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This supplementary content is mainly organized in the order of being referenced in the main
manuscript. To make it reader-friendly, for most of the sections here, we adopt the same titles
as those in the main manuscript.

A Network architecture and training details

Table 1: H architecture in DDH.
Layer input channels ks stride

conv1 S/C 6/64 4 2
conv2 conv1 64/128 4 2
conv3 conv2 128/256 4 2
conv4 conv3 256/512 4 2
conv5 conv4 512/512 4 2

upconv5 conv5 512/512 4 2
upconv4 conv4/upconv5 1024/256 4 2
upconv3 conv3/upconv4 512/128 4 2
upconv2 conv2/upconv3 256/64 4 2
upconv1 conv1/upconv2 128/3 4 2
sigmoid upconv1 N/A N/A N/A

Table 2: H architecture in UDH.
Layer input channels ks stride

conv1 image S 3/64 4 2
conv2 conv1 64/128 4 2
conv3 conv2 128/256 4 2
conv4 conv3 256/512 4 2
conv5 conv4 512/512 4 2

upconv5 conv5 512/512 4 2
upconv4 conv4/upconv5 1024/256 4 2
upconv3 conv3/upconv4 512/128 4 2
upconv2 conv2/upconv3 256/64 4 2
upconv1 conv1/upconv2 128/3 4 2

scale/255*tanh upconv1 N/A N/A N/A

Table 3: R architecture.

Layer input channels ks stride

conv1 image C′ 3/64 3 1
conv2 conv1 64/128 3 1
conv3 conv2 128/256 3 1
conv4 conv3 256/128 3 1
conv5 conv4 128/64 3 1
conv6 conv5 64/3 3 1

sigmoid conv6 N/A N/A N/A

We adopt a simplified U-Net adopted in Cycle-GAN [6]. Specif-
ically, we remove the two most inner convolutions and up-
convolutions. The detailed H architectures for the DDH and
UDH are shown in Table 1 and Table 2, respectively, where the
conv layer is followed by a BatchNorm layer and ReLU layer.
In contrast to the final Sigmoid layer adopted in DDH, we adopt
a Tanh layer multiplied by a scale factor which is set to 10/255
by referencing the engineering choice in universal adversarial
perturbations [3, 4, 1]. Note that different from [3, 4, 1], Se is
minimized in the loss even with this constraint. With such a
scale factor, some pixel intensities in C ′ in UDH might still be
out of the range [0, 1]. However, empirically we find that the
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percentage of those pixels is very small, and limiting the range of C ′ to [0, 1] has an insignificant
influence on the revealing performance. The architectures of the R networks are shown in Table 3.

Different architectures, i.e. different depth for the H network, with different image resolutions have
been explored as well and the results are shown in Table 4.

Table 4: Performance comparison of different
meta-architectures. We report the cover APD
(cAPD) and the secret APD (sAPD), for which we
report results with C ′ (sAPD (C ′)) and Se (sAPD
(Se)) as the input to R. “N/A" indicates that no
secret image can be visually revealed resulting in
a meaningless secret APD (higher than 60).

meta-archs cAPD sAPD (C′) sAPD (Se)

full U-Net; image resolution of 256× 256

DDH 2.88 3.11 N/A
UDH 2.24 3.14 1.84

simplified U-Net; image resolution of 256× 256

DDH 3.35 4.10 N/A
UDH 2.33 3.65 2.19

simplified U-Net; image resolution of 128× 128

DDH (with P ) 6.42 5.26 N/A
DDH 2.68 3.50 N/A

Universal 2.35 3.56 1.98

Training curve. We note that the proposed UDH achieves comparable performance than the existing
DDH meta-architectures after training for 60 epochs with the initial learning rate of 0.001 (decay by
a factor of 10 at epoch 30). The training curve is shown in Figure 1. We observe that the training
curve of our UDH is much more smooth, which might be attributed to the point that H encodes S
independent of C. The DDH encoding process is dependent on C, thus it might be over-fitting for
some certain C and makes it relatively less generalizable. The smooth training of our UDH might also
provide another reason why without exploiting the knowledge of C, our UDH achieves comparable
performance with the existing DDH.

Figure 1: Training curves for UDH and DDH.
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B Universal deep hiding analysis

B.1 Where is the secret image encoded?

The results of investigating where the secret image is encoded for channel and spatial dimension are
shown in Table 5 and Figure 2, respectively.

Table 5: Influence of S on Se (left) and that of
Se on S′ (right) by setting one channel in S and
Se, respectively, to zero values.

R (S) G (S) B (S)

R (Se) 2.27 2.55 2.82
G (Se) 2.62 3.84 1.78
B (Se) 2.62 3.04 2.15

R (Se) G (Se) B (Se)

R (S′) 16.78 41.01 17.30
G (S′) 23.19 35.56 10.18
B (S′) 34.39 25.39 13.79

Figure 2: Influence of setting one pixel intensity
value to zero. Influence of S on Se (left), Se on
S′ (middle), S on S′ (right). The influence is mea-
sured with the APD with regard to the distance to
the modified pixel.

