1

∥∥x∗ −At∥∥∞)1(E)
]

+ nRmaxP(Ec)

≤ n1Rmax + (n− n1)
4

Cmin

√
2s2(log(2d) + log(n1))

n1
2 + 3nRmax exp(−c1n1)

with probability at least 1− δ. By choosing n1 = n2/3(s2 log(2d))1/3R
−2/3
max (2/C2

min)1/3, we have

Rn ≤ (sn)2/3(log(2d))1/3R1/3
max(

2

C2
min

)1/3 + 3nRmax exp(−c1n1).

We end the proof.

B.4 Proof of Theorem 5.2: improved regret upper bound

We start from a simple regret decomposition based on feature selection step and restricted linear
bandits step:

Rθ(n) = Eθ
[ n∑
t=1

〈
θ, x∗ −At

〉]
= Eθ

[
2n2Rmax +

n∑
t=n2+1

〈
θ, x∗ −At

〉]
.

Step 1: sparsity property of Lasso. We first prove that the Lasso solution is sufficiently sparse. The
following proof is mainly from Bickel et al. [2009] with minor changes. To be self-contained, we
reproduce it here. Recall that the Lasso estimator in the feature selection stage is defined as

θ̂ = argmin
θ∈Rd

( 1

n2

n2∑
t=1

(
Yt − 〈At, θ〉

)2
+ λ2‖θ‖1

)
.
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Define random variables Vj = 1
n2

∑n2

t=1Atjηt for j ∈ [d] and ηt is the noise. Since ‖At‖∞ ≤ 1,
standard Hoeffding’s inequality (Proposition 5.10 in Vershynin [2010]) implies

P
(∣∣ n2∑

t=1

Atjηt
∣∣ ≥ ε) ≤ exp

(
− ε2

2n2

)
.

Define an event E as

E =

d⋃
j=1

{
|Vj | ≤

√
4 log(d)

n2

}
.

Using an union bound, we have
P(Ec) ≤ 1/d.

From the Karush–Kuhn–Tucker (KKT) condition, the solution θ̂ satisfies

1

n2

n2∑
t=1

A>tj(Yt −A>t θ̂) = λ2sign(θ̂j), if θ̂j 6= 0;

∣∣∣ 1

n2

n2∑
t=1

A>tj(Yt −A>t θ̂)
∣∣∣ ≤ λ2, if θ̂j = 0.

(B.16)

Therefore,

1

n2

n2∑
t=1

Atj(A
>
t θ −A>t θ̂) =

1

n2

n2∑
i=1

Atj(Yt −A>t θ̂)−
1

n2

n2∑
i=1

Atjηt

Since λ2 = 4
√

log(d)/n2, under event E , we have∣∣∣ 1

n2

n2∑
t=1

Atj(A
>
t θ −A>t θ̂)

∣∣∣ ≥ λ2/2, if θ̂j 6= 0.

And

1

n2
2

d∑
j=1

( n2∑
t=1

Atj(A
>
t θ −A>t θ̂)

)2

≥
∑
j:θ̂j 6=0

( 1

n2

n2∑
t=1

Atj(A
>
t θ −A>t θ̂)

)2

≥ |supp(θ̂n2
)|λ2

2/4.

On the other hand, let X = (A1, . . . , An2
)> ∈ Rn2×d and φmax = σmax(XX>/n2). Then we have

1

n2
2

d∑
j=1

( n2∑
t=1

Atj

(
A>t θ −A>t θ̂

))2

=
1

n2
2

(
Xθ −Xθ̂

)>
XX>

(
Xθ −Xθ̂

)
≤ φmax

1

n2
‖Xθ̂ −Xθ‖22.

Therefore, with probability at least 1− 1/p,

|supp(θ̂n2)| ≤ 4φmax

λ2
2n2
‖Xθ̂ −Xθ‖22. (B.17)

To lighten the notation, we write Cmin = Cmin(A). As proven in Section B.3, X>X/n2 satisfies
Condition A.1 with κ = Cmin/2 when n2 & s log(d). Applying the in-sample prediction error bound
in Theorem A.3, we have with probability at least 1− 1/p,

1

n2

∥∥Xθ̂ −Xθ∥∥2

2
≤ 9

Cmin

s log(d)

n2
. (B.18)

Putting Eqs. (B.17) and (B.18) together, we have with probability at least 1− 2/d.

|supp(θ̂)| ≤ 9φmaxs

Cmin
. (B.19)
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Step 2: variable screening property of Lasso. Under Condition 5.1 and using Theorem A.3, it
holds that with probability at least 1− 1/d,

min
j∈supp(θ)

|θj | >
∥∥θ̂ − θ∥∥

2
≥
∥∥θ̂ − θ∥∥∞.

If there is a j ∈ supp(θ) but j /∈ supp(θ̂), we have

|θ̂j − θj | = |θj | >
∥∥θ̂ − θ∥∥∞.

On the other hand,
|θ̂j − θj | ≤

∥∥θ̂ − θ∥∥∞,
which leads a contradiction. Now we conclude that supp(θ̂) ⊇ supp(θ). We reproduce Theorem 22.1
in Lattimore and Szepesvári [2020] for the regret bound of phase elimination algorithm for stochastic
linear bandits with finitely-many arms.

Theorem B.2. The n-steps regret of phase elimination algorithm satisfies

Rn ≤ C
√
nd log(Kn),

for an appropriately chosen universal constant C > 0.

Together with Eq. (B.19), we argue the regret of running phase elimination algorithm (Section 22 in
Lattimore and Szepesvári [2020]) on supp(θ̂) for the rest n− n2 rounds can be upper bounded by

Eθ
[ n∑
t=n2+1

〈
θ, x∗ −At

〉]
≤ C

√
9φmax

Cmin
s(n− n2) log(K(n− n2)).

This ends the proof.

C Supporting lemmas

Lemma C.1 (Bretagnolle-Huber inequality). Let P and P̃ be two probability measures on the same
measurable space (Ω,F). Then for any event D ∈ F ,

P(D) + P̃(Dc) ≥ 1

2
exp

(
−KL(P, P̃)

)
, (C.1)

where Dc is the complement event of D (Dc = Ω \ D) and KL(P, P̃) is the KL divergence between
P and P̃, which is defined as +∞, if P is not absolutely continuous with respect to P̃, and is∫

Ω
dP(ω) log dP

dP̃
(ω) otherwise.

The proof can be found in the book of Tsybakov [2008]. When KL(P, P̃) is small, we may expect the
probability measure P is close to the probability measure P̃. Note that P(D) + P(Dc) = 1. If P̃ is
close to P, we may expect P(D) + P̃(Dc) to be large.

Lemma C.2 (Divergence decomposition). Let P and P̃ be two probability measures on the sequence
(A1, Y1, . . . , An, Yn) for a fixed bandit policy π interacting with a linear contextual bandit with
standard Gaussian noise and parameters θ and θ̃ respectively. Then the KL divergence of P and P̃ can
be computed exactly and is given by

KL(P, P̃) =
1

2

∑
x∈A

E[Tx(n)] 〈x, θ − θ̃〉2 , (C.2)

where E is the expectation operator induced by P.

This lemma appeared as Lemma 15.1 in the book of Lattimore and Szepesvári [2020], where the
reader can also find the proof.
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