
(a) Tiny size, two agents (b) Small size, two agents (c) Medium size, four agents

Figure 8: Three size variations of the multi-robot warehouse environment.

A Environments

A.1 Multi-Robot Warehouse

The multi-robot warehouse environment (Figure 8) simulates a warehouse with robots moving and
delivering requested goods. In real-world applications [38], robots pick-up shelves and deliver them
to a workstation. Humans assess the content of a shelf, and then robots can return them to empty
shelf locations. In this simulation of the environment, agents control robots and the action space for
each agent is

A = {Turn Left, Turn Right, Forward, Load/Unload Shelf}
Agents can move beneath shelves when they do not carry anything, but when carrying a shelf, agents
must use the corridors visible in Figure 8.

The observation of an agent consists of a 3× 3 square centred on the agent. It contains information
about the surrounding agents (location/rotation) and shelves.

At each time a fixed number of shelves R is requested. When a requested shelf is brought to a goal
location (dark squares in Fig. 8), another currently not requested shelf is uniformly sampled and added
to the current requests. Agents are rewarded for successfully delivering a requested shelf to a goal
location, with a reward of 1. A major challenge in this environments is for agents to deliver requested
shelves but also afterwards finding an empty shelf location to return the previously delivered shelf.
Agents need to put down their previously delivered shelf to be able to pick up a new shelf. This leads
to a very sparse reward signal.

Since this is a collaborative task, as a performance metric we use the sum of the undiscounted returns
of all the agents.

The multi-robot warehouse task is parameterised by:

• The size of the warehouse which is preset to either tiny (10× 11), small (10× 20), medium
(16× 20), or large (16× 29).

• The number of agents N .
• The number of requested shelves R. By default R = N , but easy and hard variations of the

environment use R = 2N and R = N/2, respectively.

Note that R directly affects the difficulty of the environment. A small R, especially on a larger grid,
dramatically affects the sparsity of the reward and thus exploration: randomly bringing the correct
shelf becomes increasingly improbable.

12

(a) Foraging-10x10-3p-3f (b) Foraging-12x12-2p-1f (c) Foraging-15x15-3p-4f (d) Foraging-8x8-2p-2f-
coop

Figure 9: Four variations of level based foraging used in this work.

A.2 Level-Based Foraging

The level-based foraging environment (Figure 9) represents a mixed cooperative-competitive game [1],
which focuses on the coordination of the agents involved. Agents navigate a grid world and collect
food by cooperating with other agents if needed.

More specifically, agents and food are randomly scattered in the grid world, and each is assigned a
level. Agents can navigate in the environment and attempt to collect food placed next to them. The
collection of food is successful only if the sum of the levels of all agents involved in collecting at the
same time is equal to or higher than the level of the food. Agents are rewarded proportional to the
level of food they took part in collecting. Episodes are terminated once all food has been collected or
the maximum episode length of 25 timesteps is reached.

We are using full observability for this environment, meaning agents observe the locations and levels
of all entities in the map. Each agent can attempt to move in all four directions and attempt to load
adjacent food, for a total of five actions. After successfully loading a food, agents are rewarded:

ri =
FoodLevel ∗AgentLevel∑

FoodLevels
∑
LoadingAgentsLevel

This normalisation ensures that the sum of the agent returns on a solved episode equals to one.

Note that the final variant, Figure 9d, is a fully-cooperative environment. Food levels are always
equal to the sum of all agents’ levels, requiring all agents to load simultaneously, and thus sharing the
reward.

B Additional Experimental Details

Table 2: Hyperparameters used for implementation
of SEAC, IAC and SNAC

Hyperparameter Value

learning rate 3e−4

network size 64× 64
adam epsilon 0.001
gamma 0.99
entropy coef 0.01
value loss coef 0.5
GAE False
grad clip 0.5
parallel processes 4
n-steps 5
λ (Equations (4) and (5)) 1.0

Our implementations of IAC, SEAC, and SNAC
closely follow A2C [21], using n-step returns
and parallel sampled environments. Table 2 con-
tains the hyperparameters used in the experi-
ments. Hyperparameters for MADDPG, QMIX
and ROMA were optimised using a grid search
over learning rate, exploration rate and batch
sizes with the grid centred on the hyperparam-
eters used in the original papers and parameter
performance tested in all used environments.

