
A Theorem Proofs

Table 3: Summary of Notation

Notation Description

kt (or just t) Edge arriving at time t
K̂t Sample set after edge t processed
K̂ ′t Edges in reservoir prior to selection at time t
J Generic edge subset
Jt Edges from J that have arrived by t

SJ,t Indicator variable that indicates if all edges in J have arrived by t
ŜJ,t (Ŝ′J,t) Inverse probability estimator of SJ,t (estimator without last arriving edge)
IJ,t (I ′J,t) Un-normalized estimator of SJ,t (estimator not using last arriving edge)

wi,t Weight of edge i at time t ≥ i
ui IID uniform (0, 1] variable for edge i
ri,t Priority rank variable of edge i at time t ≥ i
zJ,t Minimum priority rank of non-J edges prior to t
zt z∅,t i.e., unrestricted minimum priority rank
z∗t Cumulative maximum of zt′ for t′ ≤ t

H (Ht) (Hk,t) Set of motifs (those with all their edges arrived by t) (also containing edge k)
nk,t Total number of members of Ht than contain k
n̂k,t Estimator of nk,t
η Generic James-Stein estimator for an edge count n
λ Mixture parameter (i.e., shrinkage coefficient) in η

pi,t Probability of inclusion of edge i ∈ K̂t at t ≥ i
PJ,t Probability of inclusion of edges from Jt in K̂t at time t ≥ i
tJ Minimum time over all edges in J , i.e. mini∈J ti
τJ Time of the last arriving edge in J , maxi∈J ti

Proof of Theorem 1.
Proof. Any subgraph J can be defined as a subset of edges from the set of all edges K. Suppose
Jt ⊂ K̂ ′t, then Jt survives the sampling at time t (i.e., Jt ⊂ K̂t), if and only if another edge j ∈ K̂ ′t\Jt
has minimum rank zJ,t = minj∈K̂′

t\Jt
rj,t, i.e., if ri,t > zJ,t, or equivalently, ui < wi,t/zJ,t for all

i ∈ Jt. Denote Ai,J,s = {ui < wi,s/zJ,s} as the event when i ∈ Js ∩ K̂s. Then for tJ ≤ τJ ≤ t,
the event {J ⊂ K̂t} decomposes as

⋂
tJ≤s≤tBJ,s where BJ,s =

⋂
i∈Js Ai,J,s.

(I) The proof is by induction on t. For t < tJ the conditioning is trivial and ui are IID on
(0, 1] = (0, pi,J,t]. The same property holds at general t for all i ∈ J which have not yet
arrived, i.e., for i ∈ J \Jt. Consider now t ≥ tJ and assume that the result holds for t−1. The
weightswi,t for i ∈ Jt∩K̂ ′t are fixed by the conditioning on the event {Jt−1 ⊂ K̂t−1}. Further
conditioning on zJ,t and Jt ⊂ K̂t requires ui < wi,t/zJ,t for all i ∈ Jt ⊂ K̂t. Imposing this
condition on the assumed independent uniform distributions of ui on (0, pi,J,t−1] results in
independent uniform distributions of ui on (0,min{pi,J,t−1, wi,t/zJ,t}] = (0, pi,J,t].

(II) The conditional expectation of the indicator I(Jt ⊂ K̂t) is,

E[I(Jt ⊂ K̂t)|ZJ,t, Jt−1 ⊂ K̂t−1]

= P[BJ,t|ZJ,t, Jt−1 ⊂ K̂t−1]

= P[∩i∈Jt{ui < wi,t/zJ,t}|ZJ,t, Jt−1 ⊂ K̂t−1]

= P̃J,t/P̃J,t−1 (8)
where in the last step we have used the statement of part (I) for the distribution of ui condition-
ing on ZJ,t and {Jt−1 ⊂ K̂t−1}, since wi,t is assumed determined given K̂t−1.
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(III) By using (II), we find that the conditional expectation of S̃J,t is:

E[S̃J,t|ZJ,t, Jt−1 ⊂ K̂t−1] =
1

P̃J,t
E[I(Jt ⊂ K̂t)|ZJ,t, Jt−1 ⊂ K̂J,t−1]

= S̃J,t−1 (9)

which is independent of the conditioning on zJ,t and hence,

E[S̃J,t|ZJ,t−1, Jt−1 ⊂ K̂t−1] = S̃J,t−1 (10)

The initial value (for the first edge arrival at time tJ ) is S̃J,tJ = I(tJ ∈ K̂tJ )/ptJ ,J,tJ =

I(utJ < wtJ ,tJ/zJ,tJ )/ptJ ,J,tJ . Clearly E[S̃J,tJ |zJ,tJ ] = 1 and hence E[S̃J,tJ ] = 1. Finally
E[S̃J,t] = 1 for all t ≥ tJ by chaining the conditional expectations.

