
A Function approximation perspective of substructure counting

On a space of graphs G, we call CI(·;G[P]) the induced-subgraph-count function of the pattern G[P],
and CS(·;G[P]) the subgraph-count function of G[P]. To formalize the probe into whether certain
GNN architectures can count different substructures, a natural question to study is whether they are
able to approximate the induced-subgraph-count and the subgraph-count functions arbitrarily well.
Formally, given a target function g : G → R, and family of functions, F , which in our case is typically
the family of functions that a GNN architecture can represent, we say F is able to approximate g on
G if for all ε > 0 there exists f ∈ F such that |g(G)− f(G)| < ε, for all G ∈ G.

However, such criterion based on function approximation is hard to work with directly when we look
at concrete examples later on. For this reason, below we will look for an alternative and equivalent
definition from the perspective of graph discrimination.

A.1 From function approximation to graph discrimination

Say G is a space of graphs, and F is a family of functions from G to R. Given two graphs G[1], G[2] ∈
G, we say F is able to distinguish them if there exists f ∈ F such that f(G[1]) 6= f(G[2]). Such
a perspective has been explored in Chen et al. [8], for instance, to build an equivalence between
function approximation and graph isomorphism testing by GNNs. In the context of substructure
counting, it is clear that the ability to approximate the count functions entails the ability to distinguish
graphs in the following sense:
Observation 1. IfF is able to approximate the induced-subgraph-count (or subgraph-count) function
of a pattern G[P] on the space G, then for all G[1], G[2] ∈ G such that CI(G[1], G[P]) 6= CI(G

[2], G[P])
(or CS(G[1], G[P]) 6= CS(G[2], G[P])), they can be distinguished by F .

What about the converse? When the space G is finite, such as if the graphs have bounded numbers of
nodes and the node as well as edge features belong to finite alphabets, we can show a slightly weaker
statement than the exact converse. Following Chen et al. [8], we define an augmentation of families
of functions using feed-forward neural networks as follows:
Definition A.1. Given F , a family of functions from a space X to R, we consider an augmented
family of functions also from X to R consisting of all functions of the following form

x 7→ hNN ([f1(x), ..., fd(x)]),

where d ∈ N, h1, ..., hd ∈ F , and hNN is a feed-forward neural network / multi-layer perceptron.
When NN is restricted to have L layers at most, we denote this augmented family by F+L.
Lemma A.2. Suppose X is a finite space, g is a finite function on X , and F is a family of functions
on X . Then, F+1 is able to approximate f on G if ∀x1, x2 ∈ X with g(x1) 6= g(x2), ∃f ∈ F such
that f(x1) 6= f(x2).

Proof. Since X is a finite space, for some large enough integer d, ∃ a collection of d functions,
f1, ..., fd ∈ F such that, if we define the function f(x) = (f1(x), ..., fd(x)) ∈ Rd, then it holds that
∀x1, x2 ∈ X , f(x1) = f(x2) ⇒ g(x1) = g(x2). (In fact, we can choose d ≤ |X |·(|X |−1)

2 , since in
the worst case we need one fi per pair of x1, x2 ∈ X with x1 6= x2.) Then, ∃ a well-defined function
h from Rd to R such that ∀x ∈ X , g(x) = h(f(x)). By the universal approximation power of neural
networks, h can then be approximated arbitrarily well by some neural network hNN .

Thus, in the context of substructure counting, we have the following observation.
Observation 2. Suppose G is a finite space. If ∀G[1], G[2] ∈ G with CI(G

[1], G[P]) 6= CI(G
[2], G[P])

(or CS(G[1], G[P]) 6= CS(G[2], G[P])), F is able to distinguish G[1] and G[2], then F+1 is able to
approximate the induced-subgraph-count (or subgraph-count) function of the pattern G[P] on G.

For many GNN families, F+1 in fact has the same expressive power as F . For example, consider
FMPNN, the family of all Message Passing Neural Networks on G. F+1

MPNN consists of functions
that run several MPNNs on the input graph in parallel and stack their outputs to pass through an
MLP. However, running several MPNNs in parallel is equivalent to running one MPNN with larger
dimensions of hidden states and messages, and moreover the additional MLP at the end can be
merged into the readout function. Similar holds for the family of all k-Invariant Graph Functions
(k-IGNs). Hence, for such GNN families, we have an exact equivalence on finite graph spaces G.

14

B Additional notations

For two positive integers a and b, we define MODa(b) to be a if a divides b and the number c such
that b ≡ c (mod a) otherwise. Hence the value ranges from 1 to a as we vary b ∈ N∗.

For a positive integer c, let [c] denote the set {1, ..., c}.

Two k-typles, (ii, ..., ik), (j1, ..., jk) ∈ V k are said to be in the same equivalent class if ∃ a
permutation π on V such that (π(ii), ..., π(ik)) = (j1, ..., jk). Note that belonging to the same
equivalence class is a weaker condition than having the same isomorphism type, as will be defined in
Appendix C, which has to do with what the graphs look like.

For any k-tuple, s = (i1, ..., ik), and for w ∈ [k], use Iw(s) to denote the wth entry of s, iw.

C Definition of k-WL on attributed graphs

In this section, we introduce the general k-WL test for k ∈ N∗ applied to a pair of graphs, G[1] and
G[2]. Assume that the two graphs have the same number of vertices, since otherwise they can be told
apart easily. Without loss of generality, we assume that they share the same set of vertex indices, V
(but can differ in E, x or e). For each of the graphs, at iteration 0, the test assigns an initial color in
some color space to every k-tuple in V k according to its isomorphism type (we define isomorphism
types rigorously in Section C.1), and then updates the coloring in every iteration. For any k-tuple
s = (i1, ..., ik) ∈ V k, we let c(t)

k (s) denote the color of s in G[1] assigned at tth iteration, and let
c′

(t)
k (s) denote the color it receives in G[2]. c(t)

k (s) and c′
(t)
k (s) are updated iteratively as follows.

For each w ∈ [k], define the neighborhood

Nw(s) = {(i1, ..., iw−1, j, ij+1, ..., ik) : j ∈ V }

Given c
(t−1)
k and c′

(t−1)
k , define

C(t)
w (s) = HASHt,1

(
{c(t−1)

k (s̃) : s̃ ∈ Nw(s)}
)

C ′
(t)
w (s) = HASHt,1

(
{c′(t−1)

k (s̃) : s̃ ∈ Nw(s)}
)

with “{}” representing a multiset, and HASHt,1 being some hash function that maps injectively from
the space of multisets of colors to some intermediate space. Then let

c
(t)
k (s) = HASHt,2

((
c

(t−1)
k (s),

(
C

(t)
1 (s), ..., C

(t)
k (s)

)))
c′

(t)
k (s) = HASHt,2

((
c′

(t−1)
k (s),

(
C ′

(t)
1 (s), ..., C ′

(t)
k (s)

)))
where HASHt,2 maps injectively from its input space to the space of colors. The test will terminate
and return the result that the two graphs are not isomorphic if at some iteration t, the following two
multisets differ:

{c(t)
k (s) : s ∈ V k} 6= {c′(t)k (s) : s ∈ V k}

C.1 Isomorphism types of k-tuples in k-WL for attributed graphs

Say G[1] = (V [1], E[1], x[1], e[1]), G[2] = (V [2], E[2], x[2], e[2]).

a) ∀s = (i1, ..., ik), s′ = (i′1, ..., i
′
k) ∈ (V [1])k, s and s′ are said to have the same isomorphism type

if

1. ∀α, β ∈ [k], iα = iβ ⇔ i′α = i′β

2. ∀α ∈ [k], x
[1]
iα

= x
[1]
i′α

15

3. ∀α, β ∈ [k], (iα, iβ) ∈ E[1] ⇔ (i′α, i
′
β) ∈ E[1], and moreover, if either side is true, then

e
[1]
iα,iβ

= e
[1]
i′α,i
′
β

b) Similar if both s, s′ ∈ (V [2])k.

c) ∀s = (i1, ..., ik) ∈ (V [1])k, s′ = (i′1, ..., i
′
k) ∈ (V [2])k, s and s′ are said to have the same

isomorphism type if

1. ∀α, β ∈ [k], iα = iβ ⇔ i′α = i′β

2. ∀α ∈ [k], x
[1]
iα

= x
[2]
i′α

3. ∀α, β ∈ [k], (iα, iβ) ∈ E[1] ⇔ (i′α, i
′
β) ∈ E[2], and moreover, if either side is true, then

e
[1]
iα,iβ

= e
[2]
i′α,i
′
β

In k-WL tests, two k-tuples s and s′ in either (V [1])k or (V [2])k are assigned the same color at
iteration 0 if and only if they have the same isomorphism type.

For a reference, see Maron et al. [39].

D Proof of Theorem 3.2 (MPNNs are no more powerful than 2-WL)

Proof. Suppose for contradiction that there exists an MPNN with T0 layers that can distinguish the
two graphs. Let m(t) and h(t), m′(t) and h′(t) be the messages and hidden states at layer t obtained
by applying the MPNN on the two graphs, respectively. Define

h̃
(t)
i,j =

{
h

(t)
i if i = j(
h

(t)
i , h

(t)
j , ai,j , ei,j

)
otherwise

h̃
′(t)
i,j =

{
h′

(t)
i if i = j(
h′

(t)
i , h′

(t)
j , a′i,j , e

′
i,j

)
otherwise,

where ai,j = 1 if (i, j) ∈ E[1] and 0 otherwise, ei,j = e
[1]
i,j is the edge feature of the first graph, and

a′, e′ are defined similarly for the second graph.

Since the two graphs cannot be distinguished by 2-WL, then for the T0th iteration, there is

{c(T0)
2 (s) : s ∈ V 2} = {c′(T0)

2 (s) : s ∈ V 2},

which implies that there exists a permutation on V 2, which we can call η0, such that ∀s ∈ V 2, there
is c(T0)

2 (s) = c′
(T0)
2 (η0(s)). To take advantage of this condition, we introduce the following lemma,

which is central to the proof.

Lemma D.1. ∀t ≤ T0, ∀i, j, i′, j′ ∈ V , if c(t)
2 ((i, j)) = c′

(t)
2 ((i′, j′)), then

1. i = j ⇔ i′ = j′ .

2. h̃(t)
i,j = h̃

′(t)
i′,j′

Proof of Lemma D.1: First, we state the following simple observation without proof, which is
immediate given the update rule of k-WL:

Lemma D.2. For k-WL, ∀s, s′ ∈ V k, if for some t0, c(t0)
k (s) = c′

(t0)
k (s′), then ∀t ∈ [0, t0],

c
(t)
k (s) = c′

(t)
k (s′).

16

For the first condition, assuming c
(t)
2 ((i, j)) = c′

(t)
2 ((i′, j′)), Lemma D.2 then tells us that

c
(0)
2 ((i, j)) = c′

(0)
2 ((i′, j′)). Since the colors in 2-WL are initialized by the isomorphism type of the

node pair, it has to be that i = j ⇔ i′ = j′.

We will prove the second condition by induction on t. For the base case, t = 0, we want to show
that ∀i, j, i′, j′ ∈ V , if c(0)

2 ((i, j)) = c′
(0)
2 ((i′, j′)) then h̃(0)

i,j = h̃
′(0)
i′,j′ . If i = j, then c

(0)
2 ((i, i)) =

c′
(0)
2 ((i′, i′)) if and only if xi = x′i′ , which is equivalent to h(0)

i = h′
(0)
i′ , and hence h̃(0)

i = h̃
′(0)
i′ . If

i 6= j, then by the definition of isomorphism types given in Appendix C, c(0)
2 ((i, j)) = c′

(0)
2 ((i′, j′))

implies that

xi = x′i′ ⇒ h
(0)
i = h′

(0)
i′

xj = x′j′ ⇒ h
(0)
j = h′

(0)
j′

ai,j = a′i′,j′

ei,j = e′i′,j′

which yields h̃(0)
i,j = h̃

′(0)
i′,j′ .

