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Abstract

Graph neural networks have shown superior performance in a wide range of
applications providing a powerful representation of graph-structured data. Recent
works show that the representation can be further improved by auxiliary tasks.
However, the auxiliary tasks for heterogeneous graphs, which contain rich semantic
information with various types of nodes and edges, have less explored in the
literature. In this paper, to learn graph neural networks on heterogeneous graphs we
propose a novel self-supervised auxiliary learning method using meta-paths, which
are composite relations of multiple edge types. Our proposed method is learning
to learn a primary task by predicting meta-paths as auxiliary tasks. This can be
viewed as a type of meta-learning. The proposed method can identify an effective
combination of auxiliary tasks and automatically balance them to improve the
primary task. Our methods can be applied to any graph neural networks in a plug-in
manner without manual labeling or additional data. The experiments demonstrate
that the proposed method consistently improves the performance of link prediction
and node classification on heterogeneous graphs.

1 Introduction

Graph neural networks [1] have been proven effective to learn representations for various tasks such
as node classification [2], link prediction [3], and graph classification [4]. The powerful representation
yields state-of-the-art performance in a variety of applications including social network analysis [5],
citation network analysis [2], visual understanding [6, 7], recommender systems [8], physics [9], and
drug discovery [10]. Despite the wide operating range of graph neural networks, employing auxiliary
(pre-text) tasks has been less explored for further improving graph representation learning.

Pre-training with an auxiliary task is a common technique for deep neural networks. Indeed, it is the de
facto standard step in natural language processing and computer vision to learn a powerful backbone
networks such as BERT [11] and ResNet [12] leveraging large datasets such as BooksCorpus [13],
English Wikipedia, and ImageNet [14]. The models trained on the auxiliary task are often beneficial
for the primary (target) task of interest. Despite the success of pre-training, few approaches have
been generalized to graph-structured data due to their fundamental challenges. First, graph structure
(e.g., the number of nodes/edges, and diameter) and its meaning can significantly differ between
domains. So the model trained on an auxiliary task can harm generalization on the primary task,
i.e., negative transfer [15]. Also, many graph neural networks are transductive approaches. This
often makes transfer learning between datasets inherently infeasible. So, pre-training on the target
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dataset has been proposed using auxiliary tasks: graph kernel [16], graph reconstruction [17], and
attribute masking [18]. These assume that the auxiliary tasks for pre-training are carefully selected
with substantial domain knowledge and expertise in graph characteristics to assist the primary task.
Since most graph neural networks operate on homogeneous graphs, which have a single type of nodes
and edges, the previous pre-training/auxiliary tasks are not specifically designed for heterogeneous
graphs, which have multiple types of nodes and edges. Heterogeneous graphs commonly occur in
real-world applications, for instance, a music dataset has multiple types of nodes (e.g., user, song,
artist) and multiple types of relations (e.g., user-artist, song-film, song-instrument).

In this paper, we proposed a framework to train a graph neural networks with automatically selected
auxiliary self-supervised tasks which assist the target task without additional data and labels. Our
approach first generates meta-paths from heterogeneous graphs without manual labeling and train
a model with meta-path prediction to assist the primary task such as link prediction and node
classification. This can be formulated as a meta-learning problem. Furthermore, our method can be
adopted to existing GNNs in a plug-in manner, enhancing the model performance.

Our contribution is threefold: (i) We propose a self-supervised learning method on a heterogeneous
graph via meta-path prediction without additional data. (ii) Our framework automatically selects meta-
paths (auxiliary tasks) to assist the primary task via meta-learning. (iii) We develop Hint Network that
helps the learner network to benefit from challenging auxiliary tasks. To the best of our knowledge,
this is the first auxiliary task with meta-paths specifically designed for leveraging heterogeneous
graph structure. Our experiment shows that meta-path prediction improves the representational power
and the gain can be further improved to explicitly optimize the auxiliary tasks for the primary task
via meta-learning and the Hint Network, built on various state-of-the-art GNNs.

