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1 Problem setting and results

For the reader’s convenience, we repeat the problem setting and Theorems|[I] [2]and [3] whose proofs
are given in this Supplementary Material.

1.1 Generalized linear estimation of low sparsity signals at low sampling rates

Let n € N* and m,, := a,,n with (a,)nen+ a decreasing sequence of positive sampling rates. Let
Py be a probability distribution with finite second moment E x . p, [X?]. Let (X)), X P, ,, be the
components of a signal vector X* (this is also denoted X* ' P ,,), where

Py = pnPy+ (1 —pn)do. (D

The parameter p,, € (0, 1) controls the sparsity of the signal; the latter being made of k,, = p,n
nonzero components in expectation. We will be interested in low sparsity regimes where k,, = o(n).
Let k4 € N. We consider a measurable function ¢ : R x R*4 — R and a probability distribution P4
over R*4. The m,, data points Y = (Y},)"" i are generated as

Y, = (®X*),., A“) +VAZ,, 1<p<m,, 2)

1
(r
where (A, ):7"1 id Pa, (Z Jie1 & N(0, 1) is an additive white Gaussian noise (AWGN), A > 0 is
the noise variance, and ® is a m,, X n measurement (or data) matrix with independent entries having
zero mean and unit variance. Note that the noise (Z u) *_, can be considered as part of the model, or
as a “regularising noise” needed for the analysis but that can be set arbitrarily small. Typically, and
as n gets large, (2X").//E, = O(1). The estimation problem is to recover X* from the knowledge
of Y, ®, A, ¢, Py, and Py (the realization of the random stream (A )m” itself, if present in the
model, is unknown). It will be helpful to think of the measurements as the outputs of a channel:

Yy~ Pous (- 1< <my. 3)

‘\ﬁq)x* W)

The transition kernel P,,; admits a transition density with respect to Lebesgue’s measure given by:

out(ylx \/7/dPA e ﬁ(y_tp(-'li,a))Z . (4)

The random stream (AH)Z":”'1 represents any source of randomness in the model. For example,
the logistic regression P(Y,, = 1) = f((®X")u/yE,) with f(z) = (1 + e**)~! is modeled by
considering a teacher that draws i.i.d. uniform numbers A, ~ ¢/[0, 1], and then obtains the labels
throughY,, = Loa, <pexnu ey — Ya, s rexn. gy (e denotes the indicator function of an
event £). In the absence of such a randomness in the model, the activation ¢ : R — R is deterministic,
ka = 0 and the integral [ dP4(a) in (@) simply disappears.

1.2 Main result

The mutual information I(X*; Y|®) between the signal X* and the data Y given the matrix ® is
the main quantity of interest in our work. Before stating Theorem [T] on the value of this mutual
information, we first introduce two scalar denoising models that play a key role.

The first model is an additive Gaussian channel. Let X* ~ Fy ,, be a scalar random variable. We
observe Y(") := \/rX* 4+ Z where r > 0 plays the role of a signal-to-noise ratio (SNR) and the
noise Z ~ N(0, 1) is independent of X *. The mutual information Ip,  (r) := I(X*; Y (")) between

the signal of interest X* and Y'(") depends on p,, through the prior Py p, and it reads:

TLE s X2 * ra?
Ip, . (r) = meH’[] “Eh / APy ()" X THVTIE= 5 )

The second scalar channel is linked to the transition kernel P, defined by {@). Let V, W* be two
independent standard Gaussian random variables. In this scalar estimation problem we want to infer



W* from the knowledge of V and the observation Y (/) ~ P, (- Iv/aV + /p—qW*) where
p > 0and g € [0, p]. The conditional mutual information Ip,_, (g, p) = I(W*; Y (@P)|V) is:

11)2
e 2
dw ——P,,
V2T ¢ (

Both Ip,,, and Ip,, have nice monotonicity, Lipschitzianity and concavity properties that are
important for the proof of Theorem [T] (stated below).