Next, to prove the inductive step, assume that for some T ∈ [T0], the statement in Lemma D.1 holds
for all t ≤ T − 1, and consider ∀i, j, i′, j′ ∈ V such that c(T)

2 ((i, j)) = c′
(T)
2 ((i′, j′)). By the update

rule of 2-WL, this implies that

c
(T−1)
2 ((i, j)) = c′

(T−1)
2 ((i′, j′))

{c(T−1)
2 ((k, j)) : k ∈ V } = {c′(T−1)

2 ((k, j′)) : k ∈ V }

{c(T−1)
2 ((i, k)) : k ∈ V } = {c′(T−1)

2 ((i′, k)) : k ∈ V }

(6)

The first condition, thanks to the inductive hypothesis, implies that h̃(T−1)
i,j = h̃

′(T−1)
i′,j′ . In particular,

if i 6= j, then we have

ai,j = a′i′,j′

ei,j = e′i′,j′
(7)

The third condition implies that ∃ a permutation on V , which we can call ξi,i′ , such that ∀k ∈ V ,

c
(T−1)
2 ((i, k)) = c′

(T−1)
2 ((i′, ξi,i′(k)))

By the inductive hypothesis, there is ∀k ∈ V ,

h̃
(T−1)
i,k = h̃

′(T−1)
i′,ξi,i′ (k)

and moreover, ξi,i′(k) = i′ if and only if k = i. For k 6= i, we thus have

h
(T−1)
i = h′

(T−1)
i′

h
(T−1)
k = h′

(T−1)
ξi,i′ (k)

ai,k = a′i′,ξi,i′ (k)

ei,k = e′i′,ξi,i′ (k)

17

Now, looking at the update rule at the T th layer of the MPNN,

m
(T)
i =

∑
k∈N (i)

MT (h
(T−1)
i , h

(T−1)
k , ei,k)

=
∑
k∈V

ai,k ·MT (h
(T−1)
i , h

(T−1)
k , ei,k)

=
∑
k∈V

a′i′,ξi,i′ (k) ·MT (h′
(T−1)
i′ , h′

(T−1)
ξi,i′ (k), e

′
i′,ξi,i′ (k))

=
∑
k′∈V

a′i′,k′ ·MT (h′
(T−1)
i′ , h′

(T−1)
k′ , e′i′,k′)

= m′
(T)
i′

where between the third and the fourth line we made the substitution k′ = ξi,i′(k). Therefore,

h
(T)
i = Ut(h

(T−1)
i ,mT

i)

= Ut(h
′(T−1)
i′ ,m′

T
i′)

= h′
(T)
i′

By the symmetry between i and j, we can also show that h(T)
j = h′

(T)
j′ . Hence, together with 7, we

can conclude that
h̃

(T)
i,j = h̃

′(T)
i′,j′ ,

which proves the lemma. �

Thus, the second result of this lemma tells us that ∀i, j ∈ V 2, h̃(T0)
i,j = h̃

′(T0)
η0(i,j). Moreover, by the

first result, ∃ a permutation on V , which we can call τ0, such that ∀i ∈ V , η((i, i)) = (τ0(i), τ0(i)).
Combining the two, we have that ∀i ∈ V , h(T0)

i = h′
(T0)
τ(i) , and hence

{h(T0)
i : i ∈ V } = {h′(T0)

i′ : i′ ∈ V } (8)

Therefore, ŷ = ŷ′, meaning that the MPNN returns identical outputs on the two graphs.

E Proof of Theorem 3.3 (2-WL is unable to induced-subgraph-count
patterns of 3 or more nodes)

Proof Intuition. Given any connected pattern of at least 3 nodes, such as the one in the left of Figure
2, we can construct a pair of graphs, such as the pair in the center and the right of Figure 2. They that
have different induced-subgraph-counts of the pattern, and we can show that 2-WL cannot distinguish
them. but cannot be distinguished from each other by 2-WL. For instance, if we run 2-WL on the
pair of graphs in Figure 2, then there will be c

(t)
2 ((1, 3)) = c′

(t)
2 ((1, 3)), c(t)

2 ((1, 2)) = c′
(t)
2 ((1, 6)),

c
(t)
2 ((1, 6)) = c′

(t)
2 ((1, 2)), and so on. We can in fact show that {c(t)

2 (s) : s ∈ V 2} = {c′(t)2 (s) :
s ∈ V 2},∀t, which implies that 2-WL cannot distinguish the two graphs.

Proof. Say G[P] = (V [P], E[P], x[P], e[P]) is a connected pattern of m nodes, where m > 2, and thus
V [P] = [m].

First, if G[P] is not a clique, then by definition, there exists two distinct nodes i, j ∈ V [P] such that i
and j are not connected by an edge. Assume without loss of generality that i = 1 and j = 2. Now,
construct two graphs G[1] = (V = [2m], E[1], x[1], e[1]), G[2] = (V = [2m], E[2], x[2], e[2]) both
with 2m nodes. For G[1], let E[1] = {(i, j) : i, j ≤ m, (i, j) ∈ E[P]} ∪ {(i + m, j + m) : i, j ≤
m, (i, j) ∈ E[P]} ∪ {(1, 2), (2, 1), (1 +m, 2 +m), (2 +m, 1 +m)}; ∀i ≤ m,x

[1]
i = x

[1]
i+m = x

[P]
i ;

∀(i, j) ∈ E[P], e
[1]
i,j = e

[1]
i+m,j+m = e

[P]
i,j , and moreover we can randomly choose a value of edge

18

feature for e[1]
1,2 = e

[1]
2,1 = e

[1]
1+m,2+m = e

[1]
2+m,1+m. For G[2], let E[2] = {(i, j) : i, j ≤ m, (i, j) ∈

E[P]}∪{(i+m, j+m) : i, j ≤ m, (i, j) ∈ E[P]}∪{(1, 2+m), (2+m, 1), (1+m, 2), (2, 1+m)};
∀i ≤ m,x

[2]
i = x

[2]
i+m = x

[P]
i ; ∀(i, j) ∈ E[P], e

[2]
i,j+m = e

[2]
i+m,j = e

[P]
i,j , and more-

over we let e[2]
1,2+m = e

[2]
2+m,1 = e

[2]
1+m,2 = e

[2]
2,1+m = e

[1]
1,2. In words, both G[1] and

G[2] are constructed based on two copies of G[P], and the difference is that, G[1] adds
the edges {(1, 2), (2, 1), (1 + m, 2 + m), (2 + m, 1 + m)}, whereas G[2] adds the edges
{(1, 2 +m), (2 +m, 1), (1 +m, 2), (2, 1 +m)}, all with the same edge feature.

On one hand, by construction, 2-WL will not be able to distinguish G[1] from G[2]. This is intuitive if
we compare the rooted subtrees in the two graphs, as there exists a bijection from V [1] to V [2] that
preserves the rooted subtree structure. A rigorous proof is given at the end of this section. In addition,
we note that this is also consequence of the direct proof of Corollary 4.4 given in Appendix J, in
which we will show that the same pair of graphs cannot be distinguished by 2-IGNs. Since 2-IGNs
are no less powerful than 2-WL [39], this implies that 2-WL cannot distinguish them either.

On the other hand, G[1] and G[2] has different matching-count of the pattern. G[1] contains no
subgraph isomorphic to G[P]. Intuitively this is obvious; to be rigorous, note that firstly, neither the
subgraph induced by the nodes {1, ...,m} nor the subgraph induced by the nodes {1 +m, ..., 2m}
is isomorphic to G[P], and secondly, the subgraph induced by any other set of m nodes is not
connected, whereas G[P] is connected. G[2], however, has at least two induced subgraphs isomor-
phic toG[P], one induced by the nodes {1, ...,m}, and the other induced by the nodes {1+m, ..., 2m}.

If G[P] is a clique, then we also first construct G[1], G[2] from G[P] as two copies of G[P]. Then, for
G[1], we pick two distinct nodes 1, 2 ∈ V [P] and remove the edges (1, 2), (2, 1), (1 +m, 2 +m) and
(2 +m, 1 +m) from V [1], while adding edges (1, 2 +m), (2 +m, 1), (1 +m, 2), (2, 1 +m) with
the same edge features. Then, G[1] contains no subgraph isomorphic to G[P], while G[2] contains two.
Note that the pair of graphs is the same as the counterexample pair of graphs that could have been
constructed in the non-clique case for the pattern that is a clique with one edge deleted. Hence 2-WL
still can’t distinguish G[1] from G[2].

Proof of 2-WL failing to distinguish G[1] and G[2] :

To show that 2-WL cannot distinguish G[1] from G[2], we need to show that if we run 2-WL on the
two graphs, then ∀T,{c(T)((i, j)) : i, j ∈ V } = {c′(T)

((i, j)) : i, j ∈ V }. For this to hold, it is
sufficient to find a bijective map η : V 2 → V 2 such that c(T)((i, j)) = c′

(T)
(η((i, j))),∀i, j ∈ V .

First, we define a set S = {(1, 2), (2, 1), (1+m, 2+m), (2+m, 1+m), (1, 2+m), (2+m, 1), (1+
m, 2), (2, 1 +m)}, which represents the “special” pairs of nodes that capture the difference between
G[1] and G[2]. Then we can define η : V 2 → V 2 as

η((i, j)) =

{
(i, j), if (i, j) /∈ S
(i,MOD2m(j +m)), if (i, j) ∈ S

Note that η is a bijective. It is easy to verify that η is a color-preserving map between node pairs
in G[1] and node pairs in G[2] at initialization, i.e. c(0)((i, j)) = c′

(0)
(η((i, j))),∀i, j ∈ V . We

will prove by induction that in fact it remains such a color-preserving map at any iteration T . The
inductive step that we need to prove is,

Lemma E.1. For any positive integer t, supposing that c(t−1)((i, j)) = c′
(t−1)

(η((i, j))),∀i, j ∈ V ,
then we also have c(t)((i, j)) = c′

(t)
(η((i, j))),∀i, j ∈ V .

Proof of Lemma E.1: By the update rule of 2-WL, ∀i, j ∈ V , to show that c(t)((i, j)) =

c′
(t)

(η((i, j))), we need to establish three conditions:

c(t−1)((i, j)) = c′
(t−1)

(η((i, j))) (9)

19

{c(t−1)(s̃) : s̃ ∈ N1((i, j))} = {c′(t−1)
(s̃) : s̃ ∈ N1(η((i, j)))} (10)

{c(t−1)(s̃) : s̃ ∈ N2((i, j))} = {c′(t−1)
(s̃) : s̃ ∈ N2(η((i, j)))} (11)

The first condition is already guaranteed by the inductive hypothesis. Now we prove the last two
conditions by examining different cases separately below.

Case 1 i, j /∈ {1, 2, 1 +m, 2 +m}
Then η((i, j)) = (i, j), and N1((i, j))∩ S = ∅, N2((i, j))∩ S = ∅. Therefore, η restricted
to N1((i, j)) or N2((i, j)) is the identity map, and thus

{c(t−1)(s̃) : s̃ ∈ N1((i, j))} ={c′(t−1)
(η(s̃)) : s̃ ∈ N1((i, j))}

={c′(t−1)
(s̃) : s̃ ∈ N1(η((i, j)))},

thanks to the inductive hypothesis. Similar for the condition (11).

Case 2 i ∈ {1, 1 +m}, j /∈ {1, 2, 1 +m, 2 +m}
Then η((i, j)) = (i, j), N2((i, j)) ∩ S = {(i, 2), (i, 2 + m)}, and N1((i, j)) ∩ S = ∅.
To show condition (11), note that η is the identity map when restricted to N2((i, j)) \
{(i, 2), (i, 2 +m)}, and hence

{c(t−1)(s̃) : s̃ ∈ N2((i, j))\{(i, 2), (i, 2+m)}} = {c′(t−1)
(s̃) : s̃ ∈ N2((i, j))\{(i, 2), (i, 2+m)}}

Moreover, η((i, 2)) = (i, 2 + m) and η((i, 2 + m)) = (i, 2). Hence, by the inductive
hypothesis, c(t−1)((i, 2)) = c′

(t−1)
((i, 2 + m)) and c(t−1)((i, 2 + m)) = c′

(t−1)
((i, 2)).

