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Abstract

Understanding spatial relations (e.g., “laptop on table”) in visual input is important
for both humans and robots. Existing datasets are insufficient as they lack large-
scale, high-quality 3D ground truth information, which is critical for learning spatial
relations. In this paper, we fill this gap by constructing Rel3D: the first large-scale,
human-annotated dataset for grounding spatial relations in 3D. Rel3D enables
quantifying the effectiveness of 3D information in predicting spatial relations
on large-scale human data. Moreover, we propose minimally contrastive data
collection—a novel crowdsourcing method for reducing dataset bias. The 3D
scenes in our dataset come in minimally contrastive pairs: two scenes in a pair
are almost identical, but a spatial relation holds in one and fails in the other. We
empirically validate that minimally contrastive examples can diagnose issues with
current relation detection models as well as lead to sample-efficient training. Code
and data are available at https://github.com/princeton-vl/Rel3D.

1 Introduction

Spatial relations such as “laptop on table” are ubiquitous in our environment, and understanding
them is vital for both humans and intelligent agents like robots. As humans, we use spatial relations
for perceiving and building knowledge of the surrounding environment and supporting our daily
activities such as moving around and finding objects [1, 2]. Spatial relations play an important role in
communication for describing to others where objects are located [3–6].

Likewise, for robots, understanding spatial relations is necessary for navigation [7], object manipu-
lation [8, 9], and human-robot interaction [10, 11]. For a robot to complete a task such as “put the
bottle in the box”, it is necessary to first understand the relation “bottle in the box”.

A spatial relation is defined as a subject-predicate-object triplet, where predicate describes the spatial
configuration between subject and object, such as painting-over-bed. Understanding spatial relations
may seem an easy task at first glance, and a plausible model could be a set of hand-crafted rules for
each predicate based on the spatial properties of subject and object, like their relative position [12–15].
However, just like many other rule-based systems, this approach works for a small set of carefully
curated examples, but fails for wider real-world examples consistent with human judgment [16].

The failure results from the rich and complex semantics of spatial predicates, which depend on
various factors beyond relative positions. For example, they depend on frames of reference (Is “left
to the car” relative to the observer or relative to the car?), object properties (For “in front of the
house”, what is the frontal side of a house? Is there still a frontal side if the object were a tree?),
and also commonsense (“painting over bed” is not touching while “blanket over bed” is). With all
these subtleties, any set of hand-crafted rules is likely to be inadequate, so researchers have applied
data-driven approaches to learn spatial relations from visual data [17, 18, 11, 7, 8, 19, 20].
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Figure 1: Some samples from Rel3D. Rel3D contains pairs of minimally contrastive scenes: two
scenes in a pair are almost identical, but a spatial relation holds in one while fails in other.

Benchmarking spatial relations in 3D. Benchmark datasets have been proposed for training and
evaluating a system’s understanding of spatial relations [6, 19, 20]. However, existing datasets either
have limited scale and variety [6, 19] or contain human-annotated relations only on 2D images [19, 20].
Prior research suggests that 3D information may play a critical role in spatial relations [20, 21, 11, 9].
With only 2D images, the model has to implicitly learn the mapping to 3D, which is itself an unsolved
problem. Instead of developing an accurate 3D understanding of spatial relations, models tend to
utilize superficial 2D cues [20]. More importantly, in robotics, 3D information is often readily
available, making it valuable to study spatial relation recognition using 3D information.

In this work, we propose Rel3D—the first large-scale dataset of human-annotated spatial relations
in 3D (Fig. 1). It consists of spatial relations situated in synthetic 3D scenes, making it possible to
extract rich and accurate geometric and semantic information, including depth, segmentation mask,
object positions, poses, and scales. The scenes in Rel3D are created by crowd workers on Amazon
Mechanical Turk (Fig. 2). Workers manipulate objects according to instructions, and independent
workers are asked to verify whether a given spatial relation holds in the 3D scene. We choose to use
synthetic scenes because they give us complete control over various factors, e.g., objects, positions,
camera poses, etc. Such flexibility is important for datasets specializing in spatial relations, enabling
us to study the grounding of spatial relations with respect to these factors.