(IV) Trivially ŜJ,t = SJ,t = 0 for t < τJ . Since zJ,t = zt when J ⊂ K̂t, PJ,t = P̃J,t and hence
ŜJ,t = S̃J,t for t ≥ τJ and E[ŜJ,t] = 1 by (III).

Proof of Theorem 2.
Proof. (I) If dt 6= t, t is admitted to the sample and hence

zt =
wdt,t
udt

≥ wdt,s
udt

> zs (11)

for all s ∈ [dt, t]. Since edge dt is discarded at time t, and dt 6= t, then the minimum rank
zt = rdt,t = wdt,t/udt .
The first inequality follows from the non-decreasing property of wdt,t. The second inequality
follows since edge dt survives the sampling from time dt until t and hence its rank cannot be
lower than the threshold zs for any s in that interval. But since the edge dt was admitted to the
sample at time, we have ddt 6= dt, where ddt is the discarded edge at time dt. Hence, we apply
the argument back recursively to the first sampling time. Hence, z∗t = max{z∗t−1, zt} = zt.

(II) By assumption if an edge i is admitted to K̂i, then i 6= di and so by (I) and Equation 1,
pi,i = min{1, wi,i/zi} = min{1, wi,i/z∗i } = p∗i,i. The general case is by induction. Assume
pi,s = p∗i,s for all times s ∈ [i, t], and zt+1 > z∗t , then z∗t+1 = zt+1 hence p∗i,t+1 = pi,t+1.
If zt+1 ≤ z∗t , then z∗t+1 = z∗t and hence

wi,t+1

zt+1
≥ wi,t+1

z∗t+1

≥ wi,t
z∗t+1

=
wi,t
z∗t

(12)

Thus we can replace zt+1 by z∗t+1 in (1) but use of either leaves the iterated value unchanged,
since by the induction hypothesis, both are greater than pi,t ≤ wi,t/z∗t

Proof of Theorem 3.
Proof.

Cov(Ŝ′J,t1 , Ŝ
′
L,t2) = E[Ŝ′J,t1 Ŝ

′
L,t2 ]− E[Ŝ′J,t1 ]E[Ŝ′L,t2 ]

= E[Ŝ′J,t1 Ŝ
′
L,t2 ]− 1 (13)

From Theorem 1, and since J \ L, L \ J , and J ∩ L are disjoint subsets, we have,

E[Ŝ′J\L,t1 Ŝ
′
L\J,t2 Ŝ

′
J∩L,t1∨t2 ] = 1 (14)

Thus, E[CJ,t1;L,t2 ] = Cov(Ŝ′J,t1 , Ŝ
′
L,t2

) = E[Ŝ′J,t1 Ŝ
′
L,t2

]− 1.

A special case of Theorem 3 happens when J = L and t1 = t2 = t, which leads to V (Ŝ′J,t) =

Ŝ′J,t(Ŝ
′
J,t − 1), where V (Ŝ′J,t) is an unbiased estimator of Var(Ŝ′J,t).
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Figure 5: Illustrative Example of Disjoint and Overlapping Triangles

Proof of Lemma 1.
Proof. Let J = J1 ∪ J2. Chaining conditional expectations from Theorem 1(III)

E[Ŝ′J1,t1I
′
J2,t2 |ZJ,t2 , Jt2−1 ⊂ K̂t2−1]

= E[Ŝ′J1,t2I
′
J2,t2 |ZJ,t2 , Jt2−1 ⊂ K̂t2−1]

=
1

PJ1,t2
P[∩i∈J{ui < wi,t2/zJ,t2}|ZJ,t2 , Jt2−1 ⊂ K̂t2−1]

= P[∩i∈J2{ui < wi,t2/zJ,t2}|ZJ,t2 , Jt2−1 ⊂ K̂t2−1]

= E[I ′J2,t2 |ZJ,t2 , Jt2−1 ⊂ K̂t2−1] (15)

using Theorem 1(I). Hence E[Ŝ′J1,t1I
′
J2,t2

] = E[I ′J2,t2 ] and since E[Ŝ′J1,t1 ] = 1, then the
Cov(Ŝ′J1,t1 , I

′
J2,t2

) = E[Ŝ′J1,t1I
′
J2,t2

]− E[Ŝ′J1,t1 ]E[I ′J2,t2 ] = 0.