Therefore,

{c(t−1)(s̃) : s̃ ∈ N2((i, j))} ={c′(t−1)
(s̃) : s̃ ∈ N2((i, j))}

={c′(t−1)
(s̃) : s̃ ∈ N2(η((i, j)))},

which shows condition (11). Condition (10) is easily seen as η restricted to N1((i, j)) is the
identity map.

Case 3 j ∈ {1, 1 +m}, i /∈ {1, 2, 1 +m, 2 +m}
There is η((i, j)) = (i, j), N1((i, j)) ∩ S = {(2, j), (2 + m, j)}, and N2((i, j)) ∩ S = ∅.
Hence the proof can be carried out analogously to case 2.

Case 4 i ∈ {2, 2 +m}, j /∈ {1, 2, 1 +m, 2 +m}
There is η((i, j)) = (i, j), N2((i, j)) ∩ S = {(i, 1), (i, 1 + m)}, and N1((i, j)) ∩ S = ∅.
Hence the proof can be carried out analogously to case 2.

Case 5 j ∈ {2, 2 +m}, i /∈ {1, 2, 1 +m, 2 +m}
There is η((i, j)) = (i, j), N1((i, j)) ∩ S = {(1, j), (1 + m, j)}, and N2((i, j)) ∩ S = ∅.
Hence the proof can be carried out analogously to case 2.

Case 6 (i, j) ∈ S
There is η((i, j)) = (i,MOD2m(j)), N1((i, j)) ∩ S = {(i, j), (MOD2m(i), j)},
N2((i, j)) ∩ S = {(i, j), (i,MOD2m(j))}. Thus, N1(η((i, j))) = N1((i,MOD2m(j))),
N2(η((i, j))) = N2((i,MOD2m(j))) = N2((i, j)). Once again, η is the identity map when
restricted to N1((i, j)) \ S or N2((i, j)) \ S. Hence, by the inductive hypothesis, there is

{c(t−1)(s̃) : s̃ ∈ N1((i, j))\{(i, j), (MOD2m(i), j)}} = {c′(t−1)
(s̃) : s̃ ∈ N1((i, j))\{(i, j), (MOD2m(i), j)}}

{c(t−1)(s̃) : s̃ ∈ N2((i, j))\{(i, j), (i,MOD2m(j))}} = {c′(t−1)
(s̃) : s̃ ∈ N2((i, j))\{(i, j), (i,MOD2m(j))}}

Also from the inductive hypothesis, we have

c(t−1)((i, j)) =c′
(t−1)

(η((i, j)))

=c′
(t−1)

((i,MOD2m(j))),
(12)

20

c(t−1)((i, j)) =c(t−1)((j, i))

=c′
(t−1)

(η((j, i)))

=c′
(t−1)

((j,MOD2m(i)))

=c′
(t−1)

((MOD2m(i), j)),

(13)

c(t−1)((i,MOD2m(j))) =c′
(t−1)

(η((i,MOD2m(j))))

=c′
(t−1)

((i,MOD2m(MOD2m(j))))

=c′
(t−1)

((i, j)),

(14)

c(t−1)((MOD2m(i), j)) =c(t−1)((j,MOD2m(i)))

=c′
(t−1)

(η((j,MOD2m(i))))

=c′
(t−1)

((j,MOD2m(MOD2m(i))))

=c′
(t−1)

((j, i))

=c′
(t−1)

((i, j)),

(15)

where in (13) and (15), the first and the last equalities are thanks to the symmetry of the
coloring between any pair of nodes (i′, j′) and its “reversed” version (j′, i′), which persists
throughout all iterations, as well as the fact that if (i′, j′) ∈ S, then (j′, i′) ∈ S. Therefore,
we now have

{c(t−1)(s̃) : s̃ ∈ N1((i, j))} = {c′(t−1)
(s̃) : s̃ ∈ N1((i, j))} (16)

{c(t−1)(s̃) : s̃ ∈ N2((i, j))} = {c′(t−1)
(s̃) : s̃ ∈ N2((i, j))} (17)

Since η((i, j)) = (i,MOD2m(j)), we have

N1(η((i, j))) ={(k,MOD2m(j)) : k ∈ V }
={(k,MOD2m(j)) : (MOD2m(k), j) ∈ N1((i, j))}
={(MOD2m(k),MOD2m(j)) : (k, j) ∈ N1((i, j))}

Thanks to the symmetry of the coloring under the map (i′, j′) →
(MOD2m(i′),MOD2m(j′)), we then have

{c′(t−1)
(s̃) : s̃ ∈ N1(η((i, j)))} ={c′(t−1)

((MOD2m(k),MOD2m(j))) : (k, j) ∈ N1((i, j))}

={c′(t−1)
((k, j)) : (k, j) ∈ N1((i, j))}

={c′(t−1)
(s̃) : s̃ ∈ N1((i, j))}

Therefore, combined with (16), we see that (10) is proved. (11) is a straightforward conse-
quence of (17), since N2((i, j)) = N2(η((i, j))).

Case 7 i, j ∈ {1, 1 +m}
There is η((i, j)) = (i, j), N2((i, j)) ∩ S = {(i, 2), (i, 2 + m)}, and N1((i, j)) ∩ S =
{(2, j), (2 + m, j)}. Thus, both (10) and (11) can be proved analogously to how (11) is
proved for case 2.

Case 8 i, j ∈ {2, 2 +m}
There is η((i, j)) = (i, j), N2((i, j)) ∩ S = {(i, 1), (i, 1 + m)}, and N1((i, j)) ∩ S =
{(1, j), (1 + m, j)}. Thus, both (10) and (11) can be proved analogously to how (11) is
proved for case 2.

With conditions (10) and (11) shown for all pairs of (i, j) ∈ V 2, we know that by the update rules of
2-WL, there is c(t)((i, j)) = c′

(t)
(η((i, j))),∀i, j ∈ V .

21

�

With Lemma E.1 justifying the inductive step, we see that for any positive integer T , there is
c(T)((i, j)) = c′

(T)
(η((i, j))),∀i, j ∈ V . Hence, we can conclude that ∀T,{c(T)((i, j)) : i, j ∈

V } = {c′(T)
((i, j)) : i, j ∈ V }, which implies that the two graphs cannot be distinguished by

2-WL.

�

F Proof of Theorem 3.5 (MPNNs are able to subgraph-count star-shaped
patterns)

(See Section 2.1 of Arvind et al. [2] for a proof for the case where all nodes have identical features.)

Proof. Without loss of generality, we represent a star-shaped pattern by G[P] = (V [P], E[P], x[P], e[P]),
where V [P] = [m] (with node 1 representing the center) and E[P] = {(1, i) : 2 ≤ i ≤ m} ∪ {(i, 1) :
2 ≤ i ≤ m}.
Given a graph G, for each of its node j, we define N(j) as the set of its neighbors in the graph. Then
the neighborhood centered at j contributes to CS(G,G[P]) if and only if xj = x

[P]
1 and ∃S ⊆ N(j)

such that the multiset {(xk, ejk) : k ∈ S} equals the multiset {(x
[P]
k , e

[P]
1k) : 2 ≤ k ≤ m}. Moreover,

the contribution to the number CS(G,G[P]) equals the number of all such subsets S ⊆ N(j). Hence,
we have the following decomposition

CS(G,G[P]) =
∑
j∈V

f [P]
(
xj ,{(xk, ejk) : k ∈ N(j)}

)
,

where f [P], is defined for every 2-tuple consisting of a node feature and a multiset of pairs of node
feature and edge feature (i.e., objects of the form(

x,M = {(xα, eα) : α ∈ K}
)

where K is a finite set of indices) as

f [P](x,M) =

{
0 if x 6= x

[P]
1

#
[P]
M if x = x

[P]
1

where #
[P]
M denotes the number of sub-multisets of M that equals the multiset {(x

[P]
k , e

[P]
1k) : 2 ≤ k ≤

m}.

Thanks to Corollary 6 of Xu et al. [64] based on Zaheer et al. [72], we know that f [P] can be expressed
by some message-passing function in an MPNN. Thus, together with summation as the readout
function, MPNN is able to express CS(G,G[P]).

G Proof of Theorem 3.7 (k-WL is able to count patterns of k or fewer nodes)

Proof. Suppose we run k-WL on two graphs, G[1] and G[2]. In k-WL, the colorings of the k-tuples
are initialized according to their isomorphism types as defined in Appendix C. Thus, if for some
pattern of no more than k nodes, G[1] and G[2] have different matching-count or containment-count,
then there exists an isomorphism type of k-tuples such that G[1] and G[2] differ in the number of
k-tuples under this type. This implies that {c(0)

k (s) : s ∈ (V [1])k} 6= {c′(0)
k (s′) : s′ ∈ (V [2])k}, and

hence the two graphs can be distinguished at the 0th iteration of k-WL.

H Proof of Theorem 3.9 (T iterations of k-WL cannot
induced-subgraph-count path patterns of size (k + 1)2T or more)

Proof. For any integer m ≥ (k + 1)2T , we will construct two graphs G[1] = (V [1] =
[2m], E[1], x[1], e[1]) and G[2] = (V [2] = [2m], E[2], x[2], e[2]), both with 2m nodes but with

22

different matching-counts of Hm, and show that k-WL cannot distinguish them. Define
Edouble = {(i, i + 1) : 1 ≤ i < m} ∪ {(i + 1, i) : 1 ≤ i < m} ∪ {(i + m, i + m + 1) : 1 ≤ i <
m} ∪ {(i+m+ 1, i+m) : 1 ≤ i < m}, which is the edge set of a graph that is exactly two discon-
nected copies of Hm. For G[1], let E[1] = Edouble ∪ {(1,m), (m, 1), (1 + m, 2m), (2m, 1 + m)};
∀i ≤ m,x

[1]
i = x

[1]
i+m = x

[Hm]
i ; ∀(i, j) ∈ E[Hm], e

[1]
i,j = e

[1]
j,i = e

[1]
i+m,j+m = e

[1]
j+m,i+m = e

[Hm]
i,j ,

and moreover, we can randomly choose a value of edge feature for e[1]
1,m = e

[1]
m,1 = e

[1]
1+m,2m =

e
[1]
2m,1+m. For G[2], let E[2] = Edouble ∪ {(1, 2m), (2m, 1), (m, 1 + m), (1 + m, 2m)};
∀i ≤ m,x

[2]
i = x

[2]
i+m = x

[Hm]
i ; ∀(i, j) ∈ E[Hm], e

[1]
i,j = e

[1]
j,i = e

[1]
i+m,j+m = e

[1]
j+m,i+m = e

[Hm]
i,j ,

and moreover, set e[2]
1,2m = e

[2]
2m,1 = e

[2]
m,1+m = e

[2]
1+m,m = e

[1]
1,m. In words, both G[1]

and G[2] are constructed based on two copies of Hm, and the difference is that, G[1]

adds the edges {(1,m), (m, 1), (1 + m, 2m), (2m, 1 + m)}, whereas G[2] adds the edges
{(1, 2m), (2m, 1), (m, 1 + m), (1 + m,m)}, all with the same edge feature. For the case
k = 3,m = 8, T = 1, for example, the constructed graphs are illustrated in Figure 4.

Can G[1] and G[2] be distinguished by k-WL? Let c(t)
k , c′

(t)
k be the coloring functions of k-tuples

for G[1] and G[2], respectively, obtained after running k-WL on the two graphs simultaneously for t
iterations. To show that the answer is negative, we want to prove that

{c(T)
k (s) : s ∈ [2m]k} = {c′(T)

k (s) : s ∈ [2m]k} (18)

To show this, if is sufficient to find a permutation η : [2m]k → [2m]k such that ∀ k-tuple s ∈
[2m]k, c

(T)
k (s) = c′

(T)
k (η(s)). Before defining such an η, we need the following lemma.

Lemma H.1. Let p be a positive integer. If m ≥ (k + 1)p, then ∀s ∈ [2m]k,∃i ∈ [m] such that
{i, i+ 1, ..., i+ p− 1} ∩ {MODm(j) : j ∈ s} = ∅.

