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Abstract

Neural network architecture design mostly focuses on the new convolutional op-
erator or special topological structure of network block, little attention is drawn
to the configuration of stacking each block, called Block Stacking Style (BSS).
Recent studies show that BSS may also have an unneglectable impact on networks,
thus we design an efficient algorithm to search it automatically. The proposed
method, AutoBSS, is a novel AutoML algorithm based on Bayesian optimization
by iteratively refining and clustering Block Stacking Style Coding (BSSC), which
can find optimal BSS in a few trials without biased evaluation. On ImageNet
classification task, ResNet50/MobileNetV2/EfficientNet-B0 with our searched
BSS achieve 79.29%/74.5%/77.79%, which outperform the original baselines by
a large margin. More importantly, experimental results on model compression,
object detection and instance segmentation show the strong generalizability of the
proposed AutoBSS, and further verify the unneglectable impact of BSS on neural
networks.

1 Introduction

Recent progress in computer vision is mostly driven by the advance of Convolutional Neural Networks
(CNNs). With the evolution of network architectures from AlexNet [1], VGG [2], Inception [3] to
ResNet [4], the performance has been steadily improved. Early works [1, 2, 5] designed layer-based
architectures, while most of the modern architectures [3, 4, 6, 7, 8, 9] are block-based. For those
block-based networks, the design procedure consists of two steps: (1) designing the block structure.
(2) stacking the blocks to construct a complete network architecture. The manner for stacking blocks
is named as Block Stacking Style (BSS) inspired by BCS from [10]. Compared with the block
structure, BSS draws little attention from the community.

The modern block-based networks are commonly constructed by stacking blocks sequentially. The
backbone can be divided into several stages, thus BSS can be simply described by the number of
blocks in each stage and the number of channels for each block. The general rule to set channels for
each block is to double the channels when downsampling the feature maps. This rule is adopted by
a lot of famous networks, such as VGG [2], ResNet [4] and ShuffleNet [11, 8]. As for the number
of blocks in each stage, there is merely a rough rule that more blocks should be allocated in the
middle stages [4, 7, 8]. Such human design paradigm arouses our questions: Is this the best BSS
configuration for all networks? However, recent works show that BSS may have an unneglectable
impact on the performance of a network [12, 10]. [12] find a kind of pyramidal BSS style which is
better than the original ResNet. Even further, [10] tries to use reinforcement learning to find optimal
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Figure 1: The overall framework of our proposed AutoBSS.

Block Connection Style (similar to BSS) for searched network block. These studies imply that the
design of BSS has not been fully understood.

In this paper, we aim to break the BSS designing principles defined by human, and propose an efficient
AutoML based method called AutoBSS. The overall framework is shown in Figure 1, where each
BSS configuration is represented by Block Stacking Style Coding (BSSC). Our goal is to search an
optimal BSSC with the best accuracy under some target constraints (e.g. FLOPs or latency). Current
AutoML algorithms usually use a biased evaluation protocol to accelerate search [13, 14, 15, 16, 17],
such as early stop or or parameter sharing. However, BSS search space has its unique benefits, where
BSSC has a strong physical meaning. Each BSSC affects the computation allocation of a network,
thus we have an intuition that similar BSSC may have similar accuracy. Based on this intuition,
we propose a Bayesian Optimization (BO) based approach. However, BO based approach does
not perform well in a large discrete search space. Benefit from the strong prior, we present several
methods to improve the effectiveness and sample efficiency of BO on BSS search. BSS Clustering
aggregates BSSC into clusters, each BSSC in the same cluster have similar accuracy, thus we only
need to search over cluster centers. BSSC refining enhances the coding representation by increasing
the correlation between BSSC and corresponding accuracy. To improve BSS Clustering, we propose
a candidate set construction method to select a subset from search space efficiently. Based on these
improvements, AutoBSS is extremely sample efficient and only needs to train tens of BSSC, thus we
use an unbiased evaluation scheme and avoid the strong influence caused by widely used tricks in
neural architecture search (NAS) methods, such as early stopping or parameter sharing.