Table 3 contains process time required for run-
ning IAC and SEAC. Timings were measured on
a 6th Gen Intel i7 @ 4.6 Ghz running Python 3.7
and PyTorch 1.4. The average time for running
and training on 100,000 environment iterations
is displayed. Only process time (the time the
program was active in the CPU) was measured, rounded to seconds. Often, the bottleneck is the
environment and not the network update and as such, more complex and slower simulators, such as
SMAC, show a lower percentage difference between algorithms.

13

Table 3: Measured mean process time (mins:secs) required for 100,000 timesteps.
IAC SEAC % increase

Foraging-10x10-3p-3f-v0 2:00 2:04 3.86%
Foraging-12x12-2p-1f-v0 1:22 1:24 2.94%
Foraging-15x15-3p-4f-v0 2:01 2:06 3.90%
Foraging-8x8-2p-2f-coop-v0 1:21 1:24 3.78%
rware-tiny-2ag-v1 1:41 1:43 1.65%
rware-tiny-2ag-hard-v1 2:05 2:09 2.97%
rware-tiny-4ag-v1 2:49 2:53 2.25%
rware-small-4ag-v1 2:50 2:55 2.44%
Predator Prey 2:44 2:49 3.39%
SMAC (3m) 6:23 6:25 0.38%

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment Steps 1e7

0.0

0.1

0.2

0.3

0.4

0.5

Re
tu

rn
s

lambda=1.0
lambda=0.9
lambda=0.7
lambda=0.5
lambda=0.3

(a) LBF (15× 15), 3 agents, 4 foods

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Environment Steps 1e7

0

5

10

15

20

Re
tu

rn
s

lambda=1.0
lambda=0.9
lambda=0.7
lambda=0.5
lambda=0.3

(b) RWARE (10× 20), two agents

Figure 10: Training returns with different values of λ in SEAC

Figure 10 shows the training returns with respect to different λ values being applied in SEAC. We
find that SEAC is not sensitive to tuning of the hyperparameter λ with similar performance across a
wide range of values. Much lower values for λ closer to 0 lead to decreased performance, eventually
converging to IAC for λ = 0.

For calculation of evaluation returns (Table 1), the best saved models per seed were selected and
evaluated for 100 episodes. During evaluation, QMIX and ROMA use ε = 0, while MADDPG and
AC algorithms apply stochastic policies.

C SEAC Loss Derivation

We provide the following derivation of SEAC policy loss, as shown in Equation (4), for a fully
observable two-agent Markov game

M =
(
N = {1, 2},S, (A1, A2),P, (R1, R2)

)
As per Section 3, let A = A1 ×A2 be the joint action space and A = A1 = A2.

In the following, we use π1 and π2 to denote the policy of agent 1 and agent 2 which are conditioned
on parameters φ1 and φ2, respectively. We use V 1 and V 2 to denote the state value function of agents
1 and 2 which are conditioned on parameters θ1 and θ2.

In order to account for different action distributions under policies π1 and π2, we use importance
sampling (IS) defined for any function g over actions

E
a∼π1(a|s)

[g(a)] = E
a∼π2(a|s′)

[
π1(a|s)
π2(a|s′)

g(a)

]
which can be derived as follows

E
a∼π1(a|s)

[g(a)] =

∫
a

π1(a|s)g(a)da =

∫
a

π2(a|s′)
π2(a|s′)

π1(a|s)g(a)da = E
a∼π2(a|s′)

[
π1(a|s)
π2(a|s′)

g(a)

]

14

Assumption 1 (Reward Independence Assumption: A1). We assume that an agent perceives the
rewards as dependent only on its own action. Other agents are perceived as part of the environment.

