A Proofs

A. 1 Proof of proposition 1

Proof. We first present the more general case of distributions p and q permitting a geometric mean distribution (e.g. p and q members of the exponential family), as we believe this more general case to be of note.

$$
\begin{align*}
\mathrm{JS}^{\mathbf{G}_{\alpha^{\prime}}} & =(1-\alpha) \operatorname{KL}\left(p \| G_{\alpha^{\prime}}(p, q)\right)+\alpha \operatorname{KL}\left(q \| G_{\alpha^{\prime}}(p, q)\right) \tag{27}\\
& =(1-\alpha) \operatorname{KL}\left(p \| p^{\alpha} q^{1-\alpha}\right)+\alpha \operatorname{KL}\left(q \| p^{\alpha} q^{1-\alpha}\right) \tag{28}\\
& =(1-\alpha) \int_{x} p \log \left[\frac{p}{p^{\alpha} q^{1-\alpha}}\right] d x+\alpha \int_{x} q \log \left[\frac{q}{p^{\alpha} q^{1-\alpha}}\right] d x \tag{29}\\
& =(1-\alpha)^{2} \int_{x} p \log \left[\frac{p}{q}\right] d x+\alpha^{2} \int_{x} q \log \left[\frac{q}{p}\right] d x \tag{30}\\
& =(1-\alpha)^{2} \operatorname{KL}(p \| q)+\alpha^{2} \operatorname{KL}(q \| p) \tag{31}
\end{align*}
$$

Therefore, the respective cases disappear in the limits $\alpha \rightarrow 0$ and $\alpha \rightarrow 1$ and for $\mathrm{JS}^{\mathrm{G}_{\alpha^{\prime}}}$ we have, in fact, recovered an equivalence between linear scaling in distribution space and quadratic scaling in the space of divergences.

The dual case $\mathrm{JS}_{*}^{\mathrm{G}}{ }_{\alpha^{\prime}}$ does not simplify in the same way because the geometric mean term lies outside of the logarithm. However, instead we have

$$
\begin{align*}
\mathrm{JS}_{*}^{\mathrm{G}_{\alpha^{\prime}}} & =(1-\alpha) \mathrm{KL}\left(G_{\alpha^{\prime}}(p, q) \| p\right)+\alpha \operatorname{KL}\left(G_{\alpha^{\prime}}(p, q) \| q\right) \tag{32}\\
& =(1-\alpha) \operatorname{KL}\left(p^{\alpha} q^{1-\alpha} \| p\right)+\alpha \operatorname{KL}\left(p^{\alpha} q^{1-\alpha} \| q\right) \tag{33}\\
& =(1-\alpha) \int_{x} p^{\alpha} q^{1-\alpha} \log \left[\frac{p^{\alpha} q^{1-\alpha}}{p}\right] d x+\alpha \int_{x} p^{\alpha} q^{1-\alpha} \log \left[\frac{p^{\alpha} q^{1-\alpha}}{q}\right] d x \tag{34}\\
& =(1-\alpha)^{2} \int_{x} p^{\alpha} q^{1-\alpha} \log \left[\frac{q}{p}\right] d x+\alpha^{2} \int_{x} p^{\alpha} q^{1-\alpha} \log \left[\frac{p}{q}\right] d x . \tag{35}
\end{align*}
$$

The final step is to recognise the two limits

$$
\begin{equation*}
\lim _{\alpha \rightarrow 0}\left[p^{\alpha} q^{1-\alpha}\right]=q \quad \lim _{\alpha \rightarrow 1}\left[p^{\alpha} q^{1-\alpha}\right]=p \tag{36}
\end{equation*}
$$

mean that we recover

$$
\begin{equation*}
\lim _{\alpha \rightarrow 0}\left[\mathrm{JS}_{*}^{\mathrm{G}_{\alpha^{\prime}}}\right]=\operatorname{KL}\left(\mathcal{N}_{2} \| \mathcal{N}_{1}\right) \quad \lim _{\alpha \rightarrow 1}\left[\mathrm{JS}_{*}^{\mathrm{G}_{\alpha^{\prime}}}\right]=\operatorname{KL}\left(\mathcal{N}_{1} \| \mathcal{N}_{2}\right) \tag{37}
\end{equation*}
$$