Proof of Lemma H.1: We can use a simple counting argument to show this. For u ∈ [k + 1], define
Au = {up, up+1, ..., (u+1)p−1}∪{up+m,up+1+m, ..., (u+1)p−1+m}. Then |Au| = 2p,
Au ∩Au′ = ∅ if u 6= u′, and

[2m] ⊇
⋃

u∈[k+1]

Au, (19)

since m ≥ (k + 1)p. Suppose that the claim is not true, then each Ai contains at least one node in s,
and therefore

s ⊇ (s ∩ [2m]) ⊇
⋃

u∈[k+1]

(s ∩Au),

which contains at least k + 1 nodes, which is contradictory. �

With this lemma, we see that ∀s ∈ [2m]k, ∃i ∈ [m] such that ∀j ∈ s,MODm(j) either < i or
≥ i + 2T+1 − 1. Thus, we can first define the mapping χ : [2m]k → [m] from a k-tuple s to the
smallest such node index i ∈ [m]. Next, ∀i ∈ [m], we define a mapping τi from [2m] to [2m] as

τi(j) =

{
j, if MODm(j) ≤ i
MOD2m(j +m), otherwise

(20)

τi is a permutation on [2m]. For ∀i ∈ [m], this allows us to define a mapping ζi from [2m]k → [2m]k

as, ∀s = (i1, ..., ik) ∈ [2m]k,
ζi(s) = (τi(i1), ..., τi(ik)). (21)

Finally, we define a mapping η from [2m]k → [2m]k as,

η(s) = ζχ(s)(s) (22)

The maps χ, τ and η are illustrated in Figure 4.

23

1

2

3 4 5 6

7

8

9

10

11 12 13 14

15

16

1

2

3 4 5 6

7

8

9

10

11 12 13 14

15

16

G[1] G[2]

Figure 4: Illustration of the construction in the proof of Theorem 3.9 in Appendix H. In this particular
case, k = 3, m = 8, T = 1. If we consider s = (1, 12, 8) as an example, where the corresponding
nodes are marked by blue squares in G[1], there is χ(s) = 2, and thus η(s) = ζ2(s) = (1, 4, 16),
which are marked by blue squares in G[2]. Similarly, if we consider s = (3, 14, 15), then χ(s) = 4,
and thus η(s) = ζ4(s) = (3, 6, 7). In both cases, we see that the isomorphism type of s in G[1] equals
the isomorphism type of η(s) in G[2]. In the end, we will show that c(T)

k (s) = c′
(T)
k (η(s)).

To fulfill the proof, there are two things we need to show about η. First, we want it
to be a permutation on [2m]k. To see this, observe that χ(s) = χ(η(s)), and hence
∀s ∈ [2m]k, (η◦η)(s) = (ζχ(η(s)) ◦ζχ(s))(s) = s, since ∀i ∈ [m], τi ◦τi is the identity map on [2m].

Second, we need to show that ∀s ∈ [2m]k, c
(T)
k (s) = c′

(T)
k (η(s)). This will be a consequence of the

following lemma.

Lemma H.2. At iteration t, ∀s ∈ [2m]k, ∀i such that ∀j ∈ s, either MODm(j) < i or MODm(j) ≥
i+ 2t, there is

c
(t)
k (s) = c′

(t)
k (ζi(s)) (23)

Remark: This statement allows i to depend on s, as will be the case when we apply this lemma to
η(s) = ζχ(s)(s), where we set i to be χ(s).

Proof of Lemma H.2: Notation-wise, for any k-tuple, s = (i1, ..., ik), and for w ∈ [k], use Iw(s) to
denote the wth entry of s, iw.

The lemma can be shown by using induction on t. Before looking at the base case t = 0, we will first
show the inductive step, which is:

∀T̄ , suppose the lemma holds for all t ≤ T̄ − 1,

then it also holds for t = T̄ .
(24)

Inductive step:
Fix a T̄ and suppose the lemma holds for all t ≤ T̄ − 1. Under the condition that ∀j ∈ s, either
MODm(j) < i or MODm(j) ≥ i+ 2T̄ , to show c

(T̄)
k (s) = c′

(T̄)
k (ζi(s)), we need two things to hold:

1. c
(T̄−1)
k (s) = c′

(T̄−1)
k (ζi(s))

2. ∀w ∈ [k], {c(T̄−1)
k (s̃) : s̃ ∈ Nw(s)} = {c′(T̄−1)

k (s̃) : s̃ ∈ Nw(ζi(s))}

The first condition is a consequence of the inductive hypothesis, as i + 2T̄ > i + 2(T̄−1). For
the second condition, it is sufficient to find for all w ∈ [k], a bijective mapping ξ from Nw(s) to
Nw(ζi(s)) such that ∀s̃ ∈ Nw(s), c(T̄−1)

k (s̃) = c′
(T̄−1)
k (ξ(s̃)).

24

We then define β(i, s̃) ={
MODm(Iw(s̃)) + 1, if i ≤ MODm(Iw(s̃)) < i+ 2T̄−1

i, otherwise
(25)

Now, consider any s̃ ∈ Nw(s). Note that s̃ and s differ only in the wth entry of the k-tuple.

• If i ≤ MODm(Iw(s̃)) < i+ 2T̄−1, then ∀j ∈ s̃,

– either j ∈ s, in which case either MODm(j) < i < MODm(Iw(s̃)) + 1 = β(i, s̃) or
MODm(j) ≥ i+ 2T̄ ≥ MODm(Iw(s̃)) + 1 + 2T̄−1 = β(i, s̃) + 2T̄−1,

– or j = Iw(s̃), in which case MODm(j) < MODm(Iw(s̃)) + 1 = β(i, s̃).

• If MODm(Iw(s̃)) < i or MODm(Iw(s̃)) ≥ i+ 2T̄−1, then ∀j ∈ s̃,

– either j ∈ s, in which case either MODm(j) < i = β(i, s̃) or MODm(j) ≥ i+ 2T̄ ≥
β(i, s̃) + 2T̄−1,

– or j = Iw(s̃), in which case either MODm(j) < i = β(i, s̃) or MODm(j) ≥ i +

2T̄−1 ≥ β(i, s̃) + 2T̄−1.

Thus, in all cases, there is ∀j ∈ s̃, either MODm(j) < β(i, s̃), or MODm(j) ≥ i+ 2T̄−1. Hence, by
the inductive hypothesis, we have c

(T̄−1)
k (s̃) = c′

(T̄−1)
k (ζβ(i,s̃)(s̃)). This inspires us to define, for

∀w ∈ [k], ∀s̃ ∈ Nw(s),
ξ(s̃) = ζβ(i,s̃)(s̃) (26)

Additionally, we still need to prove that, firstly, ξ maps Nw(s) to Nw(ζi(s)), and secondly,
ξ is a bijection. For the first statement, note that ∀s̃ ∈ Nw(s), ζβ(i,s̃)(s) = ζi(s) because
s contains no entry between i and β(i, s̃), with the latter being less than i + 2T̄ . Hence,
if s̃ ∈ Nw(s), then ∀w′ ∈ [k] with w′ 6= w, there is Iw′(s̃) = Iw′(s), and therefore
Iw′(ξ(s̃)) = Iw′(ζβ(i,s̃)(s̃)) = τβ(i,s̃)(Iw′(s̃)) = τβ(i,s̃)(Iw′(s)) = Iw′(ζβ(i,s̃)(s)) = Iw′(ζi(s)),
which ultimately implies that ξ(s̃) ∈ Nw(ζi(s)).

For the second statement, note that since Iw(ξ(s̃)) = τβ(i,s̃)(Iw(s̃)) (by the definition of ζ), there is
MODm(Iw(ξ(s̃))) = MODm(τβ(i,s̃)(Iw(s̃))) = MODm(Iw(s̃)), and therefore β(i, ξ(s̃)) = β(i, s̃).
Thus, we know that (ξ ◦ ξ)(s̃) = (ζβ(i,ξ(s̃)) ◦ ζβ(i,s̃))(s̃) = (ζβ(i,s̃) ◦ ζβ(i,s̃))(s̃) = s̃. This implies
that ξ is a bijection from Nw(s) to Nw(ζi(s)).

This concludes the proof of the inductive step.

Base case:
We need to show that

∀s ∈ [2m]k,∀i∗ such that ∀j ∈ s, either MODm(j) < i∗

or MODm(j) ≥ i∗ + 1, there is c(0)
k (s) = c′

(0)
k (ζi∗(s))

(27)

Due to the way in which the colorings of the k-tuples are initialized in k-WL, the statement above is
equivalent to showing that s in G[1] and ζi∗(s) in G[2] have the same isomorphism type, for which
we need the following to hold.

Lemma H.3. Say s = (i1, ..., ik), in which case ζi∗(s) = (τi∗(i1), ..., τi∗(ik)). Then

1. ∀iα, iβ ∈ s, iα = iβ ⇔ τi∗(iα) = τi∗(iβ)

2. ∀iα ∈ s, x[1]
iα

= x
[2]
τi∗ (iα)

3. ∀iα, iβ ∈ s, (iα, iβ) ∈ E[1] ⇔ (τi∗(iα), τi∗(iβ)) ∈ E[2], and moreover, if either is true,
e

[1]
iα,iβ

= e
[2]
τi∗ (iα),τi∗ (iβ)

25

Proof of Lemma H.3:

1. This is true since τi∗ is a permutation on [2m].

2. This is true because by the construction of the two graphs, ∀i ∈ [2m], x
[1]
i = x

[2]
i , and

moreover x[1]
i = x

[1]
i+m if i ≤ m.

3. Define S = {(1,m), (m, 1), (1 +m, 2m), (2m, 1 +m), (1, 2m), (2m, 1), (m, 1 +m), (1 +
m, 2m)}, which is the set of “special” pairs of nodes in which G[1] and G[2] differ. Note that
∀(iα, iβ) ∈ [2m]2, (iα, iβ) ∈ S if and only if the sets {MODm(iα),MODm(iβ)} = {1,m}.
By the assumption on i∗ in (27), we know that iα, iβ /∈ {i∗, i∗ +m}. Now we look at 16
different cases separately, which comes from 4 possibilities for each of iα and iβ : iα (or iβ)
belonging to {1, ..., i∗−1}, {i∗+1, ...,m}, {1+m, ..., i∗−1+m}, or {i∗+1+m, ..., 2m}

Case 1 1 ≤ iα, iβ < i∗

Then τi∗(iα) = iα, τi∗(iβ) = iβ . In addition, as MODm(iα),MODm(iβ) 6= m, there
is (iα, iβ) /∈ S. Thus, if (iα, iβ) ∈ E[1], then (iα, iβ) ∈ Edouble ⊂ E[2], and moreover,
e

[1]
iα,iβ

= e
[Hm]
iα,iβ

= e
[2]
iα,iβ

= e
[2]
τi∗ (iα),τi∗ (iβ). Same for the other direction.

Case 2 1 +m ≤ iα, iβ < i∗ +m
Similar to case 1.

Case 3 i∗ + 1 ≤ iα, iβ ≤ m
Then τi∗(iα) = iα+m, τi∗(iβ) = iβ+m. In addition, as MODm(iα),MODm(iβ) 6= 1,
there is (iα, iβ) /∈ S. Thus, if (iα, iβ) ∈ E[1], then (iα, iβ) ∈ Edouble, and hence
(iα +m, iβ +m) ∈ Edouble ⊂ E[2], and moreover, e[1]

iα,iβ
= e

[Hm]
iα,iβ

= e
[2]
iα+m,iβ+m =

e
[2]
τi∗ (iα),τi∗ (iβ).

Case 4 i∗ + 1 +m ≤ iα, iβ ≤ 2m
Similar to case 3.

Case 5 1 ≤ iα < i∗, i∗ + 1 ≤ iβ ≤ m
If iα 6= 1 or iβ 6= m, then since Hm is a path and iα < i∗ ≤ iβ − 1, (iα, iβ) /∈ E[1]

or E[2]. Now we consider the case where iα = 1, iβ = m. As 1 ≤ i∗ < m, by the
definition of τ , there is τi∗(1) = 1, and τi∗(m) = 2m. Note that both (1,m) ∈ E[1]

and (1, 2m) ∈ E[2] are true, and moreover, e[1]
1,m = e

[2]
1,2m.