Ip,

out

(¢,p) = Eln Poue (Y *P)|/pV) —Eln Y@ | gV +p—qu) . (6)

We use the mutual informations (5) and (6)) to define the (replica-symmetric) potential:

. 1 O, r(Ep [X2?] —
ins (0,750 pn) = T (507) + T4, B [X7]) - B

Our first result links the extrema of this potential to the mutual information of our original problem.

Theorem 1 (Mutual information of the GLM at sublinear sparsity and sampling rate). Suppose that
A > 0 and that the following hypotheses hold:

(HI) There exists S > 0 such that the support of Py is included in [—S, S].
(H2) @ is bounded, and its first and second partial derivatives with respect to its first argument
exist, are bounded and continuous. They are denoted 0., Oy .

(H3) (®ui) £ N(0,1).
Let p, = O(n=*) with A € [0,1/9) and v, = vpy|In py,| with y > 0. Then for all n € N*:
VC |Inn|7¢

I(X*: Y|P
M - inf sup irs(q, 75 n, pn)| < 1 & 3
2 4

Mp q€[0,Ep, [X2]] >0 ni

where C'is a polynomial in (S, H % ||Oo, H ?}"Af ||OO, H 8% ||Oo, A, 'y) with positive coefficients.

We prove Theorem|[T]in Section 2]

Theorem 2 (Specialization of Theorem|T]to discrete priors with finite support). Suppose that A > 0

and that Py p, = (1 — py)d0 + pn Py where Py is a discrete distribution with finite support
Supp(PO) g {7,UK7 —VUK—1y-.., —V1,V1,V2,... 71)K} 5

where 0 < v < vy < -+ < Vi < Vi1 = +oc. Further assume that the hypotheses in
Theoremhold. Let p, = ©O(n=*) with X € (0,1/9) and o, = ypy|In p,,| with y > 0. Then,

- I(XNY|P) : 2 oy o, PUX[ > vk)
i P = iy {1 (B0 B + HEE 0
where X ~ P,.

We prove Theorem|z| for the special case of a Bernoulli prior F ,, in Section@ The proof of this
special case contains all the main ideas needed to establish Theorem 2] while being technically simpler.
We give the proof for a general discrete prior with finite support in Appendix [F

Theorem 3 (Asymptotic MMSE). Suppose that A > 0 and that Py ,, := (1 — p,,)00 + pnPo where
Py is a discrete distribution with finite support

supp(FPo) € {—vK, —vK—1,...,—V1,0V1,V2,..., UK} ;

where 0 < v < vy < -+ < Vg < Ug41 = +00. Further assume that the hypotheses [[HZ)|
in Theorem |l hold. Let p,, = ©(n=) with A\ € (0,1/9) and o, = ypy|In p,| with v > 0. If the
minimization problem on the right-hand side of () has a unique solution k* € {1,..., K + 1} then
E|X* — E[X*|Y, ®]||?
lim = XY, @ =E[X?1{x|<v,.}] » where X ~ P, . (10)

n—+oo kn

We prove Theorem 3]in Section 4]



2 Proof of Theorem [I| with the adaptive interpolation method

Note that it is the same to observe (2) or their rescaled versions \/—g ( r({)X*) A+ Z,.

Therefore, up to a rescaling of ¢ by 1/vA, we will suppose that

= 1 all along the proof of
Theoreml 1| For a similar reason, we can suppose that Ex . p, [X?] = 1.

2.1 Interpolating estimation problem

8IPou':

We fix a sequence (s,,)nen+ € (0,1/2] and define B,, = [s,,, 25,]%. Let rpax == —2 52

a positive real number. For all € = (€1, €2) € B,,, we define the interpolation functions

q=1,p=1

t t
Ri(e):t€]0,1] = e —1—/ re(v)dv and Ra(-,€):t€0,1] — e +/ ge(v)dv
0 0

where g : [0,1] — [0,1] and r : [0,1] — [0, 2=
families of functions (qc)ecs, and (re)eep, are regularifVt € [0,1] : € — (Ri(t,€), Ra(t,€)) isa
C* diffeomorphism from B,, onto its image whose Jacobian determinant is greater than, or equal, to
one. This property will reveal important later in our proof. Let X* & Py ,,, ® := (®,;) S N(0,1),