Is every channel equally important? we have demonstrated that the secret image is encoded across
all channels by showing that change on a single channel in S (or Se) has an almost equivalent
influence on the three channels in Se (or S′). However, it remains yet to know whether every channel
in Se is equally important for revealing S′. To this end, we explore the robustness of Se to channel
dropout, i.e. whether the secret image can be revealed with only partial channels of Se and the results
are shown in Figure 3. We observe that the revealed S′ are well recognizable with any two channels
(see the bottom three rows of Figure 3). With only one channel, the secret image can still be revealed
to some extent (see the second to the fourth row of Figure 3). Not every channel is equally important.
Specifically, we find that channel G carries the most information and the B channel carries the least
information (compare the second to fourth rows of Figure 3). The algorithm automatically chooses to
focus more on the G channel without any prior constraint in the training. With only one channel G,
the revealed S′ looks visually similar to that with all channels, but with a significant color change.
Since one channel can carry much of the information of S, it is not surprising that hiding one or
multiple color image(s) in a gray image is possible.

Figure 3: Robustness of Se to channel dropout. The first row indicates S′ with all three channels
(r,g,b)=(1, 1, 1). The following three rows indicate using only one channel of Se, with (r,g,b)=(1, 0, 0),
(0, 1, 0) and (0, 0, 1), respectively. The last three rows indicate using only two channels of Se, with
(r,g,b)=(0, 1, 1), (1, 0, 1) and (1, 1, 0), respectively. “1" indicates the corresponding channel of Se

remains unchanged, “0" indicates the corresponding channel of Se is set to zero.
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B.2 Understanding the existing DDH meta-architecture

In the main manuscript, we performed a cross-test with H and R from two different meta-architectures,
i.e. DDH and UDH but without retraining. Here, we fix the weight of R but retrain a new H from a
different meta-architecture to work in pair with the pre-trained R. The results are shown in Table 6.
We observe that a new Hd can be easily trained to work with a pre-trained Ru. However, it is
much more challenging to train a new Hu to work with a pre-trained Rd when the cover image C is
present. This significant performance drop is mainly caused by the significant disturbance of C. As
an ablation study, we repeat the same procedure but exclude C. The secret images can be revealed
almost perfectly with secret APD as low as 1.96.

Table 6: Cross-test results by
training a new a new H from
a different meta-architecture to
work in pair with a pretrained
R. The subscripts d and u in-
dicate DDH and UDH, respec-
tively.

Architecture cAPD sAPD

Hd + Ru 3.79 3.82
Hu + Rd 3.66 18.28

Hu + Rd (w/o cover) 0.48 1.96

Table 7: Secret APD val-
ues when different constant
shifts (varying from 10/255 to
50/255) applied to cover im-
ages.

Arch 10 20 30 40 50

DDH 3.6 3.7 3.8 4.0 4.1
UDH 3.5 3.6 3.6 3.6 3.7

Table 8: Secret APD values
when uniform random perturba-
tions (magnitude varying from
10/255 to 50/255) are added to
container images.

Arch 10 20 30 40 50

DDH 30.1 54.7 71.9 86.1 96.0
UDH 10.9 21.9 33.0 43.7 51.7

B.3 Comparison of DDH and UDH

Applying constant shift to the cover images C (Table 7) has limited influence on DDH and UDH.
Adding random noise to container image C ′ (Table 8) degrades performance on DDH and UDH, but
more on DDH. Together with Tables 3 from the main manuscript, we conclude that UDH is more
robust to corruptions on C ′.

C Universal deep hiding applications

C.1 Beyond hiding one image in one image

Hiding M images in N images. Quantitative results are shown in Table 9. The results of hiding
images with different resolutions and channels are shown in Table 10. The qualitative results for
hiding 6 color images in 3 color images are shown in Figure 4. The results show that C ′i looks
individually similar to Ci, and S′i is also indistinguishable from Si, which indicates the success of
hiding multiple (6) in multiple (3) images. Overall, in the above experiments, the APD for both cover
and secret images is not significant and a human observer can not observe obvious visual differences.

Table 9: APD for hiding M secret images in N cover images.
index N (cover) M (secret) cover APD secret APD

1 3 1 1.83 3.05
2 1 3 3.42 6.74
3 1 4 3.83 8.63
4 3 3 3.38 5.94
5 3 6 3.82 8.41
6 3 12 4.51 13.79

Different recipients get different secret messages. The pipeline of training multiple pairs of Hi

and Ri to hide multiple secret images in the same cover is shown in the main manuscript. H and
R work in pairs and each R can only reveal the secret message encoded by its corresponding H .
Note that each pair of H and R works independently, i.e. during the inference stage excluding other
pairs of H and R will not influence the working mechanism of the left pair. Intuitively, for those
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Table 10: APD for hiding images in images with different resolutions and channels. For each entity,
the first value indicates the resolution and the second one indicates the channel. For the channel, 1
indicates a gray image, 3 indicates a single color image, 6 indicates 2 color images.