Proof of Theorem 4.
Proof. (I) Since E[Ŝ′J1,t1 ] = 1 it suffices to show that (the negative of) the second term in the

definition of DJ1,t1;J2,t2 in Theorem 4(i) has expectation E[I ′J2,t2 ]. When t1 ≥ t2 then
repeating the conditioning argument of Lemma 1, this term has conditional expectation

E[Ŝ′J1,t1PJ1∩J2,t2I
′
J2\J1,t2 |ZJ,t2 , Jt2−1 ⊂ K̂t2−1]

= E[Ŝ′J1,t2PJ1∩J2,t2I
′
J2\J1,t2 |ZJ,t2 , Jt2−1 ⊂ K̂t2−1]

= E[I ′J2,t2 |ZJ,t2 , Jt2−1 ⊂ K̂t2−1] (16)

and hence the stated property holds.
(II) Holds since Ŝ′J,t > 0 implies I ′J,t′ > 0 for t ≥ t′ ≥ tJ

(III) is a special case of (I).

B Example: Estimators for Local Triangle Counts
Assume the motif M is a triangle in the form J = (i, j, k), where the edges in the triangle are
ordered by their arrival times, i.e., i < j < k. Let k denote the new edge arriving at time t, and
∆̂t = {J = (i, j, k) ⊂ K̂ ′t} be the set of new triangles completed by k at time t. We now show how
the estimators can be incremented for each triangle. Note that edges i, j ∈ K̂ ′t can participate in only
one triangle at time t.

Unbiased estimator for n̂. By applying Theorem 1, each triangle J = (i, j, k) ∈ ∆̂t results in an
increment of Ŝ′J,t = 1/(pi,tpj,t) in the count estimator for each edge in the triangle as follows:

n̂i ← n̂i + 1/(pi,tpj,t)

n̂j ← n̂j + 1/(pi,tpj,t)

n̂k ← n̂k + 1/(pi,tpj,t)
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Unbiased estimator for Var(n̂). By applying Theorem 3, each triangle J = (i, j, k) ∈ ∆̂t results
in an increment of Var(S′J,t) =

(
1/(pi,tpj,t)− 1

)
/(pi,tpj,t) in the variance estimator of the count

for each edge in the triangle as follows:

Var(n̂i)← Var(n̂i) +
(
1/(pi,tpj,t)− 1

)
/(pi,tpj,t)

Var(n̂j)← Var(n̂j) +
(
1/(pi,tpj,t)− 1

)
/(pi,tpj,t)

Var(n̂k)← Var(n̂k) +
(
1/(pi,tpj,t)− 1

)
/(pi,tpj,t)

Cov(Ŝ′
J,t, Ŝ

′
L,s). By applying Theorem 3, we detail all the possible cases for the computation of

the covariance Cov(Ŝ′J,t, Ŝ
′
L,s), where L = (i′, j′, k′) is another triangle, and L 6= J :

1. J ∩ L = ∅: if the two triangles are disjoint, then Cov(Ŝ′J,t, Ŝ
′
L,s) = 0, see Figure 5 for an

example.
2. s = t: assume L = (i′, j′, k) ∈ ∆̂t is another triangle completed by k, and L 6= J . This

means that J ∩ L = {k}, (see Figure 5), and Ŝ′J∩L,t∨S = 1. Then, the estimator of the
covariance Cov(Ŝ′J,t, Ŝ

′
L,s) = 0.