Experiment results on various tasks demonstrate the superiority of our proposed method. The BSS
searched within tens of samplings can largely boost the performance of well-known models. On
ImageNet classification task, ResNet50/MobileNetV2/EfficientNet-B0 with searched BSS achieve
79.29%/74.5%/77.79%, which outperform the original baselines by a large margin. Perhaps more
surprisingly, results on model compression(+1.6%), object detection(+0.91%) and instance segmen-
tation(+0.63%) show the strong generalizability of the proposed AutoBSS, and further verify the
unneglectable impact of BSS on neural networks.

The contributions of this paper can be summarized as follows:

• We demonstrate that BSS has a strong impact on the performance of neural networks, and
the BSS of current state-of-the-art networks is not the optimal solution.

• We propose a novel algorithm called AutoBSS that can find a better BSS configuration for a
given network within only tens of trials. Due to the sample efficiency, AutoBSS can search
with unbiased evaluation under limited computing cost, which overcomes the errors caused
by the biased search scheme of current AutoML methods.

• The proposed AutoBSS improves the performance of widely used networks on classification,
model compression, object detection and instance segmentation tasks, which demonstrate
the strong generalizability of the proposed method.
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2 Related Work

2.1 Convolutional Neural Network Design

The convolutional neural networks (CNNs) have been applied in many computer vision tasks [18, 1].
Most of modern network architectures [3, 4, 6, 7, 8] are block-based, where the design process is
usually two phases: (1) designing a block structure, (2) stacking blocks to form the complete structure,
in this paper we call the second phase BSS design. Many works have been devoted to effective and
efficient block structure design, such as bottleneck [4], inverted bottleneck [7] and shufflenet block [8].
However, little effort has been made to BSS design, which has an unneglectable impact on network
performance based on recent studies [12, 10]. There are two commonly-used rules for designing
BSS: (1) doubling the channels when downsampling the feature maps, (2) allocating more blocks in
the middle stages. These rough rules may not make the most potential of a carefully designed block
structure. In this paper, we propose an automatic BSS search method named AutoBSS, which aims to
break the human-designed BSS paradigm and find the optimal BSS configuration for a given block
structure within a few trials.

2.2 Neural Architecture Search

Neural Architecture Search has drawn much attention in recent years, various algorithms have
been proposed to search network architectures with reinforcement learning [19, 13, 20, 21, 22],
evolutionary algorithm [23, 24], gradient-based method [25, 26] or Bayesian optimization-based
method [27]. Most of these works [13, 20, 25, 24] focus on the micro block structure search, while
our work focuses on the macro BSS search when the block structure is given. There are a few works
related to BSS search [28, 9]. Partial Order Pruning (POP) [28] samples new BSS randomly while
utilizing the evaluated BSS to prune the search space based on Partial Order Assumption. However,
the search space after pruning is still too large, which makes it difficult to search BSS by random
sampling. EfficientNet [9] simply grid searches three constants to scale up the width, depth, and
resolution. BlockQNN [10] uses reinforcement learning to search BSS, however, it needs to evaluate
thousands of BSS and uses early stop training tricks to reduce time cost. OnceForAll [29] uses weight
sharing technique to progressively search the width and the depth of a supernet. The aforementioned
methods are either sample inefficient or introduce some biased tricks for evaluation, such as early
stop or weight sharing. Note that these tricks affect the search performance strongly [30, 31],
where the correlation between the final accuracy and searched accuracy is very low. Different from
those methods, our proposed AutoBSS uses an unbiased evaluation scheme and utilizes an efficient
Bayesian Optimization based search method with BSS refining and clustering to find an optimal BSS
within tens of trials.