V= (V) K N(0,1) and W* = (W:)ZZI 59 N(0,1). We define:

* * ]' * *
S = S (X W) = [ —— k (®X*), + V/Ra(t,€) Vi + \/t + 25, — Ro(t, ) Wi . (11)

Consider the following observations coming from two types of channels:

Yu(t’E) ~ out( |S(t6)) ) 1§/J,Smn,
Y = RtOX;+Zi, 1<i<n ;

7

Lnphax) are two continuous functions. We say that the

12)

where (Z;)"_, i N(0,1). The inference problem (at time t) is to recover both unknowns X*, W*
from the knowledge of V, @ and the observations Y (<) := (Y;ft’é)):f:”l,Y(t’f) = (V")) The
joint posterior density of (X*, W*) given (Y9, Y () & V) reads:
dP(x, w|Y(t’5) Y*9 V)
My

iHldPOn rg) e H (VR -T07) Hr

where s(t 9= Sl(f’e)(x, wy,) and Z; = ZtvE(Y(tve),Y(tve),é,V) is the normalization. The
mterpolcmng mutual information is:

ine(t) == mif((x* WH); (Y, Y )| @, V) . (14)

P Y(t €)|(t,€) 13
Ztg ( |S )7 ( )

The perturbation € only induces a small change in mutual information. In particular, at ¢ = 0:

Lemma 1. Suppose that|(H1)| [((H2)| |(H3)| hold, that A = Ep,[X?] = 1 and that there exist real
positive numbers My, M, ., such that Vn € N*: a,, < M, and prfa, < M. Forall e € B,.:

I(X*: Y|® .
in,e(o)_ ( T;L | ) S\/a\j?a

where C'is a polynomial in (S, [|¢||so, [|0:9|| . 10220l ocs Ma, M, o) with positive coefficients.

oo |

We prove Lemmaﬂ] in Appendix[B.2] By the chain rule for mutual information and the Lipschitzianity

of Ip, ,,Ip,, (see Lemmas[6|and|7|in Appendix[A], at ¢ = 1 we have for all € € B:
I(X*: Y0 |®) + (W YLI)|P, V)  Ip,, (Ri(1,
in,e(l): ( ) | )+ ( ) | ) ) _ PU,n( 1( E)) Out(RZ(]- E) 1+25n)
My Qnp
= OTnIPO’n (/0 re(t)dt> +1p,, (/0 q(t)dt, 1) + O(sn) , (15)

assuming there exists M,/ > 0 such that Vn € N* : pn/a, < M, /.. O(s,) is a quantity whose

absolute value is bounded by C's,, where C'is a polynomial in (S, [[¢]lsc; 02|+ 0z ®llscs My/a)
with positive coefficients.



2.2 Fundamental sum rule

We want to compare the original model of interest (model at t = 0) to the purely scalar one (¢t = 1).
To do so, we use ip (0) = in (1) — 01 iy, (t)dt where i}, (-) is the derivative of i, (-). Once

combined with Lemma([T|and (T3), it yields (note that O(s,,) = O(s//zx) since 0 < p,, < 1):

I(%:”'I’) — O(j;?) + ainjpw (/01 re(t)dt> +1Ip,,, (/01 qe(t)dt, 1>

1
— / iy, (t)dt . (16)
0

From now on let (x,w) € R x R™ be a pair of random vectors sampled from the joint posterior
distribution @) The angular brackets (—),, ; . denote an expectations w.r.t. the distribution (]ED,
ie., (9(x,W))n1e = [ g(x, w)dP(x, w|Y (9 Y9 & V) for every integrable function g. We
define the scalar overlap () == é >, X7 ;. The computation of i/n,e is found in Appendix

Proposition 1. Suppose that|(H1)||(H2)||(H3)|hold and that A = Ex . p,[X?] = 1. Further assume
that there exist real positive numbers My, M, o such thatVn € N*: o, < M, and pnfa, < M, /q-

Define u,(x) = In Pou (y|z) and uy(+) its derivative w.r.t. x. For all (t,€) € [0,1] x Bp:

(1) = 0(%1/5) + L ()1 - aul0)