Overall, although the limiting cases are reversed between $\mathrm{JS}^{\mathrm{G}_{\alpha^{\prime}}}$ and $\mathrm{JS}_{*}^{\mathrm{G}}{ }^{\alpha^{\prime}}$, we note that the approach to either limiting case is distinct and comes with its own benefits through the weighting (nonlogarithmic) term used in the integrand.

A. 2 Proof of proposition 2

We choose to prove proposition 1 via reduction of the form in Equation (9), although we note it is also reasonable to simply follow through the weighted sum in Equation (8).

Proof. After defining $\Sigma_{i i}=\sigma_{i}^{2},\left(\Sigma_{\alpha}\right)_{i i}=\sigma_{\alpha, i}^{2}$ and $\left(\mu_{\alpha}\right)_{i}=\mu_{\alpha, i}$, it is apparent $\Sigma_{2}=I$ gives

$$
\begin{equation*}
\sigma_{\alpha, i}^{2}=\frac{1}{\left((1-\alpha) \sigma_{i}^{2}+\alpha\right)} \tag{38}
\end{equation*}
$$

and $\mu_{2}=0$ (the zero vector) gives

$$
\begin{equation*}
\mu_{\alpha, i}=\sigma_{\alpha, i}^{2}\left((1-\alpha) \frac{\mu_{i}}{\sigma_{i}^{2}}\right) \tag{39}
\end{equation*}
$$

We can then reduce Equation (9) using diagonal matrix properties

$$
\begin{align*}
& \mathrm{JS}^{\mathrm{G}_{\alpha}}\left(\mathcal{N}_{1} \| \mathcal{N}_{2}\right)=\frac{1}{2}\left(\sum_{i=1}^{n} \frac{1}{\sigma_{\alpha, i}^{2}}\left((1-\alpha) \sigma_{i}^{2}+\alpha\right)+\log \left[\frac{\prod_{i=1}^{n} \sigma_{\alpha, i}^{2}}{\prod_{i=1}^{n}\left(\sigma_{i}^{2}\right)^{1-\alpha}}\right]\right. \tag{40}\\
&\left.+\frac{(1-\alpha)\left(\mu_{\alpha, i}-\mu_{i}\right)^{2}}{\sigma_{\alpha, i}^{2}}+\frac{\alpha \mu_{\alpha, i}^{2}}{\sigma_{\alpha, i}^{2}}-n\right) \tag{41}
\end{align*}
$$

and application of \log laws recovers Equation (23).
The proof of the dual form in Equation (25) is carried out similarly.