3 Method

Given a building block of a neural network, BSS defines the number of blocks in each stage and
channels for each block, which can be represented by a fixed-length coding, namely Block Stacking
Style Coding (BSSC). BSSC has a strong physical meaning that describes the computation allocation
in each stage. Thus we have a prior that similar BSSC may have similar accuracy. To benefit from
this hypothesis, we propose an efficient algorithm to search BSS by Bayesian Optimization. However,
BO based method does not perform well in a large discrete search space. To address this problem, we
propose BSS Clustering to aggregate BSSC into clusters, and we only need to search over cluster
centers efficiently. To enhance the BSSC representation, we also propose BSSC Refining to increase
the correlation between coding and corresponding accuracy. Moreover, as the search space is usually
huge, to perform BSS clustering efficiently, we propose Candidate Set Construction method to select
a subset effectively. We will introduce these methods in the following subsections in detail.

3.1 Candidate Set Construction

The goal of AutoBSS is to search an optimal BSSC under some target constraints (e.g. FLOPs or
latency). We denote the search space under the constraint as Λ. Each element of Λ is a BSSC, denoted
as x, with the i-th element as xi and the first i elements as x[:i], i = 0, ...,m. The set of possible
values for xi is represented as Ci = {ci0, ci1, ...}, thus x[:i+1] = x[:i] ∪ cij , cij ∈ Ci. In most cases, Λ
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is too large to enumerate, and clustering using the full search space is infeasible. Thus we need to
select a subset of Λ as the candidate set Ω.

To make the BSS search in this subset more effectively, Ω aims to satisfy two criterions: (1) the
candidates in Ω and Λ should have similar distributions. (2) the candidates in Ω should have better
accuracy than the unpicked ones in the search space.

To make the distribution of candidates in Ω similar with Λ, an intuitive way is to construct Ω via
random sampling in Λ. During each sampling, we can sequentially determine the value of x0, ..., xm.
The value of xi is selected from Ci, where cij corresponds with the possibility P ij . It can be proved in
random sampling that,

P ij =
|S(x[:i] ∪ cij)|∑̂

j

(|S(x[:i] ∪ ciĵ)|)
, where S(x[:r]) = {x̂|x̂ ∈ Λ, x̂[:r] = x[:r]}. (1)

However, we can not get the value of |S(x[:r])| because it needs to enumerate each element in Λ.
Thus, we simply utilize the approximate value |SD=0(x[:r])| by the following equation 2 recursively,
where D denotes the recursion depth, crmid denotes the median of Cr.

|SD=d(x[:r])| =

{ ∑
j

{|SD=d+1(x[:r] ∪ crj)|}, if d ≤ 2

|SD=d+1(x[:r] ∪ crmid)| × |Cr|, if d > 2
(2)

To make the candidates in Ω have better potential than the unselected ones in Λ, we post-process
each candidate x ∈ Ω in the following manner. We first randomly select one dimension xi, then
increase it by a predefined step size if this doesn’t result in larger FLOPs or latency than the threshold.
This process is repeated until no dimension can be increased. Increasing any dimension xi means
increasing the number of channels or blocks, as shown in works like [7, 8, 12], it necessarily makes
the resulting network perform better.

3.2 BSSC Refining
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Figure 2: The relationship between BSSC distance
and accuracy discrepancy. µ(·) and σ(·) represent
mean value and standard deviation respectively.

To demonstrate the correlation between BSSC
and accuracy, we randomly sample 220 BSS
for ResNet18 and evaluate them on ImageNet
classification task. To make the distance be-
tween BSSC reasonable, we firstly standardize
each dimension individually, i.e. replacing each
element with Z-score. This procedure can be
regarded as the first refining. Then, we show
the relationship between Euclidean distance and
accuracy discrepancy (the absolute difference of
two accuracies) in Figure 2.

