
We would like to thank the three reviewers for their feedback. Upon acceptance, we will include (a) a preliminary1

experiment results on Neural GTD, (b) an expanded discussion on the theoretical results and relation to prior works.2

We first discuss the concern about experiments shared by reviewer 1, reviewer 2, reviewer 3.3

100 200 300
no of neurons (m)

0

0.1

0.2

0.3

0.4

M
S

B
E

Neural TD
Neural GTD

••• Experiments: The main motivation and contribution of this work have been theoreti-4

cal – proving that off-policy learning using neural network (NN) functions approximation5

can learn the value function with (almost) zero MSBE together with a finite time conver-6

gence bound. However, we fully agree with the reviewers that a numerical experiment7

would strengthen this claim. As a preliminary study, we consider an MDP taken from8

the Garnet class with |S| = 500 states, |A| = 5 possible actions per state with uni-9

formly distributed rewards, and the discount factor is γ = 0.9. We generate two random10

policies with the same support as the behavior/target policies. We compare the average11

MSBE against the number of neurons m (for 2-layer, ReLU NN with random init.) after12

T = 2× 105 iterations of neural GTD and neural TD [Cai et al., 2019] from 3 independent run of state/action. From the13

figure, the average MSBE decreases withm stably for neural GTD, while it fluctuates withm with neural TD, indicating14

that the latter can be unstable in the off-policy setting ([Cai et al., 2019] analyzed the neural TD for on-policy). We will15

include simulations that averages with more trajectories to obtain the expected performance.16

Reviewer 1: We thank you for the review and constructive comments. See the point-to-point response below.17

NN Architecture: As discussed in (4) and the abstract, our analysis are based on a 2-layer, fully connected, ReLU18

NN with d-dimensional input, and m hidden neurons. Having said that, it is an interesting future direction to analyze19

neural GTD with other types of NN architecture. Lastly, our analysis is based on the surrogate (linearized) NN function20

(14)-(16), which is akin to a kernel approximation (called the Neural Tangent Kernel, see [Jacot et al., 2018]). In the21

final version, we will discuss about these connections in detail.22

Saddle-point Reformulation: Just as the reviewer said, the reformulation of the min MSBE problem as saddle point23

optimization follows from prior work such as [Dai et al., 2017,2018], [Shapiro 2011]. We do not claim this as our24

main contribution either. Instead, the introduction of the dual NN in (9) is new. Particularly, a simple application of25

saddle point reformulation to min MSBE results in (8), which involves an |S|-dim. sub-problem. As |S| is large (can be26

infinite), the dual NN is used to circumvent this intractability. We will include your references in the final version.27

Dai et al. [2018] derived a similar reformulation to our paper. Besides only guaranteeing convergence to a stationary28

point (whilst we showed convergence to a global MSBE minimizer for neural GTD), their approximation error29

is characterized by the `∞-norm (Theorem 7). The `∞-norm requirement is restrictive as it requires the function30

approximation to be uniformly accurate, i.e., minθ |V π(s)− V̂ (s; θ)| is small for every s ∈ S. On the other hand, we31

only require a small L2 variation (H4), i.e., minθ Es[|V π(s)− V̂ (s; θ)|2]. Lastly, their algorithm requires a computation32

oracle which finds an exact solution to the inner optimization (see line 7 of their algorithm 1), which can be intractable.33

E.g., if an NN approximation is used, this oracle will need to solve an NN regression problem.34

Technical Contributions: On top of providing an explicit theoretical analysis with convergence to a global minimum35

MSBE, we emphasize on the technical novelty developed in our paper – We show the convergence rates of the L236

variation w.r.t. the optimal NN over the function space (see (18)) that is independent of the no. of neurons m. This37

is different from existing analysis on GTD learning with linear function approximation (LFA), which show the mean38

square error of parameter in Euclidean norm. Moreover, the latter analysis may not work if the LFA used involve39

p→∞ parameters, since in this case the expected GTD update matrix may cease to be Hurwitz. On the other hand, the40

convergence rate measured in this L2 variation (as well as MSBE) is unaffected by the no. of parameters; as seen in41

Theorem 3.1-3.4 and the numerical experiments above.42

For a comparison, as analyzed in [Dalal et al. 2019], GTD with LFA finds an optimal parameter at O(1/k) (w.h.p.),43

while neural GTD’s rate is O(log k/
√
k). However, as mentioned the rate of GTD with LFA is valid only for finite p.44

Besides, the reference [Kumar et al. 2019] is on actor-critic for policy improvement. Though the subroutine of GTD45

with LFA is used as the critic, the analysis therein is not directly comparable to this work.46

Off-policy Learning: This is when the states/actions received during policy evaluation follow a behavior policy which47

is different from the target policy that we want to evaluate. It is a common setting, e.g., when only one set of data48

is available and our goal is to evaluate different policies without gathering more data. Our study is important as it is49

known that classical TD learning with LFA can diverge in off-policy learning [Sutton et al. 2009b], and by extension50

the neural TD may diverge as well. Particularly we show neural GTD is still efficient for off-policy.51

Reviewer 2: We thank you for the positive comments. As mentioned, we will now provide a small numerical experiment52

to strengthen our claims in the final version.53

Reviewer 3: We thank you for the positive comments. In the final version, we will extend the discussions of the54

theoretical results and relation to prior works. We also provide a small numerical experiment to verify our claims (see55

above). In addition, we are considering to extend the analysis for more general NN architectures.56