3. s < t: assume L = (i′, j′, ks) ∈ ∆̂s is another triangle completed by edge ks at time s, for
any s < t.
(a) If i = i′ andL = (i, j′, ks), then the two triangles overlap in the edge i, and Ŝ′J∩L,t∨S =

1/pi,t. Thus, the estimator of the covariance is,

Cov(Ŝ′J,t, Ŝ
′
L,s) = (pi,tpj,t)

−1
(
p−1
i,s − 1

)
p−1
j′,s

Thus, for all triangles L = (i, j′, ks), for s < t∑
s<t

Cov(Ŝ′J,t, Ŝ
′
L,s) = (pi,tpj,t)

−1
∑
s<t

(
p−1
i,s − 1

)
p−1
j′,s

= (pi,tpj,t)
−1 ∗ Ui,t

where Ui,t =
∑
s<t

(
p−1
i,s − 1

)
p−1
j′,s

(b) If j = j′ and L = (i′, j, ks), then similar to the previous case, then the estimator of the
covariance is,

Cov(Ŝ′J,t, Ŝ
′
L,s) = (pi,tpj,t)

−1
(
p−1
j,s − 1

)
p−1
i′,s

Thus, for all triangles L = (i′, j, ks), for any s < t∑
s<t

Cov(Ŝ′J,t, Ŝ
′
L,s) = (pi,tpj,t)

−1
∑
s<t

(
p−1
j,s − 1

)
p−1
i′,s

= (pi,tpj,t)
−1 ∗ Uj,t

where Uj,t =
∑
s<t

(
p−1
j,s − 1

)
p−1
i′,s.

(c) if ks = i or ks = j, then the estimator of the covariance is zero,

Cov(Ŝ′J,t, Ŝ
′
L,s) = (pi,tpj,t)

−1
(
(pi′,spj′,s)

−1 − (pi′,spj′,s)
−1
)

= 0

To facilitate incremental covariance computations for streaming data, we define Ui,t and Uj,t as the
cumulative sum variables for edges i and j respectively, to keep track of previously sampled triangle
estimators that contain i and j respectively, at any time s < t. Note that for the new arriving edge k,
we have Uk,t = 0. Now, we add the covariance increments to each edge as follows,

Var(n̂i)← Var(n̂i) + 2 ∗ Ui,t ∗ (pi,tpj,t)
−1

Var(n̂j)← Var(n̂j) + 2 ∗ Uj,t ∗ (pi,tpj,t)
−1

Then, to update the cumulative variables for edges i, j ∈ J = (i, j, k).

Ui,t ← Ui,t−1 +
(
p−1
i,t − 1

)
/pj,t

Uj,t ← Uj,t−1 +
(
p−1
j,t − 1

)
/pi,t
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Unbiased Estimator for Cov(Ŝ′
J,t, Î

′
L,s). By applying Theorem 4, we detail the computation of

the covariance Cov(Ŝ′J,t, Î
′
L,s):

1. If J ∩ L = ∅, then from Lemma 1, the Cov(Ŝ′J,t, Î
′
L,s) = 0.

2. If s = t and J = L, then the Cov(Ŝ′J,t, Î
′
J,t) = (pi,tpj,t)

−1 − 1.

3. If s = t and J 6= L, then J ∩ L = {k}. And from Theorem 4 (I), the Cov(Ŝ′J,t, Î
′
L,t) = 0

4. If s < t, and L = (i′, j′, ks) is a triangle completed by edge ks at time s then,

(a) If i = i′ and L = (i, j′, ks), then J ∩ L = {i}, and the covariance estimator is,

Cov(Ŝ′J,t, Î
′
L,s) = (pi,tpj,t)

−1(1− pi,s)

And, for all triangles L = (i, j′, ks), for any s < t,∑
s<t

Cov(Ŝ′J,t, Î
′
L,s) = (pi,tpj,t)

−1
∑
s<t

(1− pi,s)

= (pi,tpj,t)
−1 ∗Di,t

where Di,t =
∑
s<t(1− pi,s).

(b) if j = j′ and L = (i′, j, ks), then J ∩ L = {j}, the covariance estimator is,
Cov(Ŝ′J,t, Î

′
L,s) = (pi,tpj,t)

−1(1− pj,s).

Cov(Ŝ′J,t, Î
′
L,s) = (pi,tpj,t)

−1(1− pj,s)

And, for all triangles L = (i′, j, ks), for any s < t,∑
s<t

Cov(Ŝ′J,t, Î
′
L,s) = (pi,tpj,t)

−1(1− pj,s)

= (pi,tpj,t)
−1 ∗Dj,t

where Dj,t =
∑
s<t(1− pj,s).

(c) If ks = i or ks = j, then the Cov(Ŝ′J,t, Î
′
L,s) = 0.