Rel3D is the first to provide rich geometric and semantic information in 3D for the task of spa-
tial relation understanding. It enables the exploration of problems that were out of reach before.
Specifically, we study how ground truth object 3D positions, scales, and poses (including frontal
and upright orientation) can be used to train neural networks to predict spatial relations with high
accuracy. Further, our experiments suggest that estimating 3D configurations is a promising step
towards understanding spatial relations in 2D images.

Reducing dataset bias through minimally contrastive examples. Besides promoting 3D under-
standing of spatial relations, Rel3D also addresses a fundamental issue with existing datasets—biases
in language and 2D spatial cues. Despite prior efforts in mitigating bias [22, 23, 20], state-of-the-art
models achieve superficially high performance by exploiting bias, without much understanding [20].

We propose minimally contrastive data collection for spatial relations—a novel crowdsourcing
method that significantly reduces dataset bias. Rel3D consists of minimally contrastive scenes: pairs
of scenes with minimal differences, so that the spatial relation holds in one but fails in the other
(Fig. 1). The task for the model is to classify whether the given relation holds. This minimally
contrastive construction makes it unlikely for a model to exploit bias, including language bias (“cup
on table” is more likely than not) and other spurious correlations with factors like the color of the
background or the texture of an object. If a model attempts to associate the background with a relation,
it cannot succeed in both instances of a minimally contrastive pair with identical backgrounds.

Through our experiments, we demonstrate how Rel3D can be used as an effective tool for diagnosing
models that rely heavily on 2D bias as well as Language bias for making predictions. We show that
a simple 2D baseline outperforms more sophisticated models, implying that these models lack 3D
understanding for recognizing spatial relations. Further, we empirically demonstrate that training
models on minimally contrastive examples leads to better sample efficiency.

Our contributions are as follows:

• We construct Rel3D: the first large-scale dataset of human-annotated spatial relations in 3D
• Rel3D is the first benchmark for spatial relation understanding that contains minimally contrastive

examples, alleviating bias and leading to sample-efficient training
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• With Rel3D, we demonstrate how 3D positions, scales, and poses of objects can be used to predict
spatial relations with high accuracy

2 Related Work

Spatial relations. Research in psycholinguistics has studied how humans perceive spatial relations
and use them in natural language. Landau & Jackendoff [5] have argued that natural languages use a
surprisingly small set of predicates (less than 100 in English) for spatial relations, which forms the
basis of how we select predicates in Rel3D. Some researchers have investigated the semantics of
spatial predicates from views of human language and cognition [2–4, 16]. Others have attempted
to build computational models [12, 17, 13, 15, 14]. However, these models are often based on
hand-crafted rules and they are validated only on a handful of toy examples (e.g., treating objects
as 2D shapes). We differ from this body of research as ours is a data-driven approach. Instead of
hand-designing rules for spatial relations using a small set of curated examples, we develop machine
learning models to recognize spatial relations from large-scale human-annotated visual data. We also
show that our data can be potentially used to provide empirical evidence for some prior observations.

Many data-driven approaches for spatial relations have been developed in robotics, including applica-
tions in navigation [7], object manipulation [8, 18, 9] and human-robot interaction [10, 24, 11, 25, 26].
Zeng et al. [9] designed a robot to manipulate objects given visual observations of the initial state
and the goal. A core intermediate step in their method is to predict spatial relations. Guadarrama et
al. [11] built a robot to respond to spatial queries in natural language (e.g., “What is the object in
front of the cup?”). To answer the query, the robot needs to predict spatial relations in the scene.
These spatial relation modules in robotics are usually developed on small-scale datasets specific
to each robotic system, making it hard to compare different methods. Also, many systems rely on
hand-crafted rules that are not applicable universally [10, 24, 9]. In contrast, we build a large-scale
benchmark that facilitates a common base for training and evaluating different methods.

Visual relationship detection. Recognizing relations in images has become a frontier of computer
vision beyond object recognition. Lu et al. [27] introduced the task of visual relationship detection:
the model takes an image as input and detects subject-predicate-object triplets by localizing pairs of
objects and classifying the predicates. Since then, several datasets containing visual relations have
been proposed, such as VRD [27], Visual Genome [28], and Open Images [29]. The relations in
these are not necessarily spatial (e.g., “person drink tea”). We focus on spatial relations, which is
an important class of visual relations; 66.0% of relations in VRD and 51.5% in Visual Genome are
spatial. Unlike them, our dataset contains rich and accurate information about the 3D scene like
object locations, orientation, surface normal, and depth. Further, we alleviate bias in language and
2D cues that are present in VRD and Visual Genome [20]. Many model architectures [30–38] have
been developed on these datasets. We adapt and benchmark some recent works on Rel3D.