1 1 - € € Pn
# 55 ((@ ) (5 X e (o 1) = 220 ) 07
p= n,t,e

ol

where |O(pn1\/ﬁ)’ < %, with C a polynomial in (S, ||¢|lsc, [|0z¢||

with positive coefficients, uniformly in (t, €).

amc(PHoo; M,, Mp/a)

oo |

The next key result states that the overlap concentrates on its expectation. This behavior is called
replica symmetric in statistical physics. Similar results have been obtained in the spin glass literature
[} 2] In this work we use a formulation taylored to Bayesian inference problems as developed in the
context of LDPC codes, random linear estimation [3]] and Nishimori symmetric spin glasses [4} 15} l6].

Proposition 2 (Overlap concentration). Suppose that|(H1)||(H2)| (H3)|hold, that A = Ep,[X?] =1

and that the family of functions (r¢)eeB,,, (¢e)cen, are regular. Further assume that there exist real
positive numbers My, Mo, m ) such that Vn € N*: o, < M, and % < Z—" < M,/ Let

] ~1
M, = (s%pi(ﬂ)vd - s%pi) > 0. We have for all t € [0,1]:

anmp/a

d 1
| % [ #s@-E@n?),,. < oM. s)
n 0

=)
Sn

where C' is a polynomial in (S, ||¢]|oc, ||8L<pH O22Pllo0s Mo, My /0, 0) with positive coeffi-

oo |
cients.

We prove Proposition [2]in Appendix [D] We can now prove the fundamental sum rule.

Proposition 3 (Fundamental sum rule). Suppose that ¥(t,¢) € [0,1] x By, : qe(t) = E(Q)n 1.
Under the assumptions of Proposition 2} we have:

1Y) _oi7;) + 0 22 )

Ty ifporn( lre(t)dt>+lpom lqe(t)dt,l — P 1r5(t)(1—qe(t))dt .
B, Sn \ Qn 0 0 20m Jo

The constant factors in (’)(\/Mn ) and O(Sv»/m) are \/C1 and \/Cs where Cy, Cy are polynomials
i (5,10l 1922 s 1@l ocs Mas My s ) with positive coefficients




Proof. LetE., == [, % fol dt. By Cauchy-Schwarz inequality:

de (! 1<, p
kil _ = E (€)Y, (te)y _ Fn
‘ /Bn 3% »/0 e <(Q e (t)) (mn pu=1 uyy.ﬁ) (SM )UY‘EM) (Su ) Qp e (t)> >n t,e

sl

de [ il 2
ac (t e) (t,€) Pn
S/Bn = th<< 3% S50 60 - £2 re<t>) >

sy

% [ a@-a)),,,

The first factor on the right-hand side of this inequality is bounded by a constant that depends
polynomially on l2]] oo Hamap Since V(t,€) € [0,1] X By, : qe(t) = E{(Q)p,1.e, the second term
is in O(M,,) (see Proposition |2)). Therefore, by Proposmon

2

E. i), (1) = O(v/M,) + O<W> +Eeu goret) (1= (1)) (19)

Note that 1/p,vn = O(v/M,,). Integrating (I6) over ¢ € B,, and making use of (T9) give the
result. O

2.3 Matching bounds

To prove Theorem |1} we will lower and upper bound /(X";Y|®)/mm,, by the same quantity, up to a
small error. To do so we will plug two different choices of interpolation functions Ry (-, €), Ra(+, €)
in the sum-rule of Proposition 3] In both cases, the interpolation functions will be the solutions of a
second-order ordinary differential equation (ODE). We now describe these ODEs.

Fixt € [0,1] and R = (Ry, R2) € [0, +00) x [0,t + 2s,]. Consider the observations:

R R
Vi P (1 S0) L 1< < 20)
VR URX;+Z , 1<i<n

where S = {0 (X W) = \[T=0k, (BX),, + VRa V,, + VI + 25, — R W The
joint posterior density of (X*, W*) given (Y (:52) YR & V) is:

dP(x,w|Y(t’Rz) Y©R) & V)

x HdPOn ri)e” 2(FI —Y(t Rl) H dw,, 7“’;3
i=1 \/7

The angular brackets (—),; r denotes the expectation w.r.t. this posterior. Let r € [0, ryax].