B Additional training and evaluation information

Divergence	MNIST	Fashion-MNIST	dSprites	Chairs	
$\operatorname{KL}(q(z \mid x) \\| p(z))$	8.46	11.98	13.55	12.27	
$\operatorname{KL}(p(z) \\| q(z \mid x))$	11.61	14.42	14.18	19.88	
$\beta-\operatorname{VAE}(\beta=4)$	11.75	13.32	10.51	20.79	
β-VAE ($\beta=0.25$)	8.09	9.07	10.39	14.09	
MMD $(\lambda=500)$	13.19	11.10	11.87	18.85	
JS ${ }^{\mathrm{G}_{0.1}}$	7.52	10.04	6.63	12.62	
JS ${ }^{\mathrm{G}_{0.2}}$	8.30	10.04	7.50	11.95	
JS ${ }^{\text {G }}$. 3	8.84	10.50	8.56	12.40	
JS ${ }^{\mathrm{G}_{0.4}}$	9.39	10.93	9.16	12.96	
JS ${ }^{\mathrm{G}_{0.5}}$	9.87	11.29	9.89	13.57	
JS ${ }^{\text {G }}$.6	10.28	11.72	10.38	14.15	
JS ${ }^{\text {G }}$. 7	10.51	12.09	10.80	14.68	
JS ${ }^{\text {G }}$. 8	11.00	12.44	11.40	15.48	
JS ${ }^{\text {G }}$.9	11.87	13.21	12.05	16.27	
$\mathrm{JS}_{*}^{\mathrm{G}_{0.1}}$	12.20	13.52	5.54	15.53	
$\mathrm{JS}_{*}^{\mathrm{G}_{0.2}}$	7.60	10.90	5.18	13.06	
$\mathrm{JS}_{*}^{\mathrm{G}_{0.3}}$	7.34	10.51	5.06	12.09	
$\mathrm{JS}_{*}^{\mathrm{G}_{0.4}}$	7.38	9.58	5.17	11.64	
$\mathrm{JS}_{*}^{\mathrm{G}_{\text {O. } 5}}$	7.56	9.80	4.97	11.75	
$\mathrm{JS}_{*}^{\mathrm{G}_{0.6}}$	7.77	10.01	5.30	12.07	
$\mathrm{JS}_{*}^{\mathrm{G}_{0.7}}$	7.90	10.34	5.23	12.53	
$\mathrm{JS}_{*}^{\mathrm{G}_{\text {O.8 }}}$	8.25	10.84	5.42	13.11	
$\mathrm{JS}_{*}^{\mathrm{G}_{0.9}}$	8.55	11.40	5.74	13.52	

Table 2: Final model reconstruction error for different α values for $\mathbf{J S}^{\mathbf{G}_{\alpha}}$ and $\mathbf{J S}_{*}^{\mathrm{G}_{\alpha}}$.

Figure 6: Breakdown of final model loss components on the MNIST dataset.

Figure 7: Breakdown of final model loss on the Fashion-MNIST dataset.

Figure 8: Breakdown of final model loss components on the dSprites dataset.

Figure 9: Breakdown of final model loss components on the Chairs dataset.

C Model details

We use the architectures specified in Table 3 throughout experiments. We pad $28 x 28 x 1$ images to $32 \times 32 \times 1$ with zeros as we found resizing images negatively affected performance. We use a learning rate of 1e-4 throughout and use batch size 64 and 256 for the two MNIST variants and the other datasets respectively. Where not specified (e.g. momentum coefficients in Adam [16]), we use the default values from PyTorch [33]. The only architectural change we make between datasets is an additional convolutional (and transpose convolutional) layer for encoding (and decoding) when inputs are $64 \times 64 \times 1$ instead of $32 \times 32 \times 1$. We train dSprites for 30 epochs and all other datasets for 100 epochs.

Dataset	Stage	Architecture
MNIST	Input	$28 \times 28 \times 1$ zero padded to 32x32x1.
	Encoder	Repeat Conv 32x4x4 for 3 layers (stride 2, padding 1).
		FC 256, FC 256. ReLU activation.
	Latents	10.
		Decoder
		FC 256, FC 256, Repeat Deconv $32 \times 4 \times 4$ for 3 layers (stride 2, padding 1).
	ReLU activation, Sigmoid. MSE.	
Fashion-MNIST	Input	$28 \times 28 \times 1$ zero padded to 32x32x1.
	Encoder	Repeat Conv 32x4x4 for 3 layers (stride 2, padding 1).
		FC 256, FC 256. ReLU activation.
	Latents	10.
	Decoder	FC 256, FC 256, Repeat Deconv 32x4x4 for 3 layers (stride 2, padding 1).
		ReLU activation, Sigmoid. Bernoulli.
dSprites	Encoder	$64 \times 64 \times 1$.
	Repeat Conv 32x4x4 for 4 layers (stride 2, padding 1).	
	Latents	FC 256, FC 256. ReLU activation.
	Decoder	FC 256, FC 256, Repeat Deconv 32x4x4 for 4 layers (stride 2, padding 1).
		ReLU activation, Sigmoid. Bernoulli.
Chairs	Input	$64 \times 64 \times 1$.
	Encoder	Repeat Conv 32x4x4 for 4 layers (stride 2, padding 1).
		FC 256, FC 256. ReLU activation.
	Latents	32.