2 Related Work

Graph Neural Networks have provided promising results for various tasks [2, 5–10]. Bruna et
al. [19] proposed a neural network that performs convolution on the graph domain using the Fourier
basis from spectral graph theory. In contrast, non-spectral (spatial) approaches have been developed [2,
20–25]. Inspired by self-supervised learning [26–29] and pre-training [11, 30] in computer vision
and natural language processing, pre-training for GNNs has been recently proposed [16, 18]. Recent
works show promising results that self-supervised learning can be effective for GNNs [16–18, 31].
Hu et al. [18] have introduced several strategies for pre-training GNNs such as attribute masking
and context prediction. Separated from the pre-training and fine-tuning strategy, [31] has studied
multi-task learning and analyzed why the pretext tasks are useful for GNNs. However, one problem
with both pre-training and multi-task learning strategies is that all the auxiliary tasks are not beneficial
for the downstream applications. So, we studied auxiliary learning for GNNs that explicitly focuses
on the primary task.

Auxiliary Learning is a learning strategy to employ auxiliary tasks to assist the primary task. It is
similar to multi-task learning, but auxiliary learning cares only the performance of the primary task. A
number of auxiliary learning methods are proposed in a wide range of tasks [32–34]. AC-GAN [35]
proposed an auxiliary classifier for generative models. Recently, Meta-Auxiliary Learning [36]
proposes an elegant solution to generate new auxiliary tasks by collapsing existing classes. However,
it cannot be applicable to some tasks such as link prediction which has only one positive class. Our
approach generates meta-paths on heterogeneous graphs to make new labels and trains models to
predict meta-paths as auxiliary tasks.

Meta-learning aims at learning to learn models efficiently and effectively, and generalizes the
learning strategy to new tasks. Meta-learning includes black-box methods to approximate gradients
without any information about models [37, 38], optimization-based methods to learn an optimal
initialization for adapting new tasks [39–41], learning loss functions [40, 42] and metric-learning or
non-parametric methods for few-shot learning [43–45]. In contrast to classical learning algorithms
that generalize across samples, meta-learning generalizes across tasks. In this paper, we use meta-
learning to learn a concept across tasks and transfer the knowledge from auxiliary tasks to the primary
task.
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3 Method

The goal of our framework is to learn with multiple auxiliary tasks to improve the performance of the
primary task. In this work, we demonstrate our framework with meta-path predictions as auxiliary
tasks. But our framework could be extended to include other auxiliary tasks. The meta-paths capture
diverse and meaningful relations between nodes on heterogeneous graphs [46]. However, learning
with auxiliary tasks has multiple challenges: identifying useful auxiliary tasks, balancing the auxiliary
tasks with the primary task, and converting challenging auxiliary tasks into solvable (and relevant)
tasks. To address the challenges, we propose SELf-supervised Auxiliary LeaRning (SELAR). Our
framework consists of two main components: 1) learning weight functions to softly select auxiliary
tasks and balance them with the primary task via meta-learning, and 2) learning Hint Networks to
convert challenging auxiliary tasks into more relevant and solvable tasks to the primary task learner.

3.1 Meta-path Prediction as a self-supervised task

Most existing graph neural networks have been studied focusing on homogeneous graphs that have a
single type of nodes and edges. However, in real-world applications, heterogeneous graphs [47], which
have multiple types of nodes and edges, commonly occur. Learning models on the heterogeneous
graphs requires different considerations to effectively represent their node and edge heterogeneity.

Heterogeneous graph [48]. Let G = (V,E) be a graph with a set of nodes V and edges E. A
heterogeneous graph is a graph equipped with a node type mapping function fv : V → T v and an
edge type mapping function fe : E → T e, where T v is a set of node types and T e is a set of edge
types. Each node vi ∈ V (and edge eij ∈ E resp.) has one node type, i.e., fv(vi) ∈ T v, (and one
edge type fe(eij) ∈ T e resp.). In this paper, we consider the heterogeneous graphs with |T e| > 1 or
|T v| > 1. When |T e| = 1 and |T v| = 1, it becomes a homogeneous graph.

Meta-Path [46, 49] is a path on a heterogeneous graph G that a sequence of nodes connected with
heterogeneous edges, i.e., v1

t1−→ v2
t2−→ . . .

tl−→ vl+1, where tl ∈ T e denotes an l-th edge type of the
meta-path. The meta-path can be viewed as a composite relation R = t1 ◦ t2 . . . ◦ tl between node v1

and vl+1, where R1 ◦R2 denotes the composition of relation R1 and R2. The definition of meta-path
generalizes multi-hop connections and is shown to be useful to analyze heterogeneous graphs. For
instance, in Book-Crossing dataset, ‘user-item-written.series-item-user’ indicates that a meta-path
that connects users who like the same book series.