Fy" (t, R) = E(Q)n.r and F{" (1, R) = —282 %gmn| o0 We will consider the two

following second-order ODEs with initial value € € [s,,, 2s,,]?:
aTL n
yo= (Sir Eu0) 0 =c; @

o' (0) = (F" (t.y(0) B (6u(1)  y(0) = c. (22)
The next proposition sums up useful properties on the solutions of these two ODEs, i.e., our two
kinds of interpolation functions. The proof is given in Appendix [E}
Proposition 4. Suppose thatm @ hold and that A Ex~p,[X?] = 1. Forall e € B,
R 0,

there exists a unique global solution 1] — [0, +00)? to 22). This solution is continuously
differentiable and its derivative R’ (- satlsﬁes R'([0,1],€) C [0, @nTmax/p, ] x [0,1]. Besides, for
allt € [0,1], R(t,-) isa C* dzﬁ”eomorphzsm from B, onto its image whose Jacobian determinant is
greater than, or equal to, one. Finally, the same statement holds if we consider 1) instead.

2Remember that 7. takes its values in [0, ‘;—"rmax]. Besides, under [(H2)|, ulyu,e) is upper bounded by
" "

(YA 4 plloe) A s plloo = (VAL Zu| + 2 plloc) A [[02lloc (see the inequality @3) in Appendix[A).
The noise Z,, is averaged over thanks to the expectation.

3 Poy (VW52 S0R2) (x,w),))




Proposition 5 (Upper bound). Suppose that|(H1)||(H2)| [(H3)|hold, that A = Ep,[X?] = 1 and that
Vn € N*: a,, < M, % < Z—’; < M, for positive numbers My, M,;q, M,/ Then:

I(X*;Y|®) . . Sn,
YneN*: —~—— 112 inf sup irs(q,7; an, pn) + O/ My,) +O< ) . (23)
mpy r€[0,7max] ¢€[0,1] ( ) V Pn

Proof. FiIX 1 € Tmax. Forall € € B,,, (R1 (-, €), Ra(+, €)) is the unique solution to the ODE (see
Proposition EI) Let ¢c(t) := Ry(t, €) = E(Q)n,t,e. 7(t) = Ri(t,€) = %=~ By Proposition 4} the
families of functions (¢e)ces,, (re)ces, are regular. We can now apply Proposition 3] to get:

W:/BndgiRs</01qe(t)dt,r;ampn> +0(\/ﬁn)+0( i >

my n v/ Pn
. Sn
< sup zRS(q,r;an,pn) +O(\/Mn)+(9( ) . (24)
g€0,1] vV Pn
The inequality (24) holds for all r € [0, ryax| and the constant factors in the quantities O(v/M,,),
@ (Sn/ N ) are uniform in r. Hence the inequality (23) with the infimum over . O

Proposition 6 (Lower bound). Under the same hypotheses than Proposition[5] we have:

IX5Y|®) inf  sup iRs(q,r;an,pn)%<9(N/A4n)+c)<\zz> - (25)

My  r€[0,rmax] ¢€[0,1] n

Vn € N* :

Proof. For all € € B, (Ri(,€), Ra(+,€)) is the unique solution to the ODE 22)) (see Proposi-

. o, 91p, .
tion . We define g (1) == Rj(t,€) = E(Q)n,r.co re(t) = Rf(t,€) = =22 2| By

Proposition the families of functions (¢c)ces, , (7c)cen, are regular. Note that Ve € B,,:

n?’

i[porn (/Olre(t) dt) +1Ip,,, </01q5(t) dt, 1) _ P 1 re(t) (1 - qs(t)) dt

[e7% 200, Jo

1
> [ 0) + T (0:0:1) = 22001 (0)

n n

1
= /O { sup LIPM (rs(t)) +Ip,.(q1)— %re(t)(l - q)} dt

q€l0,1] ¥n n
! p
= / SUPgeo,1] IRS (q, a—ré(t); an,pn> dt (26)
0 n
> inf  sup irs(q 7, pn) - (27)

7€[0,rmax] ¢€[0,1]

The first inequality is an application of Jensen’s inequality to the concave functions Ip, ., Ip,, (-, 1)
(see Lemmas [6] and [7). The subsequent equality is because the global maximum of the concave
function h : ¢ € [0,1] = Ip, (q,1) — $£2r(t)(1 — q) is reached at q.(t) since h'(qc(t)) = 0.