Closest to our work is SpatialSense [20], which consists of 17.5K relations on 11.6K images from
NYU Depth [39] and Flickr. SpatialSense proposed adversarial crowd-sourcing to reduce language
and 2D spatial bias. Rel3D differs from SpatialSense in two ways. First, Rel3D contains rich and
accurate geometric and semantic information like depth, surface normal, segmentation mask, object
positions, poses, and scale; while SpatialSense only contains bounding box annotations and noisy
depth for some images. Rich 3d information enables analysis that is not possible with SpatialSense
(see Sec.5). Second, scenes in Rel3D occur in minimally contrastive pairs. Not only does this
eliminate language bias and reduce 2D bias, but it also controls for any spurious correlations with
factors like background, texture, and lighting, which are not considered in SpatialSense.

Language and 3D. Similar to our work, prior works have also explored grounding language in 3D.
Notably, Chang et al. [40] model spatial knowledge by leveraging statistics in 3D scenes. For spatial
relations, they create a dataset with 609 annotations between 131 object pairs in 17 scenes. Also,
Chang et al. [41] create a model for generating 3D scenes from text, and create a dataset of 1129
scenes from 60 seed sentences. Concurrent to our work, Panos et al. [42] proposed ReferIt3D, a
benchmark for contrasting objects in 3D using natural and synthetic language. However, unlike in
prior works [40–42], scenes in Rel3D occur in minimally contrastive pairs which control for potential
biases like language bias. Also, the objects in prior works [40–42] are limited to those found in
indoor scenes like chairs and tables, while Rel3D also considers outdoor objects like trees, planes,
cars and birds, and hence it covers a wider array of spatial relations.
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Dataset bias. The issue of dataset bias has plagued many machine learning tasks both within
computer vision [22, 23, 20] and beyond [43–46]. Zhang et al. [22] address language bias in
answering yes/no questions on clipart images. They collect pairs of images with the same question
but different answers by showing the image and the question to crowd workers and asking them to
modify the image so that the answer changes. Goyal et al. [23] extend this idea to real images. Unlike
them, we ask for minimal modifications to input, and hence reduce bias by a much larger extent, not
only in language but also in a variety of factors, including texture, color, and lighting.

“something-something” [47] is a video action recognition dataset that reduces bias by having a large
number of classes. Hence, a model has to learn the action nuances (e.g., “folding something” vs.
“unfolding something”). However, unlike Rel3D, it does not contain minimally contrastive pairs.

Generating synthetic 3D data. Our work is also related to prior works in generating synthetic 3D
data using graphics engines or simulators [48–54]. This approach can produce massive data at low
cost, and 3D information is readily available. It also gives us the flexibility to control various factors
in the scene, such as object categories, shapes, and positions. Note that the relations in our dataset are
annotated by humans rather than generated automatically.

3 Dataset
Rel3D consists of spatial relations situated in 3D scenes, from which one can extract rich and accurate
information, such as depth, object positions, poses, and scales. Each scene contains two objects
(subject and object), that either satisfy a spatial relation (subject-predicate-object) or not (Fig. 1).
Objects in Rel3D come from multiple sources, including ShapeNet [55], and YCB [56]. We use
predicates based on prior work [5] and aim to cover most of the common spatial relations. Given
the vocabulary of objects and predicates, we remove triplets that are unlikely to occur in the real
world (e.g. “laptop in cup”). We design an interface for crowd workers to compose 3D scenes for a
given spatial relation by manipulating objects (Fig. 2). We collect instances as pairs of minimally
contrastive scenes in two stages. First, we collect positive scenes wherein the spatial relation is true.
Next, we give a positive scene and ask them to move the objects just enough to falsify the relation.

After collecting the 3D scenes, we render images from multiple views and conduct a final round of
verification by independent crowd workers. As a result, we collect 9,990 3D scenes ( 4,995 positive,
4,995 negative) and 27336 images. The objects come from 67 categories, with 30 different spatial
predicates. Below, we detail each component of our data collection pipeline.