Case 6 1 ≤ iβ < i∗, i∗ + 1 ≤ iα ≤ m
Similar to case 5.

Case 7 1 +m ≤ iα < i∗ +m, i∗ + 1 +m ≤ iβ ≤ 2m
Similar to case 5.

Case 8 1 +m ≤ iβ < i∗ +m, i∗ + 1 +m ≤ iα ≤ 2m
Similar to case 5.

Case 9 1 ≤ iα < i∗ and 1 +m ≤ iβ < i∗ +m

Then τs(iα) = iα, τs(iβ) = iβ , and (iα, iβ) /∈ E[1] or E[2].
Case 10 1 ≤ iβ < i∗ and 1 +m ≤ iα < i∗ +m

Similar to case 9.
Case 11 i∗ + 1 ≤ iα < m and i∗ + 1 +m ≤ iβ ≤ 2m

(iα, iβ) /∈ E[1]. τs(iα) = iα + m, τs(iβ) = iβ −m. Hence (τs(iα), τs(iβ)) /∈ E[2]

either.
Case 12 i∗ + 1 ≤ iβ ≤ m and i∗ + 1 +m ≤ iα ≤ 2m

Similar to case 11.
Case 13 1 ≤ iα < i∗ and i∗ + 1 +m ≤ iβ ≤ 2m

(iα, iβ) /∈ E[1] obviously. We also have τs(iα) = iα ∈ [1, i∗), τs(iβ) = iβ − 1 ∈
[i∗ + 1,m], and hence (τs(iα), τs(iβ)) /∈ E[2].

Case 14 1 ≤ iβ < i∗ and i∗ + 1 +m ≤ iα ≤ 2m
Similar to case 13.

Case 15 1 +m ≤ iα < i∗ +m and i∗ + 1 ≤ iβ ≤ m
Similar to case 13.

26

Case 16 1 +m ≤ iβ < i∗ +m and i∗ + 1 ≤ iα ≤ m
Similar to case 13.

This concludes the proof of Lemma H.3.

�

Lemma H.3 completes the proof of the base case, and hence the induction argument for Lemma H.2.

�

∀s ∈ [2m]k, since η(s) = ζχ(s)(s), and χ(s) satisfies ∀j ∈ s, either MODm(j) < i or MODm(j) ≥
i + 2T , Lemma H.2 implies that at iteration T , we have c

(T)
k (s) = c′

(T)
k (ζχ(s)(s)) = c′

(T)
k (η(s)).

Since we have shown that η is a permutation on [2m]k, this let’s us conclude that

{c(T)
k (s) : s ∈ [2m]k} = {c′(T)

k (s) : s ∈ [2m]k}, (28)

and therefore k-WL cannot distinguish between the two graphs in T iterations.

I Proof of Theorem 4.2 (2-IGNs are no more powerful than 2-WL)

Note that a 2-IGN takes as input a third-order tensor, B(0), defined as in (1). If we use B(t) to denote
the output of the tth layer of the 2-IGN, then they are obtained iteratively by

B(t+1) = σ(L(t)(B(t))) (29)

Proof. For simplicity of notations, we assume dt = 1 in every layer of a 2-IGN. The general case
can be proved by adding more subscripts. For 2-WL, we use the definition in Appendix C except for
omitting the subscript k in c

(t)
k .

To start, it is straightforward to show (and we will prove it at the end) that the theorem can be deduced
from the following lemma:

Lemma I.1. Say G[1] and G[2] cannot be distinguished by the 2-WL. Then ∀t ∈ N, it holds that

∀s, s′ ∈ V 2, if c(t)(s) =c′
(t)

(s′), then B(t)
s = B′

(t)
s′

(30)

This lemma can be shown by induction. To see this, first note that the lemma is equivalent to the
statement that

∀T ∈ N,∀t ≤ T, (30) holds.
This allows us to carry out an induction in T ∈ N. For the base case t = T = 0, this is true because
c(0) and c′

(0) in WL and B(0) and B′
(0) in 2-IGN are both initialized in the same way according to

the subgraph isomorphism. To be precise, c(0)(s) = c′
(t)

(s′) if and only if the subgraph in G[1]

induced by the pair of nodes s is isomorphic to the subgraph in G[2] induced by the pair of nodes s′,
which is also true if and only if B(0)

s = B′
(0)
s′ .

Next, to show that the induction step holds, we need to prove the following statement:

∀T ∈ N, if ∀t ≤ T − 1, (30) holds,
then (30) also holds for t = T.

To prove the consequent, we assume that for some s, s′ ∈ V 2, there is c(T)(s) = c′
(T)

(s′), and then
attempt to show that B(T)

s = B′
(T)
s′ . By the update rules of k-WL, the statement c(T)(s) = c′

(T)
(s′)

implies that 
c(T−1)(s) = c′

(T−1)
(s′)

{c(T−1)(s̃) : s̃ ∈ N1(s)} = {c′(T−1)
(s̃) : s̃ ∈ N1(s′)}

{c(T−1)(s̃) : s̃ ∈ N2(s)} = {c′(T−1)
(s̃) : s̃ ∈ N2(s′)}

(31)

27

Case 1: s = (i, j) ∈ V 2 with i 6= j
Let’s first consider the case where s = (i, j) ∈ V 2 with i 6= j. In this case, we can also write
s′ = (i′, j′) ∈ V 2 with i′ 6= j′, thanks to Lemma D.1. Then, note that V 2 can be written as the union
of 9 disjoint sets that are defined depending on s:

V 2 =

9⋃
w=1

As,w,

where we define As,1 = {(i, j)}, As,2 = {(i, i)}, As,3 = {(j, j)}, As,4 = {(i, k) : k 6= i or j},
As,5 = {(k, i) : k 6= i or j}, As,6 = {(j, k) : k 6= i or j}, As,7 = {(k, j) : k 6= i or j},
As,8 = {(k, l) : k 6= l and {k, l} ∩ {i, j} = ∅}, and As,9 = {(k, k) : k /∈ {i, j}}. In this way, we
partition V 2 into 9 different subsets, each of which consisting of pairs (k, l) that yield a particular
equivalence class of the 4-tuple (i, j, k, l). Similarly, we can define As′,w for w ∈ [9], which will
also give us

V 2 =

9⋃
w=1

As′,w

Moreover, note that

N1(s) =
⋃

w=1,3,7

As,w

N2(s) =
⋃

w=1,2,4

As,w

N1(s′) =
⋃

w=1,3,7

As′,w

N2(s′) =
⋃

w=1,2,4

As′,w

Before proceeding, we make the following definition to simplify notations:

Cs,w = {c(T−1)(s̃) : s̃ ∈ As,w}

C′s′,w = {c′(T−1)
(s̃) : s̃ ∈ As′,w}

This allows us to rewrite (31) as

Cs,1 =C′s′,1 (32)⋃
w=1,3,7

Cs,w =
⋃

w=1,3,7

C′s′,w (33)

⋃
w=1,2,4

Cs,w =
⋃

w=1,2,4

C′s′,w (34)

Combining (32) and (33), we obtain ⋃
w=3,7

Cs,w =
⋃

w=3,7

C′s′,w (35)

Combining (32) and (34), we obtain ⋃
w=2,4

Cs,w =
⋃

w=2,4

C′s′,w (36)

Note that V 2 can also be partitioned into two disjoint subsets:

V 2 =
(⋃
w=1,4,5,6,7,8

As,w

)⋂(⋃
w=2,3,9

As,w

)
,

where the first subset represent the edges: {(i, j) ∈ V 2 : i 6= j} and the second subset represent the
nodes: {(i, i) : i ∈ V }. Similarly,

V 2 =
(⋃
w=1,4,5,6,7,8

As′,w

)⋂(⋃
w=2,3,9

As′,w

)
,

28

As shown in Lemma D.1, pairs of nodes that represent edges cannot share the same color with pairs
of nodes the represent nodes in any iteration of 2-WL. Thus, we have(⋃

w=1,4,5,6,7,8

Cs,w

)⋂(⋃
w=2,3,9

C′s′,w

)
= ∅ (37)(⋃

w=1,4,5,6,7,8

C′s′,w

)⋂(⋃
w=2,3,9

Cs,w

)
= ∅ (38)

Combining (35) and (37) or (38), we get

Cs,3 =C′s′,3 (39)

Cs,7 =C′s′,7 (40)

Combining (36) and (37) or (38), we get

Cs,2 =C′s′,2 (41)

Cs,4 =C′s′,4 (42)

Thanks to symmetry between (i, j) and (j, i), as we work with undirected graphs, there is

Cs,5 = Cs,4 = C′s′,4 = C′s′,5 (43)

Cs,6 = Cs,7 = C′s′,7 = C′s′,6 (44)

In addition, since we assume that G[1] and G[2] cannot be distinguished by 2-WL, there has to be
9⋃

w=1

Cs,w =

9⋃
w=1

C′s′,w

Combining this with (37) or (38), we get⋃
w=1,4,5,6,7,8

Cs,w =
⋃

w=1,4,5,6,7,8

C′s′,w (45)

⋃
w=2,3,9

Cs,w =
⋃

w=2,3,9

C′s′,w (46)

Combining (45) with (32), (42), (43), (44), (40), we get

Cs,8 = C′s′,8 (47)

Combining (46) with (41) and (39), we get

Cs,9 = C′s′,9 (48)

Hence, in conclusion, we have that ∀w ∈ [9],

Cs,w = C′s′,w (49)

By the inductive hypothesis, this implies that ∀w ∈ [9],

{B(T−1)
s̃ : s̃ ∈ As,w} = {B′(T−1)

s̃ : s̃ ∈ As′,w} (50)

Let us show how (50) may be leveraged. First, to prove that B(T)
s = B′

(T)
s′ , recall that

B(T) = σ(L(T)(B(T−1)))

B′
(T)

= σ(L(T)(B′
(T−1)

))
(51)

Therefore, it is sufficient to show that for all linear equivariant layer L, we have

L(B(T−1))i,j = L(B′
(T−1)

)i′,j′ (52)

Also, recall that

L(B(T−1))i,j =
∑

(k,l)∈V 2

Ti,j,k,lBk,l + Yi,j

L(B′
(T−1)

)i′,j′ =
∑

(k′,l′)∈V 2

Ti′,j′,k′,l′B
′
k′,l′ + Yi′,j′

(53)

29

By the definition of the As,w’s and As′,w’s, there is ∀w ∈ [9],∀(k, l) ∈ As,w,∀(k′, l′) ∈ As′,w,
we have the 4-tuples (i, j, k, l) ∼ (i′, j′, k′, l′), i.e., ∃ a permutation π on V such that (i, j, k, l) =
(π(i′), π(j′), π(k′), π(l′)), which implies that Ti,j,k,l = Ti′,j′,k′,l′ . Therefore, together with (50), we
have the following:

L(B(T−1))i,j =
∑

(k,l)∈V 2

Ti,j,k,lBk,l + Yi,j

=

9∑
w=1

∑
(k,l)∈As,w

Ti,j,k,lBk,l + Yi,j

=

9∑
w=1

∑
(k′,l′)∈As′,w

Ti′,j′,k′,l′B
′
k′,l′ + Yi′,j′

=L(B′
(T−1)

)i′,j′

(54)

and hence B
(T)
i,j = B′

(T)
i′j′ , which concludes the proof for the case that s = (i, j) for i 6= j.