The equality (26) follows from the definition (7) of igrs. Finally, the inequality (27) is because

re(t) € [O, j—"rmax] and we simply lowerbound the integrand in (26) by a quantity independent of

t € [0, 1]. We now apply Proposition 3|and make use of (27) to obtain the inequality (23). O

To prove Theorem[I} it remains to combine Propositions [5]and 6] with the identity

inf Sup IRs (q,r;an,pn) =inf sup iRs(q,r;an,pn) = inf supigrs (q,r;an,pn),
r€[0,7max] ¢€[0,1] r>0q€[0,1] q€[0,1] >0
(28)

and the choice p, = O(n™), a,, = Ypu|Inp,| and s,, = O(n=?) with A € [0,1/9), v > 0 and
B € (¥2,1/6 — A). Optimizing over 8 to maximize the convergence rate of

Sn 1 |lnn|1/6
OV M,) + O<\/[Tn) = O(max { B2 P A—p })

yields Theorem|[T} The identity (28) has been proved in [[7, Proposition 7 and Corollary 7 in SI].




3 Proof of Theorem [2|for a Bernoulli prior

In this section, we assume that Py ,, := (1 — p,,)d¢ + pn01 and we prove Theoremfor this specific
case. The proof contains all the main ideas needed to establish Theorem [2| while being technically
simpler. The interested reader can find the proof of Theorem 2] for a general discrete prior with finite
support in Appendix [F]

For py,, a, > 0 we denote the variational problem appearing in Theorem [I] by

I(pnaan) = inf sup iRS(‘LT;anapn) , (29)
q€[0,1] 7>0

where the potential igs is defined in (7). Let X* ~ Py, Z ~ N(0,1) be independent random
variables. We define for all » > 0:

Gy (r) = B[ In (1= py + ppe™ 877X H72) | (30)

Note that Ip, , (1) = I(X*;\/r X* + Z) = 6= — ¢, (r) s0

. rqg 1 an
I(pn,an)= inf Ip  (q,1 —_- - — — . 31
(pnson) = inf Ir,.(q )+§gg{ 5 Omﬁvhn<pnr>} €1)
The latter expression for I(p,,, av,) is easier to work with. We point out that ¢, , is twice differen-
tiable, nondecreasing, strictly convex and £*-Lipschitz on [0, +-00) (see Lemma@) while Ip, (-, 1)
is nonincreasing and concave on [0, 1] (see [7, Appendix B.2, Proposition 18]).

Our goal is now to compute the limit of I(p,,, ;) when «,, = vp,|lnp,| for a fix v > 0 and
prn — 0. Once we know this limit, we directly obtain Theorem 2] thanks to Theorem[I} We first show
that — for ¢ in a growing interval — the point at which the supremum over r is achieved is located in
an interval shrinking on r* = 2/.

Lemma 2. Let Py, = (1 — pp)do + pnd1 and o, = vpy|In py,| for a fix v > 0. Define g, : 1 €
(0,+00) = 24pfp  (%21) and Vp, € (0,e7") :

2(1 — |Inp,|~ 1 2(1 4 |Inp, |~ 1
%anM< ( val )> 7 %nF9M< ( val )>' (32)

,1)andlim, _,oa,, =0, lim, _ob,, = 1. Besides, foreveryq € (pn,1)

We have [a,,, by, ] C (pn
*(q) € (0,400) such that

there exists a unique

*

mlde 1, (i”r;i(q)) —ep Ly, (“"r) , (33)

2 (o 7% n r>0 2 (679 n
and
2(1 — |Inp,|~ 1 i} 2(1+ |[Inp, |~ %
Vq c [ap”’bp”] . M S Tn(q) S w , (34)
¥ y
2(1 + |In p,
Vg € by 1) () > 2 +'j’“' i (35)