Object vocabulary. The objects in our dataset are from three sources:

ShapeNet [55]: It is a large-scale dataset of 3D shapes. We use the ShapeNetSem subset [57],
which contains rich annotations such as the frontal side, upright orientation, and real-world scale of
objects. These annotations are important because, for instance, the frontal side of an object affects
the configuration for the spatial predicate “in front of” when considered from the object’s frame.
There are 270 object categories in ShapeNetSem. We remove categories with too few shapes, as well
as group similar ones (e.g. different types of chairs), and end up with 48 categories.

YCB [56]: It is a dataset for benchmarking object manipulation, consisting of everyday objects that
can be manipulated on a table. These are included because object manipulation requires understanding
spatial relations, and Rel3D can potentially be used for object manipulation in simulation engines.
There are 77 shapes in YCB, which we manually filter and merge with ShapeNet to get 53 object
categories from YCB+ShapeNet.

Manual collection: We collect a set of objects manually. These are from the word list of the Thing
Explainer book [58]. We add 14 categories from this, including house, mountain, wall, and stick. For
each category, we download five to six 3D shapes from open-source shape repositories.

In summary, the objects in Rel3D comprise of 358 shapes from 67 categories. They cover a wide
range of everyday objects and are annotated with real-world scales and pose information (frontal side,
upright orientation). The 3D shapes are manually reviewed to ensure quality. The train and test data
contain mutually exclusive sets of 3D shapes. The supplementary material has more details.

Predicate vocabulary. As argued by Landau & Jackendoff [5], the space of spatial predicates is
surprisingly small (less than 100 in English). We start with the list of spatial predicates in [5]
and group those with similar semantic meaning (e.g., nearby and near). Next, we add multi-
word prepositional phrases that describe spatial relations, such as facing towards and leaning
against. We end up with 30 spatial predicates, which is a superset of those in SpatialSense [20].
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Figure 2: UI for manipulating objects to create a
3D scene given a spatial relation

on to the left of obs. to the right of obs.

to the left of subj. to the right of subj.near

Figure 3: Each dot represent a scene in Rel3D
(blue: +ve, red: -ve). The location of dot is the
relative position of the object w.r.t. to the subject
(subj.) in the observer’s (obs.) reference frame.

Some predicates like to the left of are ambiguous and depend on the reference frame. For
example, “person in front of the car” can be interpreted with respect to the observer or the car.
If it is relative to the car, and the car is facing away from the observer, then the person would be
behind the car in the frame of reference of the observer. Unlike prior work [20], we resolve this
ambiguity by splitting such predicates into two: one relative to the observer and the other relative
to the object. We ask crowd workers to complete the task without mentioning frames, and later ask
which reference frame was used. This also captures real-world frequencies of frames of reference
(refer to Sec. 4 for details). As a result, the spatial predicates in Rel3D are not ambiguous with
respect to reference frames. However, if one wishes to retain the ambiguity, our data still captures the
real-world frequencies of different reference frames.

Relation vocabulary. Given 67 object categories and 30 predicates, there are 67 × 30 × 67 =
134,670 possible relations. However, not all relations are likely to happen in the real world (e.g.,
“laptop in cup”). In Rel3D, we only include relations that can occur naturally. We randomly sample
about 1/4th of all relations which then are examined by 6 expert annotators to select natural relations.

Crowdsourcing 3D scenes. We ask crowd workers on Amazon Mechanical Turk to compose 3D
scenes by manipulating objects (Fig. 2). We create a Unity WebGL interface that renders two objects
placed in an empty scene with walls and a floor. Workers can manipulate the 3D position, pose, and
scale of the objects. Gravity is enabled by default but can be turned off by the worker for an object
(e.g. an airplane). First, we collect positive samples. Given a spatial relation subject-predicate-object,
the worker has to manipulate objects so that the relation holds. We ask workers to re-scale objects to
resemble their real-world scales. Next, we collect minimally contrastive negative samples. Recall
that a pair of minimally contrastive scenes are almost identical, but the spatial relation holds in one
while fails in the other. Given a positive scene, workers are asked to move objects minimally to make
the relation invalid. To simplify the task and ensure diversity, we allow them to move/rotate only
one of the objects, along a randomly chosen predefined axis. If the relation cannot be invalidated by
movement/rotation along the chosen axis, they can select “Not Possible”, and a new axis is provided.