Case 2: s = (i, i) ∈ V 2

Next, consider the case s = (i, i) ∈ V 2. In this case, s′ = (i′, i′) for some i′ ∈ V . This time, we
write V 2 as the union of 5 disjoint sets that depend on s (or s′):

V 2 =

5⋃
w=1

As,w,

where we define As,1 = {(i, i)}, As,2 = {(i, j) : j 6= i}, As,3 = {(j, i) : j 6= i}, As,4 = {(j, k) :
j, k 6= i and j 6= k}, and As,5 = {(j, j) : j 6= i}. Similar for s′. We can also define Cs,w and C′s′,w
as above. Note that

N1(s) =
⋃

w=1,3

As,w

N2(s) =
⋃

w=1,2

As,w

N1(s′) =
⋃

w=1,3

As′,w

N2(s′) =
⋃

w=1,2

As′,w

Hence, we can rewrite (31) as

Cs,1 =C′s′,1 (55)⋃
w=1,3

Cs,w =
⋃

w=1,3

C′s′,w (56)

⋃
w=1,2

Cs,w =
⋃

w=1,2

C′s′,w (57)

Combining (55) with (56), we get
Cs,3 = C′s′,3 (58)

Combining (55) with (57), we get
Cs,2 = C′s′,2 (59)

Moreover, since we can decompose V 2 as

V 2 =
(⋃
w=1,5

As,w

)⋃(⋃
w=2,3,4

As,w

)
=
(⋃
w=1,5

As′,w

)⋃(⋃
w=2,3,4

As′,w

)

30

with
⋃
w=1,5As,w =

⋃
w=1,5As′,w representing the nodes and

⋃
w=2,3,4As,w =

⋃
w=2,3,4As′,w

representing the edges, we have(⋃
w=1,5

Cs,w

)⋂(⋃
w=2,3,4

C′s′,w

)
= ∅ (60)(⋃

w=1,5

C′s′,w

)⋂(⋃
w=2,3,4

Cs,w

)
= ∅ (61)

Since G[1] and G[2] cannot be distinguished by 2-WL, there is
5⋃

w=1

Cs,w =

5⋃
w=1

C′s′,w

Therefore, combining this with (60) or (61), we obtain⋃
w=1,5

Cs,w =
⋃

w=1,5

C′s′,w (62)

⋃
w=2,3,4

Cs,w =
⋃

w=2,3,4

C′s′,w (63)

Combining (62) with (55), we get
Cs,5 = C′s′,5 (64)

Combining (63) with (59) and (58), we get

Cs,4 = C′s′,4 (65)

Hence, in conclusion, we have that ∀w ∈ [5],

Cs,w = C′s′,w (66)

By the inductive hypothesis, this implies that ∀w ∈ [5],

{B(T−1)
s̃ : s̃ ∈ As,w} = {B′(T−1)

s̃ : s̃ ∈ As′,w} (67)

Thus,

L(B(T−1))i,i =
∑

(k,l)∈V 2

Ti,i,k,lBk,l + Yi,i

=

5∑
w=1

∑
(k,l)∈As,w

Ti,i,k,lBk,l + Yi,i

=

5∑
w=1

∑
(k′,l′)∈As′,w

Ti′,i′,k′,l′B
′
k′,l′ + Yi′,i′

=L(B′
(T−1)

)i′,i′

and hence B
(T)
i,j = B′

(T)
i′j′ , which concludes the proof for the case that s = (i, i) for i ∈ V .

Now, suppose we are given any 2-IGN with T layers. Since G[1] and G[2] cannot be distinguished by
2-WL, together with Lemma D.1, there is

{c(T)((i, j)) : i, j ∈ V, i 6= j} = {c′(T)
((i′, j′)) : i′, j′ ∈ V, i′ 6= j′}

and

{c(T)((i, i)) : i ∈ V } ={c′(T)
((i′, i′)) : i′ ∈ V }

Hence, by the lemma, we have

{B(T)
(i,j) : i, j ∈ V, i 6= j} = {B′(T)

(i′,j′) : i′, j′ ∈ V, i′ 6= j′}

31

and

{B(T)
(i,i) : i ∈ V } ={B′(T)

(i′,i′) : i′ ∈ V }

Then, since the second-last layer h in the 2-IGN can be written as

h(B) = α
∑

i,j∈V,i 6=j

Bi,j + β
∑
i∈V

Bi,i (68)

there is
h(B(T)) = h(B′

(T)
) (69)

and finally
m ◦ h(B(T)) = m ◦ h(B′

(T)
) (70)

which means the 2-IGN yields identical outputs on the two graphs.

J Direct proof of Corollary 4.4 (2-IGNs are unable to
induced-subgraph-count patterns of 3 or more nodes)

Proof. The same counterexample as in the proof of Theorem 3.3 given in Appendix E applies here,
as we are going to show below. Note that we only need to consider the non-clique case, since the set
of counterexample graphs for the non-clique case is a superset of the set of counterexample graphs
for the clique case.

Let B be the input tensor corresponding to G[1], and B′ corresponding to G[2]. For simplicity, we
assume in the proof below that d0, ..., dT = 1. The general case can be proved in the same way but
with more subscripts. (In particular, for our counterexamples, (74) can be shown to hold for each of
the d0 feature dimensions.)

Define a set S = {(1, 2), (2, 1), (1 + m, 2 + m), (2 + m, 1 + m), (1, 2 + m), (2 + m, 1), (1 +
m, 2), (2, 1 +m)}, which represents the “special” edges that capture the difference between G[1] and
G[2]. We aim to show something like this:

∀t, 

B
(t)
i,j = B

′(t)
i,j ,∀(i, j) /∈ S

B
(t)
1,2 = B′

(t)
1+m,2,

B
(t)
2,1 = B′

(t)
2,1+m,

B
(t)
1+m,2+m = B′

(t)
1,2+m

B
(t)
2+m,1+m = B′

(t)
2+m,1

B
(t)
1,2+m = B′

(t)
1+m,2+m,

B
(t)
2+m,1 = B′

(t)
2+m,1+m,

B
(t)
1+m,2 = B′

(t)
1,2

B
(t)
2,1+m = B′

(t)
2,1

(71)

If this is true, then it is not hard to show that the 2-IGN returns identical outputs on B and B′,
which we will leave to the very end. To represent the different cases above compactly, we define a
permutation η1 on V × V in the following way. First, define the following permutations on V :

κ1(i) =

{
MOD2m(1 +m), if i ∈ {1, 1 +m}
i, otherwise

Next, define the permutation τ1 on V × V :

τ1((i, j)) = (κ1(i), κ1(j))

and then η1 as the restriction of τ1 on the set S ⊂ V × V :

η1((i, j)) =

{
τ1((i, j)), if (i, j) ∈ S
(i, j), otherwise

32

Thus, (71) can be rewritten as

∀t,B(t)
i,j = B′

(t)
η1((i,j)) (72)

Before trying to prove (72), let’s define κ2, τ2 and η2 analogously:

κ2(i) =

{
MOD2m(2 +m), if i ∈ {2, 2 +m}
i, otherwise

τ2((i, j)) = (κ2(i), κ2(j))

η2((i, j)) =

{
τ2((i, j)), if (i, j) ∈ S
(i, j), otherwise

Thus, by symmetry, (72) is equivalent to

∀t,B(t)
i,j = B′

(t)
η1((i,j)) = B′

(t)
η2((i,j)) (73)

Because of the recursive relation (29), we will show (73) by induction on t. For the base case, it can
be verified that

B
(0)
i,j = B′

(0)
η1((i,j)) = B′

(0)
η2((i,j)) (74)

thanks to the construction of G[1] and G[2]. Moreover, if we define another permutation V × V , ζ1:

ζ1((i, j)) =


(MOD2m(i+m),MOD2m(j +m)),

if j ∈ {1, 1 +m} , i /∈ {2, 2 +m}
or i ∈ {1, 1 +m} , j /∈ {2, 2 +m}

(i, j), otherwise

(75)

then thanks to the symmetry between (i, j) and (i+m, j +m), there is

B
(0)
i,j = B

(0)
ζ1((i,j)), B

′(0)
i,j = B′

(0)
ζ1((i,j))

Thus, for the induction to hold, and since σ applies entry-wise, it is sufficient to show that

Lemma J.1. If
Bi,j = Bζ1((i,j)), B

′
i,j = B′ζ1((i,j)) (76)

Bi,j = B′η1((i,j)) = B′η2((i,j)), (77)

then
L(B)i,j = L(B)ζ1((i,j)), L(B′)i,j = L(B′)ζ1((i,j)) (78)

L(B)i,j = L(B′)η1((i,j)) = L(B′)η2((i,j)), (79)

Proof of Lemma J.1: Again, by symmetry between (i, j) and (i+m, j+m), (78) can be easily shown.

For (79), because of the symmetry between η1 and η2, we will only prove the first equality. By Maron
et al. [40], we can express the linear equivariant layer L by

L(B)i,j =

(2m,2m)∑
(k,l)=(1,1)

Ti,j,k,lBk,l + Yi,j

where crucially, Ti,j,k,l depends only on the equivalence class of the 4-tuple (i, j, k, l).

We consider eight different cases separately.

33

Case 1 i, j /∈ {1, 2, 1 +m, 2 +m}
There is η1((i, j)) = (i, j), and (i, j, k, l) ∼ (i, j, η1((k, l))), and thus Ti,j,k,l =
Ti,j,η1((k,l)). Therefore,

L(B′)η1((i,j)) =L(B′)i,j

=

(2m,2m)∑
(k,l)=(1,1)

Ti,j,k,lB
′
k,l + Yi,j

=

(2m,2m)∑
η1((k,l))=(1,1)

Ti,j,η1((k,l))B
′
η1((k,l)) + Yi,j

=

(2m,2m)∑
(k,l)=(1,1)

Ti,j,η1((k,l))B
′
η1((k,l)) + Yi,j

=

(2m,2m)∑
(k,l)=(1,1)

Ti,j,k,lB
′
η1((k,l)) + Yi,j

=

(2m,2m)∑
(k,l)=(1,1)

Ti,j,k,lBk,l + Yi,j

=Bi,j

Case 2 i ∈ {1, 1 +m}, j /∈ {1, 2, 1 +m, 2 +m}
There is η1((i, j)) = (i, j), and (i, j, k, l) ∼ (i, j, η2((k, l))), because η2 only involves
permutation between nodes 2 and 2 + m, while i and j /∈ {2, 2 + m}. Thus, Ti,j,k,l =
Ti,j,η2((k,l)). Therefore,

L(B′)η1((i,j)) =L(B′)i,j

=

(2m,2m)∑
(k,l)=(1,1)

Ti,j,k,lB
′
k,l + Yi,j

=

(2m,2m)∑
η2((k,l))=(1,1)

Ti,j,η2((k,l))B
′
η2((k,l)) + Yi,j

=

(2m,2m)∑
(k,l)=(1,1)

Ti,j,η2((k,l))B
′
η2((k,l)) + Yi,j

=

(2m,2m)∑
(k,l)=(1,1)

Ti,j,k,lB
′
η2((k,l)) + Yi,j

=

(2m,2m)∑
(k,l)=(1,1)

Ti,j,k,lBk,l + Yi,j

=Bi,j

Case 3 j ∈ {1, 1 +m}, i /∈ {1, 2, 1 +m, 2 +m}
Analogous to case 2.

Case 4 i ∈ {2, 2 +m}, j /∈ {1, 2, 1 +m, 2 +m}
There is η1((i, j)) = (i, j), and (i, j, k, l) ∼ (i, j, η1((k, l))), because η1 only involves
permutation between nodes 1 and 1 + m, while i and j /∈ {1, 1 + m}. Thus, Ti,j,k,l =
Ti,j,η1((k,l)). Therefore, we can apply the same proof as for case 2 here except for changing
η2’s to η1’s.

34

Case 5 j ∈ {2, 2 +m}, i /∈ {1, 2, 1 +m, 2 +m}
Analogous to case 4.