We introduce meta-path prediction as a self-supervised auxiliary task to improve the representational
power of graph neural networks. To our knowledge, the meta-path prediction has not been studied in
the context of self-supervised learning for graph neural networks in the literature.

Meta-path prediction is similar to link prediction but meta-paths allow heterogeneous composite
relations. The meta-path prediction can be achieved in the same manner as link prediction. If two
nodes u and v are connected by a meta-path p with the heterogeneous edges (t1, t2, . . . t`), then
ypu,v = 1, otherwise ypu,v = 0. The labels can be generated from a heterogeneous graph without any
manual labeling. They can be obtained by Ap = Atl . . . At2At1 , where At is the adjacency matrix of
edge type t. The binarized value at (u, v) in Ap indicates whether u and v are connected with the
meta-path p. In this paper, we use meta-path prediction as a self-supervised auxiliary task.

Let X ∈ R|V |×d and Z ∈ R|V |×d
′

be input features and their hidden representations learnt by GNN
f , i.e., Z = f(X;w,A), where w is the parameter for f , and A ∈ R|V |×|V | is the adjacency matrix.
Then link prediction and meta-path prediction are obtained by a simple operation as

ŷtu,v = σ(Φt(zu)>Φt(zv)), (1)

where Φt is the task-specific network for task t ∈ T and zu and zv are the node embeddings of node
u and v. e.g., Φ0 (and Φ1 resp.) for link prediction (and the first type of meta-path prediction resp.).

The architecture is shown in Fig. 1. To optimize the model, as the link prediction, cross entropy is
used. The graph neural network f is shared by the link prediction and meta-path predictions. As any
auxiliary learning methods, the meta-paths (auxiliary tasks) should be carefully chosen and properly
weighted so that the meta-path prediction does not compete with link prediction especially when the
capacity of GNNs is limited. To address these issues, we propose our framework that automatically
selects meta-paths and balances them with the link prediction via meta-learning.

3



Figure 1: The SELAR framework for self-supervised auxiliary learning. Our framework learns how
to balance (or softly select) auxiliary tasks to improve the primary task via meta-learning. In this
paper, the primary task is link prediction (or node classification) and auxiliary tasks are meta-path
predictions to capture rich information of a heterogeneous graph.

3.2 Self-Supervised Auxiliary Learning

Our framework SELAR is learning to learn a primary task with multiple auxiliary tasks to assist the
primary task. This can be formally written as

min
w,Θ

E [ Lpr(w∗(Θ)) ]
(x,y)∼Dpr

s.t. w∗(Θ) = argmin
w

E
[
Lpr+au(w; Θ)

]
(x,y)∼Dpr+au

, (2)

where Lpr(·) is the primary task loss function to evaluate the trained model f(x;w∗(Θ)) on meta-
data (a validation for meta-learning [40]) Dpr and Lpr+au is the loss function to train a model on
training data Dpr+au with the primary and auxiliary tasks. To avoid cluttered notation, f , x, and y
are omitted. Each task Tt has Nt samples and T0 and {Tt}Tt=1 denote the primary and auxiliary tasks
respectively. The proposed formulation in Eq. (2) learns how to assist the primary task by optimizing
Θ via meta-learning. The nested optimization problem given Θ is a regular training with properly
adjusted loss functions to balance the primary and auxiliary tasks. The formulation can be more
specifically written as

min
w,Θ

M0∑
i=1

1

M0
`0(y

(0,meta)
i , f(x

(0,meta)
i ;w∗(Θ)) (3)

s.t. w∗(Θ) = argmin
w

T∑
t=0

Nt∑
i=1

1

Nt
V(ξ

(t,train)
i ; Θ)`t(y

(t,train)
i , f t(x

(t,train)
i ;w)), (4)

where `t and f t denote the loss function and the model for task t. We overload `t with its function
value, i.e., `t = `t(y

(t,train)
i , f t(x

(t,train)
i ;w)). ξ(t,train)

i is the embedding vector of ith sample
for task t. It is the concatenation of one-hot representation of task types, the label of the sample
(positive/negative), and its loss value, i.e., ξ(t,train)

i =
[
`t; et; y

(t,train)
i

]
∈ RT+2. To derive our

learning algorithm, we first shorten the objective function in Eq. (3) and Eq. (4) as Lpr(w∗(Θ)) and
Lpr+au(w; Θ). This is equivalent to Eq. (2) without expectation. Then, our formulation is given as

min
w,Θ
Lpr(w∗(Θ)) s.t. w∗(Θ) = argmin

w
Lpr+au(w; Θ), (5)