We find that for about 20% of negative samples, movement along the axis leads to an unnatural scene.
For example, a chair could be in the air when moved along the vertical axis. While collecting negative
samples, we ask AMT workers to identify these examples. Although unnatural, these are valid
negative samples for the spatial relation, hence are included in the dataset. If one wishes, they can be
removed using our annotations. During both the stages, we control the quality by inspecting random
samples and removing annotations coming from workers with several low-quality annotations.

Rendering and human verification. After collecting scenes, we render images and ask independent
crowd workers to verify them. For each pair of minimally contrastive scenes, we sample 12 camera
views1 and perform photo-realistic rendering using Blender [59]. The same set of camera views are
used for positive and negative scenes in a pair. We show the images to crowd workers and ask them
to verify whether the spatial relation holds. Each image is reviewed by three workers and we take the
majority vote. We include only those image pairs for which the original labels are corroborated by the
workers. This also provides us the views from which humans could distinguish whether the spatial
relation holds or not. Finally, we end up with 27336 human-verified images, which we use for our

1For directional relations that depend on the view of the observer, we use 3 views along the front plane.
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Figure 4: Percentage of intrinsic (view-independent) vs. relative (view-dependent) frames of reference
for directional relations in Rel3D.

experiments. Note that, by using the 3D scene and the view information in Rel3D, one can potentially
render infinitely many images by modifying factors like 3D context, background, and lighting.

Distribution of Samples per Predicate Class. Rel3D poses a binary classification problem where
given a relation, the task is to classify whether or not the objects satisfy the relation. Rel3D has
variable number of instances per predicate, as some predicates, like on, occur more frequently than
others, like passing through (exact distribution in supplementary material). However, as Rel3D
has each predicate represented by an equal number of positive and negative samples, the imbalance
in predicate counts does not bias a model to predict one more than another. Also, Rel3D poses an
independent binary classification task for each predicate and uses average class accuracy as the metric
which is robust to the number of samples per predicate. Unlike Rel3D, VRD and Visual Genome use
Recall@K (the recall of ground truth relations given K predicted relations), which fails to identify if
a system is producing valid but unannotated predictions or false positives [20].

4 Dataset Analysis

Distribution of objects in 3D space. Since our dataset has ground truth 3D positions, it can provide
insights into which regions of 3D space do humans consider as “to the left of” something,
or how close the objects should be for them to be “near”. In Fig. 3, we plot the relative position
of the subject w.r.t. the object. Note how the directional predicate to the left of has different
distributions depending on frames of reference. When relative to the observer, there exists a cleaner
boundary of separation in the reference frame of the observer, while no such boundary exists relative
to the object, as the object could have any orientation in the scene. Plots for other relations can be
found in the supplementary material.

Directional spatial relations. Directional relations are spatial relations whose semantics depend on
frame of reference. There are 5 directional relations in Rel3D: to the left of, to the right
of, to the side of, in front of, and behind. They have different spatial groundings in the
two frames: relative (relative to the observer) and intrinsic (relative to the object). Prior research
in psycho-linguistics has studied the problem of how humans choose between different frames of
reference [60, 12, 61, 16]. However, there aren’t any empirical results based on large-scale data of
human judgments. With Rel3D, we are able to shed light on this problem.

When collecting positive samples, we give the workers a relation (e.g., “person to the left of
car”) and ask them to manipulate objects to make the relation hold. We intentionally do not specify
the frame of reference and let them decide. After the task, we display an image of the scene from
a different viewpoint and ask if the relation remains valid. If the answer is “Yes”, the worker
is using intrinsic frame of reference (relative to the car). Otherwise, the worker is using relative
frame of reference (relative to the observer). Based on responses from workers, our data reflects
a natural distribution of how different reference frames are used. Fig. 4 shows the percentage of
intrinsic reference frames (view-independent) and relative reference frames (view-dependent) for each
directional relation in Rel3D. We show the plots for objects-predicate combinations with more than
10 samples for both to the left of and to the right of or both in front of and behind.
We find that human choices of reference frames depend on the object as well as the predicate.