Table 3: Detail of model architectures.

D $\mathbf{J S}^{\mathbf{G}_{\alpha^{\prime}}}$ vs. $\mathbf{J S}^{\mathbf{G}_{\alpha}}$

Figure 10: Comparison of the original $\mathrm{JS}^{\mathrm{G}_{\alpha}}$ and our variant, $\mathrm{JS}^{\mathrm{G}_{\alpha^{\prime}}}$, on the MNIST dataset.

Figure 11: Comparison of the original $\mathrm{JS}^{\mathrm{G}_{\alpha}}$ and our variant, $\mathrm{JS}^{\mathrm{G}_{\alpha^{\prime}}}$, on the Fashion-MNIST dataset.

E Influence of the λ parameter on the performance of $\mathrm{JS}^{\mathbf{G}_{\alpha}}$-VAEs and $\mathbf{J S}^{\mathbf{G}_{\alpha}}$-VAEs

Figure 12: Comparison of the reconstruction loss of $\mathrm{JS}^{\mathrm{G}_{\alpha}}$-VAEs and $\mathrm{JS}_{*}^{\mathrm{G}_{\alpha}}$-VAEs for different values of λ, on the MNIST dataset.

F Performance of β-VAEs for varying β

Figure 13: Comparison of the reconstruction loss of β-VAEs for different values of β, on the MNIST dataset.

G Latent samples

Figure 14: Latent space traversal of Fashion-MNIST for different skew values of $\mathrm{JS}_{*}^{\mathrm{G}_{\alpha}}$.

Figure 15: Latent space traversal dSprites for different skew values and KL divergence.

（a） $\mathrm{JS}_{*}^{\mathrm{G}_{0.4}}$ ．

甡	9	9	e	2	9	Q	9	Q	9
9	9	Q	9	9	9	\％	9	？	9
9	9	9	9	9	9	9	9	9	9
9	9	9	9	9	星	9	9	\％	\％
9	9	9	9	9	髃	2	9	，	9
－	Q	\％	\％	9	\％	？	9	9	9
果	果	豕	9	Q	9	9	日	同	同
9	9	9	9	9	9	9	9	9	9
Q	9	Q	9	9	\％	\％	電	9	9
9	咼	9	9	9	星	9	9	咼	9
\％	里	9	9	9	9	9	9	9	2
，	星	9	2	9	Q	9	9	9	9
6	6	1	\％	9	\％	¢	4	，	2
9	9	9	9	9	9	9	9	9	9
9	星	\％	9	9	9	9	9	9	？
9	9	\％	9	9	9	9	9	9	9
5	5	9	Q	9	\％	？	9	9	＊
d	¢	θ	\％	9	9	9	울	星	＊
2	星	2	2	9	9	9	9	9	9
\％	9	\％	？	9	Q	2	9	Q	，
－	\bullet	＊	P	9	，${ }^{\text {\％}}$	迳	\％	5	晃
9	9	9	9	9	2	2	9	9	9
\％	景	9	9	9	9	Q	简	開	m
9	\％	Q	9	9	\％	？	9	\％	9
\％	$\stackrel{1}{*}$	\％	\％	9	9	9	9	9	θ
9	9	9	9	9	9	9	9	易	9
早	9	＊	，	9	\％	2	S	9	早
9	咼	\％	9	9	\％	9	9	9	9
A	m	里	9	9	9	9	＊	θ	\cdots
9	9	9	9	9	9	2	9	9	9
－	－	－	－	9	\％	潁	界	9	4
\bigcirc	－	－	－	9	，	黒	黒	景	景

（b） $\operatorname{KL}(q(z \mid x) \| p(z))$

Figure 16：Latent space traversal for the Chairs dataset（32 latent dimensions）．