To circumvent the difficulty of the bi-level optimization, as previous works [39, 40] in meta-learning
we approximate it with the updated parameters ŵ using the gradient descent update as

w∗(Θ) ≈ ŵk(Θk) = wk − α∇wLpr+au(wk; Θk), (6)

where α is the learning rate for w. We do not numerically evaluate ŵk(Θ) instead we plug the
computational graph of ŵk in Lpr(w∗(Θ)) to optimize Θ. Let ∇ΘLpr(w∗(Θk)) be the gradient
evaluated at Θk. Then updating parameters Θ is given as

Θk+1 = Θk − β∇ΘLpr(ŵk(Θk)), (7)

where β is the learning rate for Θ. This update allows softly selecting useful auxiliary tasks (meta-
paths) and balance them with the primary task to improve the performance of the primary task.
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Without balancing tasks with the weighting function V(·; Θ), auxiliary tasks can dominate training
and degrade the performance of the primary task.

The model parameters wk for tasks can be updated with optimized Θk+1 in (7) as

wk+1 = wk − α∇wLpr+au(wk; Θk+1). (8)

Remarks. The proposed formulation can suffer from the meta-overfitting [50, 51] meaning that the
parameters Θ to learn weights for softly selecting meta-paths and balancing the tasks with the primary
task can overfit to the small meta-dataset. In our experiment, we found that the overfitting can be
alleviated by meta-validation sets [50]. To learn Θ that is generalizable across meta-training sets, we
optimize Θ across k different meta-datasets like k-fold cross validation using the following equation:

Θk+1 = Θk − β E
[
∇ΘLpr(ŵk(Θk))

]
,

Dpr(meta)∼CV
(9)

where Dpr(meta) ∼ CV is a meta-dataset from cross validation. We used 3-fold cross validation and
the gradients of Θ w.r.t different meta-datasets are averaged to update Θk, see Algorithm 1. The cross
validation is crucial to alleviate meta-overfitting and more discussion is Section 4.3.

Algorithm 1 Self-supervised Auxiliary Learning
Input: training data for primary/auxiliary tasks Dpr, Dau, mini-batch size Npr, Nau
Input: max iterations K, # folds for cross validation C, learning rate α, β
Output: network parameter wK for the primary task

1: Initialize w1,Θ1

2: for k = 1 to K do
3: Dpr

m ← MiniBatchSampler(Dpr, Npr)

4: Dau
m ← MiniBatchSampler(Dau, Nau)

5: for c = 1 to C do . Meta Learning with Cross Validation
6: D

pr(train)
m , D

pr(meta)
m ← CVSplit(Dpr

m , c) . Split Data for CV
7: ŵk(Θk)← wk − α∇wLpr+au(wk; Θk) with Dpr(train)

m ∪Dau
m . Eq. (6)

8: gc ← ∇ΘLpr(ŵk(Θk)) with Dpr(meta)
m . Eq. (7)

9: end for
10: Update Θk+1 ← Θk − β

∑C
c gc . Eq. (9)

11: wk+1 = wk − α∇wLpr+au(wk; Θk+1) with Dpr
m ∪Dau

m . Eq. (8)
12: end for

3.3 Hint Networks

Figure 2: HintNet helps the learner network to
learn with challenging and remotely relevant aux-
iliary tasks. HintNet learns VH to decide to use
hint ŷH in the orange line or not. ŷ in the blue line
denotes the prediction from the learner network.

Meta-path prediction is generally more challeng-
ing than link prediction and node classification
since it requires the understanding of long-range
relations across heterogeneous nodes. The meta-
path prediction gets more difficult when mini-
batch training is inevitable due to the size of
datasets or models. Within a mini-batch, impor-
tant nodes and edges for meta-paths are not avail-
able. Also, a small learner network, e.g., two-
layer GNNs, with a limited receptive field, inher-
ently cannot capture long-range relations. The
challenges can hinder representation learning
and damage the generalization of the primary
task. We proposed a Hint Network (HintNet)
which makes the challenge tasks more solvable
by correcting the answer with more information
at the learner’s need. Specifically, in our experiments, the HintNet corrects the answer of the learner
with its own answer from the augmented graph with hub nodes, see Fig. 2.
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The amount of help (correction) by HintNet is optimized maximizing the learner’s gain. Let VH(·)
and ΘH be a weight function to determine the amount of hint and its parameters which are optimized
by meta-learning. Then, our formulation with HintNet is given as

