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Figure I: Varying the lr.
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Figure II: Generalization gap.
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Figure III: Validating assmp 2.

To R1: Popularizing the approach We will add a summary of the results in more accessible language, focusing on1

the more surprising aspects of hypernetworks and how our framework sheds light on these. A few undefined symbols2

We apologize for that. This will be fixed in the next version of the paper. Abstract Thanks for the suggestion. In the3

next version of the paper, we will broaden the context of the abstract similar to the conclusions section.4

To R2: Clarity We will make an effort to make the reading pleasant and would like to respectfully point out that the5

other three reviewers believe that the paper is well-written and easy to read. Prior work We tried to refer [5] in detail6

throughout the paper. For instance, in the related work section we explain the tools developed in [5] and how we extend7

them in our paper (Thm. 1). Additionally, we devoted most of Sec. 3 (L 162-182) to discuss the concepts and results8

of [5]. In [5] they prove the lower bound in Thm. 1 when assuming the existence of a continuous selector (see L 5-9,9

L 84-87). In our Thm. 1, we prove the lower bound for the case of neural networks, while proving the existence of10

a continuous selector. Since the existence of a continuous selector is also a cornerstone in the proofs of Thms. 2-5,11

the analysis in [5] is insufficient to prove these results. We will further discuss these issues in the next version of the12

paper. Unsupported statements in the introduction The word “suggests” is indeed misleading since the statement13

on minimal complexity is our definition of modularity, see also L 228-237. We will provide references to support14

the bottleneck statement, e.g., [21]. The presentation of [Ha et al. 2016] was meant to introduce the term “primary15

network”, while mentioning the usage for sequences. We apologize for being inaccurate, we will fix it in the next16

version of the paper. The definitions we use are given explicitly in L 111-116. Clarifying defs and symbols In the next17

version of the paper, we will clarify the definitions of accuracy and N-width. Unfortunately, we omitted the definition18

of BV, which is given in L 100-103 in the supplementary. C1(R) stands for the set of continuously differentiable19

functions over R. Hyperparams We did not apply any sort of regularization/normalization (including dropout) on20

the two models to minimize the number of hyperparameters and since the baseline method is considered more stable21

than the hypernetwork, which implies that it may require less regularization. Following the review, we conducted a22

hyperparameter sensitivity test for the learning rate. We compared the two models in the configuration of Fig. 3(a-b)23

when fixing the depths of f and e to be 4. The results, shown in Fig. I clearly show that the hypernet outperforms the24

baseline for every learning rate in which the networks provide non-trivial error rates. Missing Fig. 4 See comments to25

R4.26

To R3: Multidim case The theory indeed scales to the multi-dimensional case. In this case, if the output dimension27

is independent of ε, we get the exact same bounds. Our colorization experiment in the supplementary corresponds to a28

multidimensional target function (with three outputs). The generalization gaps for the two models are similar, when29

varying the depth of f and e, same setting as Fig. 3(a-b), see Fig. II. We would explore this further. Assumption 2 To30

empirically justify this assumption we trained shallow neural networks on MNIST and Fashion MNIST classification31

with a varying number of hidden neurons, using the MSE loss and one-hot encoding of the labels. As can be seen in32

Fig. III, the MSE loss strictly decreases when increasing the number of hidden neurons. This is true for a variety of33

activation functions. To theoretically justify this assumption, we will prove the following lemma:34

Lemma 1 Assumption 2 holds for Y = C([0, 1]) (i.e., the set of continuous functions y : [0, 1] → R) and 2-layered35

ReLU networks approximators.36

To R4: Fig. 4 is in the supplementary; the paper’s reference to it should have been to Fig. 1. We apologize for this.37