We define Di,t and Dj,t as the cumulative sum variables for edges i and j respectively, to keep track
of previously sampled triangle indicators, that contain i and j respectively, at any time s < t. Note
that for the new arriving edge k, we have Dk,t = 0.

Estimating the Cov(Ŝ′
L,s, Î

′
J,t). For s < t, the estimate of the Cov(Ŝ′L,s, Î

′
J,t) is similar to

the cases discussed previously. Thus, we adopt the same form in Theorem 4 (I). Note that while
Theorem 4 (I) does not treat this case, it is straightforward to show that the estimator is also unbiased
for the Cov(Ŝ′L,s, Î

′
J,t). Hence, if J ∩ L = {i}, the covariance estimator is,

Cov(Ŝ′L,s, Î
′
J,t) =

(
p−1
i,s − 1

)
p−1
j′,s

Thus, for all triangles L = (i, j′, ks) and s < t,∑
s<t

Cov(Ŝ′L,s, Î
′
J,t) =

∑
s<t

(
p−1
i,s − 1

)
p−1
j′,s = Ui,t

Similarly, if J ∩ L = {j}, the covariance estimator is,

Cov(Ŝ′L,s, Î
′
J,t) =

(
p−1
j,s − 1

)
p−1
i′,s

And, for all triangles L = (i′, j, ks) and s < t,∑
s<t

Cov(Ŝ′L,s, Î
′
J,t) =

∑
s<t

(
p−1
j,s − 1

)
p−1
i′,s = Uj,t
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Now, we add all the covariance increments for each edge as follows,

Cov(n̂i, wi)← Cov(n̂i, wi) +
(
pi,tpj,t

)−1 − 1 +Di,t ∗
(
pi,tpj,t

)−1
+ Ui,t

Cov(n̂j , wj)← Cov(n̂j , wj) +
(
pi,tpj,t

)−1 − 1 +Dj,t ∗
(
pi,tpj,t

)−1
+ Uj,t

Cov(n̂k, wk)← Cov(n̂k, wk) +
(
pi,tpj,t

)−1 − 1

Then, to update the cumulative variables for edges i, j ∈ J = (i, j, k).

Di,t ← Di,t−1 +
(
1− pi,t

)
Dj,t ← Dj,t−1 +

(
1− pj,t

)
We summarize all the variance and covariance computations in Algorithm 2, which is a supplementary
to Algorithm 1 (in the case of triangle motifs).

Algorithm 2 Iterative Variance Computation Following Line 14 in Algorithm 1

Input: New edge k, current sample set K̂ 3 k, triangle h = (j1, j2, k) ⊂ K̂, p(h) = p(j1)p(j2)

for edge j ∈ h do
Var(j)← Var(j) +

(
p(h)−1 − 1

)
/p(h)

Cov(j)← Cov(j) + p(h)−1 − 1

for j ∈ h : j 6= k do
Var(j)← Var(j) + 2 ∗ U(j)/p(h)
Cov(j)← Cov(j) + U(j) +D(j)/p(h)
U(j)← U(j) +

(
p(j)−1 − 1

)
/p(j′), {j′} = h \ {j, k}

D(j)← D(j) + 1− p(j)

C Ablation Study
To understand the effects of the various design choices in the proposed framework APS with shrinkage
estimation, we conduct a thorough set of ablation study experiments. The proposed APS method
provides a sampling framework that consists of two major parts: (1) Adaptive sampling with
importance weights, and (2) James-Stein shrinkage estimation. Hence, there are several design
choices to make, e.g., we could choose to use adaptive sampling without shrinkage estimation.

Table 4: MSE for Non-Adaptive Sampling (f = 0.2)

graph Non-Adapt Non-Adapt (JS)

SOC-FLICKR 4907.21 2174.9
SOC-LIVEJOURNAL 94.46 69.97
SOC-YOUTUBE-SNAP 24.78 31.704
WIKI-TALK 78.69 98.765
WEB-BERKSTAN-DIR 1723.63 1236.3
CIT-PATENTS 6.45 5.67
SOC-ORKUT-DIR 405.86 227.65

Results in Table 2 clearly show that
shrinkage estimation significantly im-
proves the performance of APS sam-
pling. Another design choice is to use
non-adaptive priority sampling where
the edge weights/ranks are computed
once at the time of sampling, and fixed
during the rest of the streaming process.
We conducted this experiment on the
same datasets by using only the sam-
pling weights assigned at arrival time
(Line 12 in Alg 1) and fix it for the rest
of the stream. We summarize the results in Table 4. For some graphs (e.g., soc-flickr), we observed
that using non-adaptive weights in APS might perform better than using adaptive weights.