min
w,Θ

M0∑
i=1

1

M0
`0(y

(0,meta)
i , f(x

(0,meta)
i ;w∗(Θ,ΘH))) (10)

s.t. w∗(Θ) = argmin
w

T∑
t=0

Nt∑
i=1

1

Nt
V(ξ

(t,train)
i , `t; Θ)`t(y

(t,train)
i , ŷ

(t,train)
i (ΘH)), (11)

where ŷ(t,train)
i (ΘH) denotes the convex combination of the learner’s answer and HintNet’s answer,

i.e., VH(ξ
(t,train)
i ; ΘH)f t(x

(t,train)
i ;w) + (1− VH(ξ

(t,train)
i ; ΘH))f tH(x

(t,train)
i ;w). The sample

embedding is ξ(t,train)
i =

[
`t; `tH ; et; y

(t,train)
i

]
∈ RT+3.

4 Experiments

We evaluate our proposed methods on four public benchmark datasets on heterogeneous graphs.
Our experiments answer the following research questions: Q1. Is meta-path prediction effective
for representation learning on heterogeneous graphs? Q2. Can the meta-path prediction be further
improved by the proposed methods (e.g., SELAR, HintNet)? Q3. Why are the proposed methods
effective, any relation with hard negative mining?

Datasets. We use two public benchmark datasets from different domains for link prediction: Music
dataset Last-FM and Book dataset Book-Crossing, released by KGNN-LS [52], RippleNet [53]. We
use two datasets for node classification: citation network datasets ACM and Movie dataset IMDB,
used by HAN [46] for node classification tasks. ACM has three types nodes (Paper(P), Author(A),
Subject(S)), four types of edges (PA, AP, PS, SP) and labels (categories of papers). IMDB contains
three types of nodes (Movie (M), Actor (A), Director (D)), four types (MA, AM, MD, DM) of edges
and labels (genres of movies). ACM and IMDB have node features, which are bag-of-words of
keywords and plots. Dataset details are in the supplement.

Baselines. We evaluate our methods with five graph neural networks : GCN [2], GAT [20], GIN [22],
SGConv [23] and GTN [24]. Our methods can be applied to both homogeneous graphs and het-
erogeneous graphs. We compare four learning strategies: Vanilla, standard training of base models
only with the primary task samples; w/o meta-path, learning a primary task with sample weighting
function V(ξ; Θ); w/ meta-path, training with the primary task and auxiliary tasks (meta-path pre-
diction) with a standard loss function; SELAR proposed in Section 3.2, learning the primary task
with optimized auxiliary tasks by meta-learning; SELAR+Hint introduced in Section 3.3. In all the
experiments, we report the mean performance of three independent runs. Implementation details
are in the supplement. Our experiments were mainly performed based on NAVER Smart Machine
Learning platform (NSML) [54, 55].

4.1 Learning Link Prediction with meta-path prediction

We used five types of meta-paths of length 2 to 4 for auxiliary tasks. Table 1 shows that our methods
consistently improve link prediction performance for all the GNNs, compared to the Vanilla and the
method using Meta-Weight-Net [40] only without meta-paths (denoted as w/o meta-path). Overall,
a standard training with meta-paths shows 1.1% improvement on average on both Last-FM and
Book-Crossing whereas meta-learning that learns sample weights degrades on average on Last-FM
and improves only 0.6% on average on Book-Crossing, e.g., GCN, SGC and GTN on Last-FM
and GCN and SGC on Book-Crossing, show degradation 0.2% compared to the standard training
(Vanilla). As we expected, SELAR and SELAR with HintNet provide more optimized auxiliary
learning resulting in 1.9% and 2.0% absolute improvement on Last-FM and 2.6% and 2.7% on the
Book-Crossing dataset. Further, in particular, GIN on Book-crossing, SELAR and SELAR+Hint
provide ∼5.5% and ∼5.3% absolute improvement compared to the vanilla algorithm.
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Table 1: Link prediction performance (AUC) of GNNs trained by various learning strategies.