Case 6 (i, j) ∈ S
Define one other permutation on V × V , ξ1, as ξ1((i, j)) =

(MOD2m(i+m), j), if MODm(j) = 1, MODm(i) 6= 1 or 2
(i,MOD2m(j +m)), if MODm(i) = 1, MODm(j) 6= 1 or 2
(i, j), otherwise

It can be verified that
ξ1 ◦ τ1 = η1 ◦ ζ1

Moreover, it has the property that if (i, j) ∈ S, then

(i, j, k, l) ∼ (i, j, ξ1(k, l))

because ξ1 only involves permutations among nodes not in {1, 2, 1 + m, 2 + m} while
i, j ∈ {1, 2, 1 +m, 2 +m}. Thus, we have

(i, j, k, l) ∼(κ1(i), κ1(j), κ1(k), κ1(l))

=(τ1(i, j), τ1(k, l))

=(η1(i, j), τ1(k, l))

∼(η1(i, j), ξ1 ◦ τ1(k, l))

=(η1(i, j), η1 ◦ ζ1(k, l)),

implying that Ti,j,k,l = Tη1(i,j),η1◦ζ1(k,l). In addition, as η1((i, j)) ∼ (i, j), there is
Yη1((i,j)) = Yi,j . Moreover, by (76),

B′η1◦ζ1((k,l)) = B′η1((k,l)) = Bk,l

Therefore,

L(B′)η1((i,j)) =

(2m,2m)∑
(k,l)=(1,1)

Tη((i,j)),k,lB
′
k,l + Yη1((i,j))

=

(2m,2m)∑
η1◦ζ1((k,l))=(1,1)

Tη1((i,j)),η1◦ζ1((k,l))B
′
η1◦ζ1((k,l)) + Yη1((i,j))

=

(2m,2m)∑
(k,l)=(1,1)

Tη1((i,j)),η1◦ζ1((k,l))B
′
η1◦ζ1((k,l)) + Yη1((i,j))

=

(2m,2m)∑
(k,l)=(1,1)

Ti,j,k,lBk,l + Yi,j

=Bi,j

Case 7 i, j ∈ {1, 1 +m}
There is η1(i, j) = (i, j) and (i, j, k, l) ∼ (i, j, η2((k, l))). Thus, Ti,j,k,l = Ti,j,η2((k,l)),
and the rest of the proof proceeds as for case 2.

Case 8 i, j /∈ {1, 1 +m}
There is η1(i, j) = (i, j) and (i, j, k, l) ∼ (i, j, η1((k, l))). Thus, Ti,j,k,l = Ti,j,η1((k,l)),
and the rest of the proof proceeds as for case 4.

�

With the lemma above, (72) can be shown by induction as a consequence. Thus,

B
(T)
i,j = B

(T)
η1(i,j)

35

Maron et al. [40] show that the space of linear invariant functions on Rn×n is two-dimensional, and
so for example, the second-last layer h in the 2-IGN can be written as

h(B) = α

(2m,2m)∑
i,j=(1,1)

Bi,j + β

2m∑
i=1

Bi,i

for some α, β ∈ R. Then since η1 is a permutation on V × V and also is the identity map when
restricted to {(i, i) : i ∈ V }, we have

h(B′
(T)

) =α

(2m,2m)∑
(i,j)=(1,1)

B′
(T)
i,j + β

2m∑
i=1

B′
(T)
i,i

=α

(2m,2m)∑
(i,j)=(1,1)

B′
(T)
η1((i,j)) + β

2m∑
i=1

B′
(T)
η1((i,i))

=α

(2m,2m)∑
(i,j)=(1,1)

B
(T)
i,j + β

2m∑
i=1

B
(T)
i,i

=h(B(T))

Therefore, finally,
m ◦ h(B(T)) = m ◦ h(B′

(T)
)

K Leveraging sparse tensor operations for LRP

Following our definition of Deep LRP in (4), in each layer, for each egonet G[ego]
i,l and each ordered

subset π̃ ∈ S̃k-BFS
i,l of nodes in G[ego]

i,l , we need to compute the tensor π̃ ?B[ego]
i,l (H(t−1)) out of the

hidden node states of the previous layer, H(t−1). This is compuationally challenging for stacking
multiple layers. Moreover, the tensor operations involved in (4) are dense. In particular, if we batch
multiple graphs together, the computational complexity grows quadratically in the number of graphs
in a batch, whereas a more reasonable cost would be linear with respect to batch size. In this section,
we outline an approach to improve efficiency in implementation via pre-computation and sparse
tensor operations. Specifically, we propose to represent the mapping from an H to the set of all
π̃ ?B

[ego]
i,l (H)’s as a sparse matrix, which can be pre-computed and then applied in every layer. We

will also define a similar procedure for the edge features.

The first step is to translate the local definitions of π̃ ? B[ego]
i,l in (4) to a global definition. The

difference lies in the fact that B[ego]
i,l implicitly defines a local node index for each node in the egonet,

G
[ego]
i,l – e.g., (B

[ego]
i,l)j,j,: gives the node feature of the jth node in G[ego]

i,l according to this local index,
which is not necessarily the jth node in the whole graph, G. To deal with this notational subtlety,
for each ordered subset π̃ ∈ S̃k-BFS

i,l , we associate with it an ordered subset Π[π̃] with elements in V ,

such that the (π̃(j))th node in G[ego]
i,l according to the local index is indexed to be the (Π[π̃](j))th

node in the whole graph. Thus, by this definition, we have Π[π̃] ?B = π̃ ?B
[ego]
i,l .

Our next task is to efficiently implement the mapping from an H to each Π[π̃] ?B(H). We propose
to represent this mapping as a sparse matrix. To illustrate, below we consider the example of Deep
LRP-l-k with l = 1, and Figure 5 illustrates each step in a layer of Deep LRP-1-3 in particular. For
Deep LRP-1-k, each ordered subset π̃ ∈ S̃k-BFS

i,1 consists of (k + 1) nodes, and therefore the first two

dimensions of Π[π̃] ?B = π̃ ?B
[ego]
i,l are (k + 1)× (k + 1). We use the following definition of B,

which is slightly simpler than (1) by neglecting the adjacency matrix (whose information is already
contained in the edge features): B ∈ Rn×n×d, with d = max(dn, de), and

Bi,i,1:dn = xi , ∀i ∈ V = [n] ,

Bi,j,1:de = ei,j , ∀(i, j) ∈ E .
(80)

36

Similarly, for H ∈ Rn×d′ , B(H) is defined to be an element of Rn×n×max(d′,de), with

Bi,i,1:d′ = Hi , ∀i ∈ V = [n] ,

Bi,j,1:de = ei,j , ∀(i, j) ∈ E .
(81)

Below, we assume for the simplicity of presentation that dn = de = d′. We let |E| denote the number
of edges in G. Define Y ∈ R|E|×de to be the matrix of edge features, where Yq is the feature vector
of the qth edge in the graph according to some ordering of the edges. Let Pi be the cardinality of
S̃k-BFS
i,l , and define P =

∑
i∈[n] Pi, where the summation is over all nodes in the graph. Note that

these definitions can be generalized to the case where we have a batch of graphs.

We define Node_to_perm, denoted by N2P, which is a matrix of size ((k+1)2P)×N with each entry
being 0 or 1. The first dimension corresponds to the flattening of the first two dimension of Π[π̃] ?B
for all legitimate choices of π̃. Hence, each row corresponds to one of the (k+ 1)× (k+ 1) “slots” of
the first two dimension of Π[π̃] ?B for some π̃. In addition, each column of N2P corresponds to a
node in G. Thus, each entry (m, j) of N2P is 1 if and only if the “slot” indexed by m is filled by the
Hj . By the definition of B(H), N2P is a sparse matrix. For the edge features, we similarly define
Edge_to_perm, denoted by E2P, with size ((k+ 1)2P)×|E|. Similar to N2P, each entry (m, q) of
E2P is 1 if and only if the “slot” indexed by m is filled by the ej1,j2 , where (j1, j2) is the qth edge.
Hence, by these definitions, the list of the vectorizations of all π̃ ?B[ego]

i,l (H) can be obtained by

RESHAPE
(
N2P ·H + E2P · Y

)
∈ RP×((k+1)2d) , (82)

where RESHAPE is a tensor-reshapping operation that splits the first dimension from (k + 1)2P to
P × (k + 1)2. Hence, with our choice of f to be an MLP on the vectorization of its tensorial input,
the list of all f(π̃ ?B

[ego]
i,l (H)) is obtained by

MLP1
(

RESHAPE
(
N2P ·H + E2P · Y

))
, (83)

where MLP1 acts on the second dimension.

Next, we define the απ̃ factor as the output of an MLP applied to the relevant node degrees. When
l = 1, we implement it as MLP2(Di), the output of an MLP applied to the degree of the root node
i of the egonet. When k = 1, since each π̃ ∈ S̃k-BFS

i,l consists of nodes on a path of length at most
(l + 1) starting from node i, we let απ̃ be the output of an MLP applied to the concatenation of the
degrees of all nodes on the path, as discussed in the main text. This step is also compatible with
sparse operations similar to (83), in which we substitute H with the degree vector D ∈ Rn×1 and
neglect Y . In the l = 1 case, the list of all the list of all απ̃f(π̃ ?B

[ego]
i,l (H)) is obtained by

MLP1

(
RESHAPE

(
N2P ·H + E2P · Y

))
�MLP2(Di) (84)

Note that the output dimensions of MLP1 and MLP2 are chosen to be the same, and � denotes
the element-wise product between vectors.

The final step is to define Permutation_pooling, denoted by PPL, which is a sparse matrix in RN×P .
Each non-zero entry at position (j, p) means that the p-th π̃ among all P of them for the whole graph
(or a batch of graphs) contributes to the representation of node i in the next layer. In particular, sum-
pooling corresponds to setting all non-zero entries in PPL as 1, while average-pooling corresponds
to first setting all non-zero entries in PPL as 1 and then normalizing it for every row, which is
equivalent to having the factor 1

|S̃k-BFS
i,1 |

in (4).

Therefore, we can now write the update rule (4) for LRP-1-k as

H
(t)
i = PPL ·

[
MLP1(t)

(
RESHAPE

(
N2P ·H(t−1) + E2P · Y

))
�MLP2(t)(Di)

]
, (85)

L Theoretical limitations of GraphSAGE in substructure counting

In order for substructure counting to be well-defined, we do not consider random node sampling and
only consider GraphSAGE with aggregation over a full neighborhood. If only 1-hop neighborhood is

37

Node Rep {h(t)
i } Edge Rep {e(t)

i,j}

Permuation Rep

Permuation Rep

Permuation Rep

Node Rep {h(t+1)
i }

Node degree {Di}

RN×d(t) R|E|×d(t)

R(16·P)×d(t)

RP×(16·d(t))

RP×d(t+1)

RN×d(t+1)

Node_to_perm Edge_to_perm

RESHAPE

MLP1(t)

Permutation_Pooling MLP2(t)

t-th LRP layer

Figure 5: Illustration of the t-th local relational pooling layer in Deep LRP-1-3. Rounded rectangles
denote representations (Rep) after each operation (denoted as arrows).

Figure 6: A pair of non-isomorphic attributed graphs that GraphSAGE cannot distinguish.

used for aggregation in each iteration, its expressive power is upper-bounded by that of WL, just like
MPNNs. If multi-hop neighborhood is used for aggregation, the question becomes more interesting.
Compared to LRP, however, GraphSAGE aggregates neighborhood information as a set or sequence
rather than a tensor, which results in a loss of the information of the edge features and high-order
structures. In particular,

1. The original GraphSAGE does not consider edge features. Even if we allow it to incorpo-
ration edge feature information via augmenting the node features by applying an invariant
function to the features of its immediate edges (e.g. summing or averaging), GraphSAGE
cannot distinguish the pairs of graphs shown in Figure 6, for example, while LRP-1-2 can.

2. GraphSAGE cannot distinguish the pair of 12-circular graphs C12(1, 3) and C12(1, 5) (see
[61]), no matter the hop-size being used, because ∀k, the k-hop neighborhood of every node

38

in the two graphs has the same size. This means GraphSAGE cannot count the number of
4-cycles as either subgraphs or induced subgraphs, whereas LRP-2-2 is able to.

Further, Table 1 shows the performance on the synthetic tasks of GraphSAGE + LSTM using full
1-hop neighborhood for aggregation. We see that it can count stars but not triangles, consistent with
the limitation of the information in the 1-hop neighborhood, in the same way as MPNNs.