We conjecture this is due to the excessive variance of APS in the estimated count of the edges with
small triangle counts, and can be observed in the tail of the distribution (see Figure 7). However,
among all the design choices, the combination of (APS sampling + adaptive weights + shrinkage
estimation) has the strongest regularization effect on the performance of graph sampling. We also
observe that applying the shrinkage estimator to the non-adaptive sampling significantly improve
the performance. These effects are demonstrated in Figures 6 and 7 which show the distribution of
non-adaptive APS and adaptive APS respectively (with and without shrinkage estimation).
In summary, the results suggest that APS with shrinkage performs significantly better than related
methods in previous work, and each of the design choices contributes to the final performance.
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Figure 6: Sample size f = 0.4. Left: Non-adaptive Priority Sampling, estimate vs exact. Right: Non-adaptive
Priority Sampling with Shrinkage estimator (James-Stein JS) vs exact.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

top-k edges

0

100

200

300

400

500

600

700

lo
c
a
l 
e
d
g
e
 t
ri
a
n
g
le

 c
o
u
n
t

soc-livejournal

Exact

APS f=0.40

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

top-k edges

0

100

200

300

400

500

600

700

lo
c
a
l 
e
d
g
e
 t
ri
a
n
g
le

 c
o
u
n
t

soc-livejournal

Exact

APS JS f=0.40

10
0

10
1

10
2

10
3

10
4

10
5

10
6

top-k edges

0

500

1000

1500

2000

2500

lo
c
a
l 
e
d
g
e
 t
ri
a
n
g
le

 c
o
u
n
t

soc-flickr

Exact

APS f=0.40

10
0

10
1

10
2

10
3

10
4

10
5

10
6

top-k edges

0

500

1000

1500

2000

2500

lo
c
a
l 
e
d
g
e
 t
ri
a
n
g
le

 c
o
u
n
t

soc-flickr

Exact

APS JS f=0.40

Figure 7: Sample size f = 0.4. Left: Adaptive Priority Sampling, estimate vs exact. Right: Adaptive Priority
Sampling with Shrinkage estimator (James-Stein JS) vs exact.

D Additional Plots
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Figure 8: Each Plot corresponds to one graph at sampling fractions f = {0.20, 0.40}, and shows the raw count
of the top-1M edges using Uniform Sampling [53] vs the actual count. The top-1M edges are ranked based on
their true counts. x-axis: the rank of top edges 1–1M in log10 scale, y-axis: weights.
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Figure 9: Each Plot corresponds to one graph at sampling fractions f = {0.20, 0.40}, and shows the raw count
of the top-1M edges using Triest sampling [48] vs the actual count. The top-1M edges are ranked based on their
true counts. x-axis: the rank of top edges 1–1M in log10 scale, y-axis: weights (triangle count per edge).

Figure 10: Each Plot corresponds to one graph at sampling fractions f = {0.20, 0.40}, and shows the normalized
count of the top-10K edges using APS with Shrinkage Estimation vs the actual normalized count. The top-10K
edges are ranked based on their true normalized counts. The x-axis: the rank of top edges 1–10K in log10 scale,
the y-axis: normalized weights.
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E Dataset Details
• soc-flickr: Crawl of the Flickr photo-sharing social network from May 2006. Nodes are

users and edges represent that a user added another user to their list of contacts [19].
• soc-livejournal: LiveJournal is an online social community publishing platform, Nodes are

users and edges are user-to-user links [35].
• soc-youtube: Youtube social network. Nodes are users and edges are user-to-user friendship

links [35].
• wiki-Talk: Wikipedia network of user discussions from the inception of Wikipedia till

January 2008. Nodes are Wikipedia users and edges are user-to-user edits of talk pages [31].
• web-BerkStan-dir: Web network where nodes represent webpages from Berkely and

Stanford and edges represent hyperlinks among them [30].
• cit-Patents: The citation graph of US Patents includes all citations made by patents granted

between 1975 and 1999 [29].
• soc-orkut-dir: Orkut online social network, where nodes represent users and edges represent

user-to-user friendship links [35].
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