Dataset Base GNNs Vanilla w/o
meta-path

Ours
w/ meta-path SELAR SELAR+Hint

Last-FM

GCN 0.7963 0.7889 0.8235 0.8296 0.8121
GAT 0.8115 0.8115 0.8263 0.8294 0.8302
GIN 0.8199 0.8217 0.8242 0.8361 0.8350
SGC 0.7703 0.7766 0.7718 0.7827 0.7975
GTN 0.7836 0.7744 0.7865 0.7988 0.8067

Avg. Gain - -0.0017 +0.0106 +0.0190 +0.0200

Book-Crossing

GCN 0.7039 0.7031 0.7110 0.7182 0.7208
GAT 0.6891 0.6968 0.7075 0.7345 0.7360
GIN 0.6979 0.7210 0.7338 0.7526 0.7513
SGC 0.6860 0.6808 0.6792 0.6902 0.6926
GTN 0.6732 0.6758 0.6724 0.6858 0.6850

Avg. Gain - +0.0055 +0.0108 +0.0263 +0.0267

Table 2: Node classification performance (F1-score) of GNNs trained by various learning schemes.

Dataset Base GNNs Vanilla w/o
meta-path

Ours
w/ meta-path SELAR SELAR+Hint

ACM

GCN 0.9091 0.9191 0.9104 0.9229 0.9246
GAT 0.9161 0.9119 0.9262 0.9273 0.9278
GIN 0.9085 0.9118 0.9058 0.9092 0.9135
SGC 0.9163 0.9194 0.9223 0.9224 0.9235
GTN 0.9181 0.9191 0.9246 0.9258 0.9236

Avg. Gain - +0.0027 +0.0043 +0.0079 +0.0090

IMDB

GCN 0.5767 0.5855 0.5994 0.6083 0.6154
GAT 0.5653 0.5488 0.5910 0.6099 0.6044
GIN 0.5888 0.5698 0.5891 0.5931 0.5897
SGC 0.5779 0.5924 0.5940 0.6151 0.6192
GTN 0.5804 0.5792 0.5818 0.5994 0.6063

Avg. Gain - -0.0027 +0.0132 +0.0274 +0.0292

4.2 Learning Node Classification with meta-path prediction

Similar to link prediction above, our SELAR consistently enhances node classification performance
of all the GNN models and the improvements are more significant on IMDB which is larger than the
ACM dataset. We believe that ACM dataset is already saturated and the room for improvement is
limited. However, our methods still show small yet consistent improvement over all the architecture on
ACM. We conjecture that the efficacy of our proposed methods differs depending on graph structures.
However, it is worth noting that introducing meta-path prediction as auxiliary tasks remarkably
improves the performance of primary tasks such as link and node prediction with consistency
compared to the existing methods. “w/o meta-path”, the meta-learning to learn sample weight
function on a primary task shows marginal degradation in five out of eight settings. Remarkably,
SELAR improved the F1-score of GAT on the IMDB by (4.46%) compared to the vanilla learning
scheme.

4.3 Analysis of Weighting Function and Meta-overfitting

The effectiveness of meta-path prediction and the proposed learning strategies are answered above.
To address the last research question Q3. why the proposed method is effective, we provide analysis
on the weighting function V(ξ; Θ) learned by our framework. Also, we show the evidence that
meta-overfitting occurs and can be addressed by cross-validation as in Algorithm 1.

Weighting function. Our proposed methods can automatically balance multiple auxiliary tasks to
improve the primary task. To understand the ability of our method, we analyze the weighting function
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(a) Weighting function V(ξ; Θ). (b) Adjusted Cross Entropy V(ξ; Θ)`t(y, ŷ).

Figure 3: Weighting function V(·) learnt by SELAR+HintNet. V(·) gives overall high weights to the
primary task positive samples (red) in (a). V(·) decreases the weights of easy samples with a loss
ranged from 0 to 1. In (b), the adjusted cross entropy, i.e., −V(ξ; Θ) log(ŷ), by V(·) acts like the
focal loss, which focuses on hard examples by −(1− pt)γ log(ŷ).

and the adjusted loss function by the weighting function, i.e.,V(ξ; Θ), V(ξ; Θ)`t(y, ŷ). The positive
and negative samples are solid and dash lines respectively. We present the weighting function learnt
by SELAR+HintNet for GAT which is the best-performing construction on Last-FM. The weighting
function is from the epoch with the best validation performance. Fig. 3 shows that the learnt weighting
function attends to hard examples more than easy ones with a small loss range from 0 to 1.