It can be observed that accuracy discrepancy
tends to increase when distance gets larger, this
phenomenon verifies our intuition that similar
BSSC has similar accuracy. However the cor-
relation is nonlinear. Because the Bayesian
Optimization approach is based on Lipschitz-
continuous assumption [32], we should refine
it to a linear correlation so that the assumption
can be satisfied better. Therefore, we utilize evaluated BSS to refine BSSC from the second search
iteration. We simply use a linear layer to transform it in this work. We set the initial weight of this
linear layer as an identity matrix, and train the model with the following loss,

Lossdy =

(
|y(0) − y(1)|
|y(2) − y(3)|

− ‖x̂
(0) − x̂(1)‖L2

‖x̂(2) − x̂(3)‖L2

)2

, (3)

where x̂(0), ..., x̂(3) are transformed from four randomly selected evaluated BSSC and y(0), ..., y(3)
are the corresponding accuracies.
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3.3 BSS Clustering

After refining, neighboring BSSC naturally corresponds with similar accuracies. Thus searching
from the whole candidate set is not necessary. We aggregate BSSC into clusters and search from
the cluster centers efficiently. Besides, it brings two extra benefits. Firstly, it helps to avoid the case
that all BSSC are sampled from a local minimum. Secondly, it makes the sampled BSSC dispersed
enough, thus the GP model built on which can better handle the whole candidate set.

We adopt the k-means algorithm [33] with Euclidean distance to aggregate the refined BSSC. The
number of clusters will increase during each iteration, while we only select the same number of
BSSC from cluster centers in each iteration. It is because the refined BSSC can measure the accuracy
discrepancy more precisely and the GP model becomes more reliable with the increase of evaluated
BSSC.

3.4 Bayesian Optimization Based Search

We build a model for the accuracy as f(x) based on GP. Because the refined BSSC has
a relatively strong correlation with accuracy, we simply use a simple kernel κ(x, x′) =
exp(− 1

2σ2 ‖x − x′‖2L2
). We adopt expected improvement (EI) as the acquisitions. Given O =

{(x(0), y(0)), (x(1), y(1)), ...(x(n), y(n))}, where x(i) is a refined BSSC for an evaluated BSS, y(i) is
the corresponding accuracy. Then,

ϕEI(x) = E(max{0, f(x)− τ |O}), τ = max
i≤n

y(i). (4)

To reduce the time consumption and take advantage of parallelization, we train several different
networks at a time. Therefore, we use the expected value of EI function (EEI, [34]) to select a batch
of unevaluated BSSC from cluster centers. Supposing x(n+1), x(n+2), ... are BSSC for selected BSS
with unknown accuracies ŷ(n+1), ŷ(n+2), ..., thus

ϕEEI(x) = E(E(max{0, f(x)− τ |O, (x(n+1), ŷ(n+1)), (x(n+2), ŷ(n+2)), ...})), (5)

here ŷ(n+j), j = 1, 2, ..., is a variable of Gaussian distribution with mean and variance depend on
{ŷ(n+k)|1 ≤ k < j}. The value of equation 5 is calculated by Monte Carlo simulations [34] at each
cluster center, the one with the largest value will be selected. More details are illustrated in Appendix
A.1.

4 Experiments

In this section, we conduct the main experiments of BSS search on ImageNet classification task [35].
Then we conduct experiments to analyze the effectiveness of BSSC Refining and BSS Clustering.
Finally, we extend the experiments to model compression, detection and instance segmentation to
verify the generalization of AutoBSS. The detailed settings of experiments are demonstrated in the
Appendix B.

4.1 Implementation Details
Target networks and Training hyperparameters We use ResNet18/50 [4], MobileNetV2 [7] and
EfficientNet-B0/B1 [9] as target networks, and utilize AutoBSS to search a better BSS configuration
for corresponding networks under the constraint of FLOPs. The detailed training settings are shown
in Appendix B.1.

Definition of BSSC We introduce the definition of BSSC for EfficientNet-B0/B1 as an example,
others are introduced in Appendix B.2. The main building block of EfficientNet-B0 is MBConv [7],
but swish [36] and squeeze-and-excitation mechanism [37] are added. Then EfficientNet-B1 is
constructed by grid searching three constants to scale up EfficientNet-B0. EfficientNet-B0/B1
consists of 9 stages, the BSSC is defined as the tuple {C3, ..., C8, L3, ..., L8, T3, ..., T8}, Ci, Li and
Ti denote the output channels, number of blocks and expansion factor[7] for stage i, respectively.
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Table 1: Single crop Top-1 accuracy (%) of different BSS configurations on ImageNet dataset

Method FLOPs Params Impl. (120 ep.) Ref. Impl. (350 ep.)