To the left and to the right have highly-correlated responses (r = 0.79), showing that hu-
mans make similar choices for both. The correlation between in front of and behind is 0.4,
showing that they are not as symmetric as to the left of and to the right of. In fact, for
some object categories like “Camera”, the responses for in front of and behind are very different.
This suggests that the choice of reference frames may also depend on object affordances.
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(a) MLP with Aligned Features (b) MLP with Raw Features

(c) VTransE (d) DRNet

Figure 5: Contrastive (contra.) vs non contra. dataset for
training. Across models, better performance is achieved
with fewer samples when the dataset is contra.

Model Input Avg. Acc.

Random — 50.00%
Lang Only [20] class 50.00%
BBox Only [20] bbox 74.14%

DRNet [33] RGB + bbox 73.25%
+ class

Vip-CNN [30] RGB + bbox 72.32%
+ class

VTransE [31] RGB + bbox 72.27%
PPR-FCN [34] RGB + bbox 73.30%

MLP Raw Features 81.24%
MLP Aligned Features 85.03%

Human RGB + phrase 94.25%

Table 1: Performance on classification of
spatial relations in Rel3D. Bbox means 2D
bounding box and class means object class

5 Experiments

Baselines for spatial relation recognition. We benchmark state-of-the-art visual relationship detec-
tion models [33, 30, 31, 34] on Rel3D. They are outperformed by a simple baseline based solely on
2D bounding boxes, demonstrating that Rel3D is a challenging benchmark, and existing methods are
unable to truly understand spatial relations.

Experimental setup. For benchmarking, we follow an approach similar to SpatialSense [20]. The
task is spatial relation recognition: Input is an RGB image, two object bounding boxes, their category
labels, and a spatial relation between them. The model predicts whether the spatial relation triplet
holds in the image or not. We compute the accuracy for each of the 30 predicates separately and then
report the average of those 30 values. This ensures that the reported metric reflects models’ overall
performance, unaffected by the variability in the number of samples per predicate.

Model architectures. Similar to SpatialSense, we evaluate 2D-only and language-only baselines.
The 2D-only baseline takes as input the predicate and the coordinates of two bounding boxes; while the
language-only baseline takes the predicate and the object categories. They output a scalar indicating
whether the spatial relation holds. Similar to SpatialSense, we also adapt four state-of-the-art visual
relationship detection models for our task, namely DRNet [33], Vip-CNN [30], VTransE [31] and
PPR-FCN [34]. Please refer to the supplementary for more details.

Implementation details. All images are resized to 224 × 224 before feeding into the model. We
perform random cropping and color jittering on training data. Hyper-parameters for each model are
tuned separately using validation data, and the best-performing model on the validation set is used
for testing. Please refer to the supplementary material for more details.

Results. Table 1 shows the performance of the baselines for spatial relation recognition on Rel3D.
Accuracy for each relation can be found in the supplementary material. The dataset does not contain
any language bias since each triplet (subject-predicate-object) has both positive and minimally
contrastive negative examples. So, the language-only model does no well than a random baseline
(50%). All state-of-the-art models fail to outperform the simple 2D baseline, emphasizing that the
current models rely on language and 2D bias to achieve high performance on existing benchmarks.
Thus, Rel3D can serve as a tool for diagnosing issues in models. Also, human performance on the
dataset is around 94%. This confirms the quality of the dataset and the scope for improvement for
models. The 6% errors demonstrate that some spatial relations are inherently fuzzy and subjective.

Using 3D information for spatial relations. A reasonable hypothesis is that the 3D configuration
between objects is important in determining their spatial relation. Prior works have built computational
models for spatial relations based on hand-crafted features such as angle and distance [12, 17, 13, 15,
14]. However, they are unable to provide a quantitative evaluation on large-scale natural data. Rel3D
makes it possible to quantify the predictive power of 3D information for spatial relations.
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Animal to the left of Bird Bottle passing through tire

(a) Success cases.

Ball under TV Radio in front of Man

(b) Failure cases.
Figure 6: Analyzing the success and failure cases of MLP trained with aligned features. Blue dots
represent location where if object is moved, the relation would be classified as true; while red dots
represent location it would be false.