∀s, s′ ∈ S : ∀a ∈ A : R̂1(s, a, s′) = R1(s, (a, ·), s′)
∀s, s′ ∈ S : ∀a ∈ A : R̂2(s, a, s′) = R2(s, (·, a), s′)

Assumption 2 (Symmetry Assumption: A2). We assume there exists a function f : S 7→ S such that

∀s, s′ ∈ S : ∀(a1, a2) ∈ A : R1(f(s), (a2, a1), f(s′)) = R2(s, (a1, a2), s′)

and ∀s, s′ ∈ S : ∀(a1, a2) ∈ A : P(s, (a1, a2))(s′) = P(f(s), (a2, a1))(f(s′))

Intuitively, given a state s, f(s) swaps the agents: agent 1 is in place of agent 2 and vice versa.

Lemma 1 (Reward Symmetry: L1). From these two assumptions, it follows that for any states
s, s′ ∈ S, and any action a ∈ A the following holds:

R̂1(f(s), a, f(s′)) = R̂2(s, a, s′)

R̂2(f(s), a, f(s′)) = R̂1(s, a, s′)

Proof.

R̂1(f(s), a, f(s′))
A1
= R1(f(s), (a, ·), f(s′))

A2
= R2(s, (·, a), s′)

A1
= R̂2(s, a, s′)

R̂2(f(s), a, f(s′))
A1
= R2(f(s), (·, a), f(s′))

A2
= R1(s, (a, ·), s′) A1

= R̂1(s, a, s′)

During exploration, agent 1 and 2 follow policy π1 and π2, respectively. We will derive Equations (4)
and (5) for training π1 and V 1 using experience collected from agent 2. The derivation for optimisation
of π2 and V 2 using experience of agent 1 can be done analogously by substituting agent indices.
Note that we only derive the off-policy terms of the SEAC policy and value loss. The on-policy terms
of given losses are identical to A2C [21].

Agent 2 executes action a2 in state s. Following Assumption 2, agent 1 needs to reinforce π1(a2, f(s)).
Notably, in state f(s), a1 is sampled by π2, so importance sampling is used to correct for this
behavioural policy.

Proposition 1 (Actor Loss Gradient).

∇φ1L(φ1) = E
a2∼π2

[
π1(a2|f(s))

π2(a2|s)
(
R2(s, (·, a2), s′) + γV 1(f(s′))

)
∇φ1 log π1(a2|f(s))

]
Proof.

∇φ1
L(φ1) = E

a1∼π2
a2∼π1

[
Q1(f(s), a2)∇φ1

log π1(a2|f(s))
]

IS
= E

a1,a2∼π2

[
π1(a2|f(s))

π2(a2|s))
Q1(f(s), a2)∇φ1

log π1(a2|f(s))

]
= E
a1,a2∼π2

[
π1(a2|f(s))

π2(a2|s)
(
R1(f(s), (a2, a1), f(s′)) + γV 1(f(s′))

)
∇φ1 log π1(a2|f(s))

]
A1
= E

a2∼π2

[
π1(a2|f(s))

π2(a2|s)

(
R̂1(f(s), a2, f(s′)) + γV 1(f(s′))

)
∇φ1

log π1(a2|f(s))

]
L1
= E

a2∼π2

[
π1(a2|f(s))

π2(a2|s)

(
R̂2(s, a2, s

′) + γV 1(f(s′))
)
∇φ1

log π1(a2|f(s))

]
A1
= E

a2∼π2

[
π1(a2|f(s))

π2(a2|s)
(
R2(s, (·, a2), s′) + γV 1(f(s′))

)
∇φ1 log π1(a2|f(s))

]

15

It should be noted that no gradient is back-propagated through the target V 1(f(s′))). In the same
manner, the value loss, as shown in Equation (5), can be derived as follows.
Proposition 2 (Value Loss).