ResNet18 1.81B 11.69M 71.21 69.00[28]) 72.19
ResNet18Rand 1.74B 24.87M 72.34 - -

ResNet18AutoBSS 1.81B 16.15M 73.22 - 73.91

ResNet50 4.09B 25.55M 77.09 76.00[9] 77.69
ResNet50Rand 3.69B 23.00M 77.48 - -

ResNet50AutoBSS 4.03B 23.73M 78.17 - 79.29

MobileNetV2 300M 3.50M 72.13 72.00[7] 73.90
MobileNetV2Rand 298M 4.00M 72.13 - -

MobileNetV2AutoBSS 296M 3.92M 72.96 - 74.50

EfficientNet-B0 385M 5.29M - 77.10[9] 77.12
EfficientNet-B0Rand 356M 6.67M - - 76.73

EfficientNet-B0AutoBSS 381M 6.39M - - 77.79

EfficientNet-B1 685M 7.79M - 79.10[9] 79.19
EfficientNet-B1Rand 673M 10.19M - - 78.56

EfficientNet-B1AutoBSS 684M 10.17M - - 79.48

Detail Settings of AutoBSS Searching We use FLOPs of original BSS as the threshold for Can-
didate Set Construction. The candidate set Ω always has 10000 elements in all experiments. The
number of iterations is set as 4, during each iteration 16 BSSC will be evaluated, so that in total only
64 networks will be trained in the searching process. Benefit from the sample efficiency, we use
an unbiased evaluation scheme for searching, namely each candidate is trained fully without early
stopping or parameter sharing. We train 120 epochs for ResNet18/50 and MobileNetV2, 350 epochs
for EfficientNet-B0/B1. We set the number of clusters as 16, 160, N10 and N for each iteration, here
N denotes the size of candidate set Ω. As indicated in [38], random search is a hard baseline to beat
for NAS. Therefore we also randomly sample 64 BSSC from the same search space as a baseline for
each network.

4.2 Results and Analysis

The results of ImageNet are shown in Table 1. More details are shown in Appendix B.3. Compared
with the original ResNet18, ResNet50 and MobileNetV2, we improve the accuracy by 2.01%, 1.08%
and 0.83% respectively. It indicates BSS has an unneglectable impact on the performance, and there
is a large improvement room for the manually designed BSS.

EfficientNet-B0 is developed by leveraging a reinforcement learning-based NAS approach [20, 9],
BSS is involved in their search space as well. Our method achieves 0.69% improvement. The
reinforcement learning-based approach needs tens of thousands of samplings while our method
needs only 64 samplings, which is much more efficient. In addition, the 0.38% improvement on
EfficientNet-B1 demonstrates the superiority of our method over grid search, which indicates that
AutoBSS is a more elegant and efficient tool for scaling neural networks.

ResNet18/50Rand, MobileNetV2Rand and EfficientNet-B0/B1Rand in Table 1 are networks with
the randomly searched BSS, the accuracy for them is 0.88/0.69%, 0.83% and 1.06/0.92% lower
compared with our proposed AutoBSS. It indicates that our method is superior to the hard baseline
random search for NAS [38].

We also visualize the searching process of ResNet18 in Figure 3 (a), where each point represents a
BSS. The searching process consists of 4 iterations, during each iteration, 16 evaluated BSS will be
sorted based on the accuracy for better visualization. From the figure, we have two observations:

1) The searched BSS within the first iteration is already relatively good. It mainly comes from
two points. Firstly, Candidate Set Construction excludes a large number of BSS which are
expected to have a bad performance. Secondly, BSS Clustering helps to avoid the case that
all BSS are sampled from a local minimum.
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2) The best BSS is sampled during the last two iterations. It is because the growing number of
evaluated BSS makes the refined BSSC and GP model more effective. As for why the best
BSS is not always sampled during the last iteration, it is because we adopt EI acquisition
function [32], which focuses on not only exploitation but also exploration.