To explore this, for each object in a scene, we define three reference frames: the camera reference
frame Scam, the object’s raw reference frame Sraw, and the object’s aligned reference frame Saligned.
In the Scam, the camera is at origin and points towards −z axis, and up direction is y. The object’s
raw reference frame Sraw is the reference frame wherein the axes correspond to the raw CAD mesh.
These axes might not be aligned for their front and up direction. If we align the x axis to the mesh’s
frontal direction and z axis to the mesh’s up direction, we obtain the aligned reference frame Saligned.
We use the following two mechanisms for encoding this information:

Raw features. For each object, we encode its centroid in Scam, rotation angles between Sraw and
Scam, and scale along xyz in Sraw. Since raw mesh is not aligned for the frontal and top directions,
we encode this information by finding the relative rotation between Saligned and Sraw. The final
raw feature has 24 dimensions (each object: 3-centroids, 3-rotation from Sraw to Saligned, 3-sizes,
3-rotation between Saligned and Sraw).

Aligned features. Here we directly encode the positions, rotation angles, and scale of the object’s
aligned mesh. In this way the front and up directions are implicitly encoded. We represent each
object with a 9-d vector (3 - centroid in Scam, 3 - rotation from Saligned to Scam, 3 - sizes in xyz
directions in Saligned). The final aligned features have 18 dimensions. Note that these features do
not encode information about the exact geometry of objects. They are approximating each object as
cuboids in the 3D space. We use these features to train a 5-layer Multi-layer perceptron (MLP) with
skip connections for classifying spatial relations.

Results. The performance of different models is reported in Table 1. Further, Fig. 6a shows how our
model effectively learns the decision boundary for spatial relations. Note that directly comparing
these models to those using only 2D information is unfair. However, our analysis reveals how much
one can gain by utilizing the 3D information. This suggests that learning to predict 3D information
like pose and orientation could be an effective intermediate strategy for spatial predicate grounding.

Our results show that the 3D features alone are not sufficient to solve the relation recognition problem.
In Fig. 6b, we visualize some cases where the model fails. One reason for failure is that aligned
features do not encode information about the geometry of objects (refer to Sec. 5) but approximates
each object as a cuboid. In Ball under TV, it approximates the TV as a cuboid and predicts
some regions underneath the screen as not being under the TV. Radio in front of Man shows an
ambiguous case where there is fuzziness whether the front of a person is defined w.r.t to their face or
torso. It is important to emphasize that this study becomes possible as we have access to accurate 3D
data information of the scene; and it is not possible in benchmarks that operate only in 2D images.

Minimally Contrastive Examples Improve Sample Efficiency. we hypothesize that minimally
contrastive examples lead to sample-efficient training as they reduce bias for a network to overfit.
To verify this hypothesis, we construct subsets of training data with only contrastive and only
non-contrastive samples.

We construct the contrastive subset by randomly sampling minimally contrastive pairs. For the
non-contrastive subset, we first sample twice as many contrastive pairs and then choose one sample
from each pair. Thus the total number of training samples remains the same between contrastive and
non-contrastive subsets. Fig. 5 show that training on minimally contrastive examples is much more
sample efficient than on non-contrastive examples. Models trained on contrastive subsets outperform
those trained on non-contrastive subsets using only about 1/4 training data. This trend holds for
models that use RGB input (DRNet and VtransE) as well as for models using 3D information. This
demonstrates that minimally contrastive examples lead to sample efficient training.
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6 Conclusion

Understanding spatial relations is an important task that requires reasoning in 3D. But existing
datasets for the task lack large-scale, high-quality 3D ground truth. In this paper, we constructed
Rel3D: the first large-scale dataset with human-annotated spatial relations in 3D. To reduce bias, we
collected minimally contrastive pairs. Our experiments confirmed the utility of 3D information for
spatial relations and the effectiveness of minimally contrastive samples for reducing bias.

7 Broader Impact

This work contributes to improve the understanding of spatial relations, which in turn is a critical piece
of the giant puzzle on language understanding. Our work could potentially lead to better language
understanding and scene comprehension for intelligent systems like robots. This can eventually help
the intelligent systems to communicate better with humans. Depending on how these intelligent
systems are used, the society could gain positively as well as negatively from the existence of such
systems.
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