index cover secret cover APD secret APD

7 64/ 3 128/ 3 2.93 5.94
8 32/ 3 128/ 3 3.58 9.56
9 128/ 1 128/ 3 4.67 7.73

10 128/ 1 128/ 6 5.76 10.63

Figure 4: Results for hiding 6 secret images in 3 cover images. The first 6 rows indicate the three
cover images and their corresponding container images. The following 12 rows indicate the 6 secret
images and corresponding revealed images.
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pairs of H and R to work independently with little influence on each other, each Se needs to be
encoded differently. To analyze this, we feed the same image into the three H networks to exclude the
influence of the images. Example cover (C), secret images (S1, S2, S3), containers (C ′), and revealed
secrets (S′1, S′2, S′3) are shown in Figure 5. The results for the visualization and Fourier analysis of
Se1, Se2, Se3 are shown in Figure 6. First, it can be observed that Se generated by the same H have
very similar frequency patterns. However, (for the same image) Se generated by different H have
different patterns. Especially, the frequency pattern for S3 is very different from those of S1 and S2.
The frequency discrepancy between S1 and S2 is less significant but still observable. The success of
this pipeline is that each R has been trained to be sensitive to Se of only a certain frequency type and
treats the cover image C as well as Se of other frequency types as noise. Carefully comparing the
visualization results of different Se, we note that Se1 and Se2 mainly have patterns repeated in vertical
and horizontal directions respectively, while Se3 has clear repetitive patterns in both horizontal and
vertical directions.

Figure 5: Hiding multiple secret images under one cover and different recipients, i.e. R networks,
reveal different secret images without influencing each other.

Figure 6: Visualization and Fourier analysis of Se1, Se2, Se3. We intentionally choose the same
secret images for them to exclude the influence of the image but analyze the difference of H1, H2

and H3. The top 4 rows indicate the secret images, Se1, Se2, Se3, respectively. The bottom 4 rows
indicate their corresponding Fourier analysis.

One application of this technique is to fool a third party that tries to steal R for revealing the secret
message. R is needed for revealing the secret message, however, a wrong R can be intentionally
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leaked to a third party to let it retrieve the wrong message. This result suggests that aiming to steal R
can be dangerous for revealing the intentionally misleading message.

C.2 Universal deep watermarking

Figure 7: Secret revealing performance without special training. The first row indicates original
secret images, the following rows indicate revealed secret images with different distortions in the
order: crop, cropout, dropout, Gaussian blurring, and JPEG compression.

Figure 8: Secret revealing performance when UDH is trained with (and only with) relevant image
distortion. The first row indicates original secret images, the following rows indicate revealed secret
images with different distortions in the order: dropout, Gaussian blurring, and JPEG compression.
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Watermarking under specialized distortion. The results under various types of distortion for a
normally trained H and R without adopting the corresponding distortion in the training are shown
in Figure 7. We observe that our approach is robust to crop and cropout but not robust to dropout,
Gaussian blurring, and JPEG compression. To verify the effectiveness of adopting the corresponding
distortion in the training, we visualize the respective results in Figure 8. We note that the secret image
can be revealed almost perfectly if the model is specifically trained only for that distortion.

Watermarking with combined robustness. In the main manuscript, we have discussed that hiding
binary information can be seen as a special case of our exploration. The comparison with [5]
shows that our approach can hide more information while achieving higher revealing accuracy. The
qualitative results are shown in Figure 9. We further visualize the decoded barcode and images under
different distortions in Figure 10 and Figure 11 respectively.

Figure 9: Results of hiding 256 pseudo-bits (each bit being represented as an 8 × 8 × 3 block) in
images. The top three rows are cover, container images, and their gap respectively; the bottom three
rows are secret bits, revealed secret bits and their gap, respectively.

C.3 Universal photographic steganography

Setups for the Photographic Steganography results. In the main manuscript, we considered two
setups for Photographic Steganography. Setup A is for a display-DSLR pair, while setup B is for
a display-cellphone pair. We tried with numerous images with different display-camera (display-
cellphone) pairs. We observe that the choice of display or camera/cellphone has trivial influence on
the revealing performance. It is somewhat expected since our approach is not trained on any hardware
setup as in [2], thus avoiding the issue of over-fitting to any specific hardware setup. In our setup, for
consistency, the image resolution is set to 128× 128 with the number of the hidden bit set to 256. It
is equivalent to [2] which hides 1024 bits in an image of resolution 256× 256. Additional qualitative
results for photographic steganography are shown in Figure 12.
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Figure 10: Qualitative results of revealing 256 pseudo-bits (each bit being represented as an 8× 8× 3
block) under different distortions for a combined model.
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Figure 11: Qualitative results of revealing images under different distortions for a combined model.
For the last row (NeurIPS logo), the 512x512 image resolution is used for better visualization.
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Figure 12: Additional photographic steganography results. The first three rows correspond to hiding
a binary message (barcode), while the last three rows demonstrate the image hiding.
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