Proof. Forevery g € (0,1) wedefine f,, o : 7 € [0, +00) = T — =9bp, , ($27) whose supremum
over r we want to compute. The derivative of f,, , with respect to 7 reads

1 .
Frar) =5 =V, (‘;‘nr) : (36)

The derivative ¢/, s continuously increasing and thus one-to-one from (0, 4-00) onto (p? /2, p, /2).
Therefore, if ¢ € (0, p,] then f; . < 0 and the supremum of f, , is achieved at 7 = 0. On the
contrary, if ¢ € (py, 1) then there exists a unique solution 7% (g) € (0,+0o0) to the critical point

equation f émq(r) = 0. As f,, 4 is concave (given that ¢p, , is convex), this solution r(q) is the
global maximum of f,, ;. We now transform the critical point equation:

2 Qo
fona(r) =0« p*%%," (pr> =qgp,(r)=q, 37



where g,, : 7+ 24 (%=r) is increasing and one-to-one from (0, +00) to (py, 1). For all
pn € (0,e71) : |Inp,|~3 € (0,1). By Lemmal 3| (directly following the proof) applied with

€= |lnpn|_%, we have:

3 3
2(1 — |Inp,|~7) exp (* WM) exp (7 W) N
= < n )
Pn < Qp, gpn( 5 ) < 5 + — . (39)
[1n pn|'/2
2(1+ |Inp,|~ 3 1—0.5exp<—T>
e :g’)”( : |3p | 4)) = (39)

3
1—|—eXp<_ [1n o] /4)

It directly follows from (38) that lim,, 0 a,, = 0 and from (39) that lim,, 0 b,, = 1. As g, is
increasing, if ¢ = g, (r}(q)) € [a,,,b,,] then
20 = [Inpnl7%) _ gy < 20 % [pnl %)
v Y

1
while if ¢ = g,, (15 (q)) € [bp, . 1) then r7;(q) > 20HRLL 20, -

Lemma 3. Let o, = vpn|Inp,| for a fix v > 0 and define g, : r — pld)})g n(zn r). For all
(pn, €) € (0,1)? we have:

€2|1nPn‘ €
2(1 - exp — 1¢ 1= exp(— £|1Inpy,
Y 2 1_p7z,
2
g (2(1+6)> o 1—0.5exp (— S|lnpy,l) an
U q 1+exp (- §|Inp,l)

Proof. The derivative of ¢, , reads ¢/, (1) = GE[(1 + %e—%—ﬁz)*l}. Therefore:

1

1+(1—pn)exp{|lnpn|(1—’YT/2— \11?;n|

9o (r) =E

€(0,1). (42)
7]

Hence for all € € (0, 1) we have:

i (2229)

By the dominated convergence theorem lim,, , 0 g,, (2(1+¢)/y) = 1 and limpnﬁo 9o, (20=9/5) = 0.

We first lower bound g,,,, (2(1+E /’y) Note that Vz > — £/ ‘21&‘: — 4/ ‘21(11;;) < —5. Hence:

g ( 1—|—e) /+°° dz e
" ml—i— (1—pn)exp{|Inp,|( —e— MZ)}

2
Foo dz e

—5/Daenl V21 1+ (1= pp)exp (— §|Inpyl)
€ |1n pn| € |In py |
r(-syE)1-r(-5/FE)
L+ (L= pa)exp (= §/np,l) = L+exp (— §5[lnp,|)

(43)

1
1+ (1 —pn)exp{|1npn|(:1:e— 2(1i6)Z)}]

|lnpn\

; (44)

22 . . . . . . . .
where F(z) = [ foo \‘/iéiﬂe’ Z is the cumulative distribution function of the standard normal distri-

_a2

5 2 forz > 0 yields

g (2(1+e)) - 1—05exp(— %|lnpn|)
"\ T l+exp(—§lmpal)

bution. Making use of the upper bound F'(—z) < £

(45)