Also, the primary task-positive samples are relatively less down weighted than auxiliary tasks even
when the samples are easy (i.e., the loss is ranged from 0 to 1). Our adjusted loss V(ξ; Θ)`t(y, ŷ)
is closely related to the focal loss, −(1 − pt)γ log(pt). When `t is the cross-entropy, it becomes
V(ξ; Θ) log(pt), where p is the model’s prediction for the correct class and pt is defined as p if
y = 1, otherwise 1− p as [56]. The weighting function differentially evolves over iterations. At the
early stage of training, it often focuses on easy examples first and then changes its focus over time.
Also, the adjusted loss values by the weighting function learnt by our method differ across tasks. To
analyze the contribution of each task, we calculate the average of the task-specific weighted loss on
the Last-FM and Book-Crossing datasets. Especially, on the Book-Crossing, our method has more
attention to ’user-item’ (primary task) and ‘user-item-literary.series.item-user’ (auxiliary task) which
is a meta-path that connects users who like a book series. This implies that two users who like a book
series likely have a similar preference. More results and discussion are available in the supplement.

Meta cross-validation, i.e., cross-validation for meta-learning, helps to keep weighting function
from over-fitting on meta data. Table 3 evidence that our algorithms as other meta-learning methods
can overfit to meta-data. As in Algorithm 1, our proposed methods, both SELAR and SELAR
with HintNet, with cross-validation denoted as ‘3-fold’ alleviates the meta-overfitting problem and
provides a significant performance gain, whereas without meta cross-validation denoted as ‘1-fold’
the proposed method can underperform the vanilla training strategy.

Table 3: Comparison between 1-fold and 3-fold as meta-data on Last-FM datasets.
SELAR SELAR+Hint

Model Vanilla 1-fold 3-fold 1-fold 3-fold

GCN 0.7963 0.7885 0.8296 0.7834 0.8121
GAT 0.8115 0.8287 0.8294 0.8290 0.8302
GIN 0.8199 0.8234 0.8361 0.8244 0.8350
SGC 0.7703 0.7691 0.7827 0.7702 0.7975
GTN 0.7836 0.7897 0.7988 0.7915 0.8067

5 Conclusion

We proposed meta-path prediction as self-supervised auxiliary tasks on heterogeneous graphs. Our
experiments show that the representation learning on heterogeneous graphs can benefit from meta-
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path prediction which encourages to capture rich semantic information. The auxiliary tasks can be
further improved by our proposed method SELAR, which automatically balances auxiliary tasks to
assist the primary task via a form of meta-learning. The learnt weighting function identifies more
beneficial meta-paths for the primary tasks. Within a task, the weighting function can adjust the cross
entropy like the focal loss, which focuses on hard examples by decreasing weights for easy samples.
Moreover, when it comes to challenging and remotely relevant auxiliary tasks, our HintNet helps the
learner by correcting the learner’s answer dynamically and further improves the gain from auxiliary
tasks. Our framework based on meta-learning provides learning strategies to balance primary task and
auxiliary tasks, and easy/hard (and positive/negative) samples. Interesting future directions include
applying our framework to other domains and various auxiliary tasks. Our code is publicly available
at https://github.com/mlvlab/SELAR.
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Broader Impact

We thank NeurIPS2020 for this opportunity to revisit the broader impact of our work and the potential
societal consequence of machine learning researches. Our work is a general learning method to
benefit from auxiliary tasks. One interesting finding is that meta-path prediction can be an effective
self-supervised task to learn more power representation of heterogeneous graphs. Nowadays, people
use social media (e.g., Facebook, Twitter, etc.) on a daily basis. Also, people watch movies and
TV-shows online and purchase products on Amazon. All this information can be represented as
heterogeneous graphs. We believe that our meta-path auxiliary tasks will benefit the customers
with improved services. For instance, more accurate recommender systems will save customers’
time and provide more relevant contents and products. We believe that there is no direct negative
consequence of this research. We proposed how to train models with auxiliary tasks. We did not
make any algorithms for specific applications. So, no one will be put at a disadvantage from our
work. No direct negative consequence of a failure of the system is expected. We used four datasets
Last-FM, Book-Crossing, ACM, and IMDB. They may not represent all the population on the earth
but our experiments did not leverage any biases in the datasets. We believe that our method will be as
effective as we reported in the paper on different datasets from different populations.
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