L(θ1) = E
a2∼π2

[
π1(a2|f(s))

π2(a2|s)
||V 1(f(s))−

(
R2(s, (·, a2), s′) + γV 1(f(s′))

)
||2
]

Proof.

L(θ1) = E
a1∼π2
a2∼π1

[
||V 1(f(s))−

(
R1(f(s), (a2, a1), f(s′)) + γV 1(f(s′))

)
||2
]

IS
= E

a1,a2∼π2

[
π1(a2|f(s))

π2(a2|s)
||V 1(f(s))−

(
R1(f(s), (a2, a1), f(s′)) + γV 1(f(s′))

)
||2
]

A1
= E

a2∼π2

[
π1(a2|f(s))

π2(a2|s)
||V 1(f(s))−

(
R̂1(f(s), a2, f(s′)) + γV 1(f(s′))

)
||2
]

L1
= E

a2∼π2

[
π1(a2|f(s))

π2(a2|s)
||V 1(f(s))−

(
R̂2(s, a2, s

′) + γV 1(f(s′))
)
||2
]

A1
= E

a2∼π2

[
π1(a2|f(s))

π2(a2|s)
||V 1(f(s))−

(
R2(s, (·, a2), s′) + γV 1(f(s′))

)
||2
]

D Shared Experience Q-Learning

D.1 Preliminaries and Algorithm Details

Deep Q-Networks: Deep Q-Networks (DQNs) [22] are used to replace the traditional Q-tables [36]
by learning to estimate Q-values with a neural network. The algorithm uses an experience (replay)
buffer D, which stores all experience tuples collected, circumventing the issue of time-correlated
samples. Also, due to the instability created by bootstrapping, a second network with parameters θ̄ is
used and updated by slowly copying the parameters of the network, θ, during training. The network
is trained by minimising the loss

L(θ) =
1

M

M∑
j=1

[
(Q(sj , aj ; θ)− yj)2

]
with yj = rj + γmax

a′
Q(s′j , a

′; θ̄) (6)

computed over a batch of M experience tuples (s, a, r, s′) sampled from D.

During each update of agent i, previously collected experiences are sampled from the experience
replay buffer Di and used to compute and minimise the loss given in Equation (6). Independently

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e7

0

2

4

6

8

R
et

ur
ns

SEQL (ours)
IQL

(a) RWARE (10× 20), two agents

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

R
et

ur
ns

SEQL (ours)
IQL

(b) LBF: (8× 8), two agents, two fruits, cooperative

Figure 11: Average total returns of SEQL and IQL for RWARE and LBF tasks

16

applying DQN for each agent in a MARL environment is referred to as Independent Q-Learning
(IQL) [32]. For such off-policy methods, sharing experience can naturally be done by sampling
experience from either replay buffer o, a, r, o′ ∼ D1 ∪ . . . ∪ DN and using the same loss for
optimisation. We refer to this variation of IQL as Shared Experience Q-Learning (SEQL). In our
experiments, we sample the same number of experience tuples M

N from each replay buffer and the
same sampled experience samples are used to optimise each agent. Hence, SEQL and IQL are
optimised using exactly the same number of samples, in contrast to SEAC and IAC.

D.2 Results

Sharing experience in off-policy Q-Learning does improve performance, but does not show the same
impact as for AC. We compare the performance of SEQL and IQL on one RWARE and LBF task
to evaluate the impact of shared experience to off-policy MARL. Figure 11 shows the average total
returns of SEQL and IQL on both tasks over five seeds. In the RWARE task, sharing experience
appears to reduce variance considerably despite not impacting average returns significantly. On the
other hand, on the LBF task average returns increased significantly by sharing experience and at its
best evaluation even exceeded average returns achieved by SEAC. However, variance of off-policy
SEQL and IQL is found to be significantly larger compared to on-policy SEAC, IAC and SNAC.

17