M Additional details of the numerical experiments

M.1 Models

As reported in Section 6, we run experiments on synthetic and real datasets using different GNN
models. Below are some details regarding their architecture and implementation:

• LRP-l-k: Local Relational Pooling with egonet depth l and k-truncated BFS, as described
in the main text. For LRP-1-3, for example, with d being the dimension of the initial tensor
representation, B, we define

f̃1,3
LRP(G) = W1

∑
i∈V

σ

MLP(Di)

|S̃3-BFS
i,1 |

�
∑

π̃∈S̃3-BFS
i,1

f∗(π̃ ◦B[ego]
i,1)

 , (86)

where Di is the degree of node i, σ is ReLU, MLP maps from R to RH , where H is the
hidden dimension, W1 ∈ R1×H and ∀p ∈ [H], (f∗(X))p = tanh(

∑
W2,p �X) ∈ R with

W2,p ∈ R4×4×d. Note that each π̃ ∈ S̃3-BFS
i,1 is an ordered set of 4 nodes that begin with

node i, and π̃ ◦B[ego]
i,1 is a 4× 4× d tensor such that (π̃ ◦B[ego]

i,1)j,j,: = (B
[ego]
i,1)π̃(j),π̃(j),:.

As discussed in the main text, MLP(Di) plays the role of απ̃, which adaptively learns an
invariant function over permutation, such as summing and averaging.
The nonlinear activation functions are chosen between ReLU and tanh by hand. The models
are trained using the Adam optimizer [30] with learning rate 0.1. The number of hidden
dimensions is searched in {1, 8, 16, 64, 128}.

• Deep LRP-l-k: The nonlinear activation functions are ReLU. For synthetic experiments, we
set the depth of the model as 1. The number of hidden dimensions is searched in {64, 128}.
We use summation for the final graph-level aggregation function. For real experiments,
we search the depth of the model in {4, 5, 6, 7, 8, 10, 12, 20, 24}. The number of hidden
dimensions is searched in {8, 16, 32, 50, 100, 128, 150, 200, 256, 300, 512}. The final graph-
level aggregation function is average. We involve Batch Normalization [22] and Jumping
Knowledge [65]. On ogbg-molhiv, we utilize AtomEncoder and BondEncoder following
the official implementation of GIN [64] on the OGB leaderboard [20]. The models are trained
using the Adam optimizer [30] with learning rate searched in {0.01, 0.005, 0.001, 0.0001}.

• 2-IGN: The 2nd-order Invariant Graph Networks proposed by Maron et al. [40]. In our
synthetic experiments, we chose 8 hidden dimensions for the invariant layers and 16 hidden
dimensions for the output MLP. The models are trained using the Adam optimizer with learn-
ing rate 0.1. The numbers of hidden dimensions are searched in {(16, 32), (8, 16), (64, 64)}.

• PPGN: The Provably Powerful Graph Network model proposed in Maron et al. [39]. In
our synthetic experiments, we choose the depth of the model to be 4 and select the hidden
dimension in {16, 64}. The models are trained using the Adam optimizer [30] with learning
rate searched in {0.01, 0.001, 0.0001, 0.00001}. The depth of each MLP involved in the
model is 2.

• GCN: The Graph Convolutional Network proposed by Kipf and Welling [31]. In our
experiments, we adopt a 4-layer GCN with 128 hidden dimensions. The models are trained
using the Adam optimizer with learning rate 0.01. The number of hidden dimensions is
searched in {8, 32, 128}. The depth is searched in {2, 3, 4, 5}.

• GIN: The Graph Isomorphism Network proposed by Xu et al. [64]. In our experiments,
we adopt a 4-layer GIN with 32 hidden dimensions. The models are trained using the
Adam optimizer with learning rate 0.01. The number of hidden dimensions is searched in
{8, 16, 32, 128}.

39

• sGNN: Spectral GNN with operators from family {I,A,min(A2, 1)}. In our experiments,
we adopt a 4-layer sGNN with 128 hidden dimensions. The models are trained using the
Adam optimizer with learning rate 0.01. The number of hidden dimensions is searched in
{8, 128}.

• GraphSAGE: GraphSAGE [18] using LSTM [19] for aggregation over the full 1-hop neigh-
borhood. In our experiments, we adopt a 5-layer GraphSAGE with 16 hidden dimensions.
The models are trained using the Adam optimizer with learning rate 0.1.

For the experiments on substructure counting in random graphs, for GCN, GIN and sGNN, we
always train four variants for each architecture, depending on whether Jump Knowledge [65] or
Batch Normalization [22] is included or not. All models are trained for 100 epochs. Learning rates
are searched in {1, 0.1, 0.05, 0.01}. We pick the best model with the lowest MSE loss on validation
set to generate results.

M.2 Counting substructures in random graphs

M.2.1 Dataset generation

We generate two synthetic datasets of random unattributed graphs. The first one is a set of 5000
Erdős-Renyi random graphs denoted as ER(m, p), where m = 10 is the number of nodes in each
graph and p = 0.3 is the probability that an edge exists. The second one is a set of 5000 random
regular graphs [57] denoted as RG(m, d), where m is the number of nodes in each graph and d is the
node degree. We uniformly sample (m, d) from {(10, 6), (15, 6), (20, 5), (30, 5)}. We also randomly
delete m edges in each graph from the second dataset. For both datasets, we randomly split them into
training-validation-test sets with percentages 30%-20%-50%. For the attributed task, we mark nodes
with even indices as red and nodes with odd indices as blue, and set the color as node feature using
1-hot encoding.

M.2.2 Additional results

For the synthetic experiments, we design five substructure-counting tasks with patterns illustrated in
Figure 3. In Section 6, we show the results for the subgraph-count of 3-stars and the induced-subgraph-
count of triangles. In this section, we give results for the the remaining patterns: tailed triangles,
chordal cycles and attributed triangles. As we see in Table M.2.2, while Deep LRP-1-3 achieves the
best overall performance, all three models perform well in learning the induced-subgraph-count of
each of these three patterns on at least one of the two synthetic datasets.

Table 5: Performance of the different models on learning the induced-subgraph-count of tailed triangles, chordal
cycles and attributed triangles on the two datasets, measured by test MSE divided by variance of the ground truth
counts (given in Table 6). Shown here are the best and the median performances of each model over five runs.

Erdős-Renyi Random Regular

Tailed Triangle Chordal Cycle Tailed Triangle Chordal Cycle

top 1 top 3 top 1 top 3 top 1 top 3 top 1 top 3

LRP-1-3 7.61E-5 1.94E-4 5.97E-4 7.73E-4 9.80E-5 2.01E-4 8.19E-5 1.63E-4
Deep LRP-1-3 3.96E-5 1.35E-4 6.50E-5 8.96E-5 1.60E-5 2.02E-4 3.83E-9 3.99E-6
PPGN 7.11E-3 2.03E-2 2.14E-2 1.31E-1 2.29E-3 6.88E-3 5.90E-4 3.12E-2

Erdős-Renyi Random Regular

Attributed Triangle Attributed Triangle

top 1 top 3 top 1 top 3

LRP-1-3 9.23E-4 2.12E-3 4.50E-1∗ 4.72E-1∗
Deep LRP-1-3 1.48E-4 1.35E-3 9.06E-5 5.05E-4
PPGN 2.58E-5 8.02E-5 4.30E-1∗ 4.33E-1∗

M.3 Molecular prediction tasks

M.3.1 ogbg-molhiv

The molecular dataset ogbg-molhiv from the Open Graph Benchmark (OGB) contains 41127 graphs,
with 25.5 nodes and 27.5 edges per graph on average, and the task is to predict 1 target graph-level

40

Table 6: Variance of the ground truth labels for each synthetic task.

Task Erdős-Renyi Random Regular

3-star 311.2 316.0
triangle 7.353 9.437
tailed triangle 67.53 163.7
chordal cycle 9.609 11.40
attributed triangle 2.111 2.709

label. Each graph represents a molecule, where the nodes represent atoms and the edges represent
chemical bonds. We use binary cross entropy as the loss function, and we utilize the official APIs
including an evaluator provided by OGB (version 1.1.1) [20].

ogbg-molhiv adopts the scaffold splitting procedure that splits the data based on their two-dimensional
structural frameworks. Because of this, more training epochs might lead to overfitting and therefore
worse performance on the test set. Hence, we report the results of LRP-1-3 trained different number of
epochs: “LRP-1-3” is trained for 100 epochs, same as other models reported on the OGB leaderboard,
and “LRP-1-3 (ES)” is trained for 20 epochs only. To ensure the reproducibility of our results,
LRP-1-3 (ES) is run with 35 random seeds, from 0 to 34.

We report the average training time of Deep LRP-1-3 on ogbg-molhiv in Table 7. We can see that
Deep LRP-1-3 approximately takes 5-8× time as much as GIN. However, the ratio goes down to
3-5× when we utilize more numbers of workers to load the data, because the dataloader involves
batching operations as defined in Appendix K. We also split the training time for one epoch into
several components in Table 8. It turns out the operations N2P,E2P and Ppl account for most of
the forward running time, which indicates a possible direction to optimize the current implementation.

Table 7: Training time per epoch for different GNNs on ogbg-molhiv with batch size of 64. All results
are generated from a computing node with a GTX 1080Ti, 4 CPUs and 32GB RAM. “#workers”
stands for the number of workers in Dataloader of PyTorch. “Ours-2” is the model reported as “Deep
LRP-1-3” in Table 2 while “Ours-3” is the model reported as “Deep LRP-1-3 (ES)”.

model time/epoch (sec) #params #workers

GIN 26 189K 0
GIN 26 189K 4
Ours-1 133 166K 0
Ours-1 82 166K 4
Ours-2 136 98K 0
Ours-2 83 98K 4
Ours-3 194 630K 0
Ours-3 122 630K 4

Table 8: Components of training time in an epoch. The setting is the same as that in Table 7.

model #workers total time forward N2P&E2P Ppl backward

Ours-1 4 81.8 39.3 16.4 17.2 13.2

M.3.2 QM9

QM9 has 134K graphs and 12 graph-level target labels for regression. The data is randomly split
into 80% for training, 10% for validation and 10% for testing. For training loss, we use the 12-target
average of the normalized Mean Absolute Error, where normalization means dividing by the standard
deviation of all training labels in the dataset for each of the 12 targets. We report this averaged
normalized MAE as “Loss” in the last row Table 4.

41

M.3.3 ZINC

ZINC [23] is a real-world molecular dataset of 250K graphs. We follow the setting of [14] that
selects 12K graphs for regression out of the entire dataset. The dataset is split into 10K/1K/1K for
training/validation/testing. We use Mean Absolute Error as the loss for training, validation and testing.
Baselines in Table 3 are picked as the best results from [14] regardless of numbers of parameters.
Here we also list results with numbers of parameters in Table 9. It turns out our models outperforms
all other baselines with the same level of numbers of parameters.

Following [14], we train Deep LRPs with a learning rate scheduler, in which the learning rate decay
factor is 0.5 and the patience value for validation loss is 10. The stopping criterion is whether the
current learning rate is smaller than 1 percent of the initial learning rate.

Table 9: Additional ZINC test results measured by Mean Abosolute Error (MAE). All baselines are
taken from [14, 52]. †: Also reported in Table 3.

Model #Params Testing MAE #Params Testing MAE

MLP 106970 0.681±0.005 2289351 0.704 ±0.003
GCN 103077 0.469±0.002 2189531 0.479±0.007
GraphSAGE 105031 0.410±0.005 2176751 0.439±0.006
GIN 103079 0.408±0.008 2028508 0.382±0.008
DiffPool 110561 0.466±0.006 2291521 0.448±0.005
GAT 102385 0.463±0.002 2080881 0.471±0.005
MoNet 106002 0.407±0.007 2244343 0.372±0.01
GatedGCN 105875 0.363±0.009 2134081 0.338±0.003
LRGA + GatedGCN 94457 0.367±0.008 1989730 0.285±0.01

Deep LRP-7-1 92073 0.317±0.031 1695137 0.244±0.012
Deep LRP-5-1† - - 6590593 0.256±0.033
Deep LRP-7-1† - - 11183233 0.223±0.008

42