(a) Search Process of ResNet18 (b) Refined BSSC
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Figure 3: (a) The searching process of ResNet18. (b) Correlation between refined BSSC and accuracy

4.3 Analysis for BSSC Refining and BSS Clustering

To demonstrate the effectiveness of BSSC Refining, we use the same BSS for ResNet18 as section 3.2
to plot relations between refined BSSC distance and network accuracy in Figure 3(b).The linear model
for refining is trained with 16 randomly selected BSSC and makes the mapping from refined BSSC
to accuracy satisfy the Lipschitz-continuous assumption of Bayesian Optimization approach [32].
That is, there exists constant C, such that for any two refined BSSC x1, x2: |Acc(x1)−Acc(x2)| ≤
C‖x1 − x2‖. The red dashed line in Figure 2 and Figure 3(b) (mean value plus standard deviation)
can be regarded as the upper bound of accuracy discrepancy |Acc(x1)−Acc(x2)|. After refined with
the linear model, it becomes much more close to the form of C‖x1 − x2‖.
To prove the effectiveness of BSS Clustering, we simply carry out an experiment to search the BSS
of ResNet18 without BSS Clustering. We compare the best 5 BSS in Table 2. It can be observed that
the accuracy drops significantly without the BSS clustering.

Table 2: The best 5 BSS searched with/without BSS Clustering.

Without BSS Clustering With BSS Clustering

Top-1 acc. (%)

72.56 (0.42 ↓) 72.98
72.59 (0.41 ↓) 73.00
72.60 (0.45 ↓) 73.05
72.63 (0.50 ↓) 73.13
72.70 (0.52 ↓) 73.22

Mean(%) 72.62 (0.46 ↓) 73.08

4.4 Generalization to Model Compression

Model compression aims to obtain a smaller network based on a given architecture. By adopting
a smaller FLOPs threshold, model compression can be achieved with our proposed AutoBSS as
well. We conduct an experiment on MobileNetV2, settings are identical with section 4.1 except for
FLOPs threshold and training epochs. We compare our method with Meta Pruning [39], ThiNet [40]
and Greedy Selection [41]. The results are shown in Table 3, AutoBSS improves the accuracy by a
large margin. It indicates that pruning based methods is less effective than scaling a network using
AutoBSS.
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Table 3: Compared with other methods on MobileNetV2.

Method FLOPs Params Top-1 acc. (%)

Uniformly Rescale 130M 2.2M 68.05
Meta Pruning [39] 140M - 68.20 [39]

ThiNet [40] 175M - 68.60 [41]
Greedy Selection [41] 137M 2.0M 68.80 [41]

AutoBSS(ours) 130M 2.7M 69.65

4.5 Generalization to Detection and Instance Segmentation

To investigate whether our method generalizes beyond the classification task, we also conduct
experiments to search the BSS for the backbone of RetinaNet-R50 [42] and Mask R-CNN-R50 [43]
on detection and instance segmentation task. We report results on COCO dataset [44]. As pointed
out in [45] that ImageNet pre-training speeds up convergence but does not improve final target task
accuracy, we train the detection and segmentation model from scratch, using SyncBN [46] with a 3x
scheduler. The detailed settings are shown in Appendix B.4. The results are shown in Table 4. We can
see that both AP bbox and APmask are improved for Mask R-CNN with our searched BSS. AP bbox
is improved by 0.91% and APmask is improved by 0.63%. Moreover, AP bbox for RetinaNet is
improved by 0.66% as well. This indicates that our method can generalize well beyond classification
task.

Table 4: Comparison between the original BSS and the one searched by our method.

Backbone FLOPs Params AP bbox (%) APmask (%)

Mask R-CNN-R50 117B 44M 39.24 35.74
Mask R-CNN-R50AutoBSS 116B 49M 40.15 36.37

RetinaNet-R50 146B 38M 37.02 -
RetinaNet-R50AutoBSS 146B 41M 37.68 -

4.6 Generalization for Searched BSSC to Similar Task

To investigate whether the searched BSSC can generalize to a similar task, we experiment on
generalizing the BSSC searched for Mask R-CNN-R50 on instance segmentation task to semantic
segmentation task. We report results on PSACAL VOC 2012 dataset [47] for PSPNet [48] and
PSANet [49]. Our models are pre-trained on ImageNet and finetuned on train_aug (10582 images)
set. The experiment settings are identical with [50] and results are shown in Table 5. We can see that
both PSPNet50 and PSANet50 are improved equipped with the searched BSSC. It shows that the
searched BSSC can generalize to a similar task.

Table 5: The single scale testing results on PSACAL VOC 2012.

Method mIoU (%) mAcc (%) aAcc (%)

PSPNet50 77.05 85.13 94.89
PSPNet50AutoBSS 78.22 86.50 95.18

PSANet50 77.25 85.69 94.91
PSANet50AutoBSS 78.04 86.79 95.03

4.7 Qualitative Analysis for the Searched BSS

We further analyze the searched BSS configuration and give more insights. We compare the searched
BSS with the original one in Figure 4. We can observe that the computation allocated uniformly
for different stages in the original BSS configuration. This rule is widely adopted by many modern
neural networks [4, 11, 8]. However, the BSS searched by AutoBSS presents a different pattern. We
can observe some major differences from the original one:
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1) The computation cost is not uniformly distributed, AutoBSS assign more FLOPs in latter
stages. We think maybe the low-level feature extraction in shallow layers may not need too
much computation, while the latter semantic feature may be more important.

2) AutoBSS increases the depth of early stages by stacking a large number of narrow layers,
we think it may indicate that a large receptive field is necessary for early stages.

3) AutoBSS uses only one extremely wide block in the last stage, which may indicate that
semantic features need more channels to extract delicately.

By the comparison of original BSS and the automatically searched one, we can observe that the
human-designed principle for stacking blocks is not optimal. The uniform allocation rule can not
make the most potential of computation.

... ...

Original 
Resnet18 BSS

Top1@Imagenet: 
71.21

Searched 
Resnet18 BSS

Top1@Imagenet: 
73.22

resnum:2
channel:64
FLOPs: 462M

resnum:2
channel:128
FLOPs: 405M

resnum:2
channel:256
FLOPs: 405M

resnum:2
channel:512
FLOPs: 405M

stage1 stage2 stage3 stage4

stage1 stage2 stage3 stage4

resnum:4
channel:32
FLOPs: 231M

resnum:14
channel:32
FLOPs: 202M

resnum:14
channel:128
FLOPs: 788M

resnum:1
channel:1024
FLOPs: 520M

Figure 4: The difference between the original BSS and the searched one on ResNet18.

5 Conclusion

In this paper, we focus on the search of Block Stacking Style (BSS) of a network, which has drawn
little attention from researchers. We propose a Bayesian optimization based search method named
AutoBSS, which can efficiently find a better BSS configuration for a given network within tens
of trials. We demonstrate the effectiveness and generalizability of AutoBSS with various network
backbones on different tasks, including classification, model compression, detection and segmentation.
The results show that AutoBSS improves the performance of well-known networks by a large margin.
We analyze the searched BSS and give insights that BSS affects the computation allocation of a
neural network, and different networks have different optimal BSS. This work highlights the impact
of BSS on network design and NAS. In the future, we plan to further analyze the underlying impact
of BSS on network performance. Another important future research topic is searching the BSS and
block topology of a neural network jointly, which will further promote the performance of neural
networks.

Broader Impact

The main goal of this work is to investigate the impact of Block Stacking Style (BSS) and design an
efficient algorithm to search it automatically. As shown in our experiments, the BSS configuration of
current popular networks is not the optimal solution. Our methods can give a better understanding of
the neural network design and exploit their capabilities. For the community, one potential positive
impact of our work would be that we should not only focus on new convolutional operator or
topological structure but also BSS of the Network. In addition, our work indicates that AutoML
algorithm with unbiased evaluation has a strong potential for future research. For the negative aspects,
our experiments on model compression may suggest that pruning based methods have less potential
than tuning the BSS of a network.
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