Next we prove the upper bound on g,, , (2(176)/7). We denote the indicator function of an event £ by
1¢. We have:

9pn <2(16)> =E : 2(1—¢) (46)
v 1+(1—pn)exp{\lnpn\(e— “npan)}
1
4l o MeayEED
= H{zzs B T T+ (1= pa) exp (§]Inpn))
€ | 1n pp |
N e )
2\ 2(1—¢)) 1+ (1—pn)exp(5/Inpy,l)
cpf € [1mpal ) exp (= 5[mpnl)
= 2\/ 21— ¢) 1— pn

- 2 1—pn
The last inequality follows from the same upper bound on F'(—x) that we used to obtain @3). O

Lemmaessentially states that the global maximum of r — %L — Loyp (%"r) is located in a
tight interval around 2/y when ¢ € [a,,,b,,]. The next step is to use this knowledge to tightly bound
the maximum value sup,.», 5 — (%1/) Po.n (Z‘—"r) forall g € [a,,,b,,]. The following lemma gives

a bound on QL"L’(/JPOY,L (%r) for 0 < r < 2(1+€)/4,

Lemmad. Let Py ,, := (1—py )00+ pnd1 and o, = vpy|1n py| for afixy > 0. Forevery e € (0, 1)
and r € [0,2(1+€)/5] we have

1 Qp, € In2 1 2
0< —p,, (T) <-4 += : (48)
a, Pn v ylnpa| v\ 7l py|

Proof. The function ¢ p, ,, is nondecreasing on [0, +00) so Vr € [0, 2(1+€)/4] :

1 " 1 n 2(1 2(1 + In p,
0< ¢po,n(ar> < wpo,n<a : +E)) R UL o)
an Pn o Pn Ypu| I pr |

The upper bound on the right-hand side of (@9) reads (remember the definition @ of ¥p, )

Up,., (201 + €)|Inpy)) 1= py |E{ln (1 — po + ppe= (1) 1npn|+,/2(1+c)\1npn|z)]

Ypn| 0 pr| el pn
! E[In (1= p + ppell+9linenlev/20FON e 12)|
v/ 1n py|
_ 1_7P"E[ln (1 — pn + pne” FA el V2] IHP"IZ)}
'an| lnpn|
+ ﬁE[ln (1 — pn +eclmenlt Q(HG)“M”'Z)} - D
|1 p,,

To control the first term on the right-hand side of (30) we use that In(1 + x) < a:

oo ]E|:1n (1 — pn + pne” AT pnl+y/2(1+)] lnpn|Z):|
VPn| 0 pn|
]E|:e—(1+e)| In py, |[++4/2(1+€)| Inpy | Z _ 1]

vl 1n py|

67<1+e>|lnpn\E[E\/%He)nnpn\z} 1

= =0. (5D
V|1 py|

<

10



To control the second term on the right-hand side of (50), we use that:
Vz<0:In (1 — pn + €l pnl+4/2(1+€)| Inpy, z) <In(1+ e€|1nﬁn|) < 111(266‘ lnpn|) ;
Vz>0:ln (1 — pn + 65|lnpn\+\/2(1+6)\ In p,, z) < ln(2€e|lnpn\+\/2(1+e)|lnpn z) )

It directly follows that:

;E[ln (1_pn+ee|lnpn‘+\/2(1+e)|lnpn|Z):| < In2 +1 dt+e
V1 py| v Alnpa] v\ 7w Inpy|

The latter combined with (30) and (51)) ends the proof. O

We can now compute the limit of I(p,,, «,,) when p,, — 0 and av, = yp,|1n p,|.

Proposition 7. Let Py, = (1 — p,)do + pnd1 and o, = vypy|Inp,| for a fix v > 0. Then the

quantity I (py, ) = inf sup irs(q,7; an, pn) converges when p, — 07 and
q€[0,1] >0

1
lim I(py, o) = min {Ipm 0,1), } .
v

prn—07F

Proof. Let a,,, b,, the quantities defined in Lemma [2] By Lemmas [2] and [] (applied with
¢ = |Inp,|~7 for p, small enough), we have Vq € [ap,,bp,]:

(1—|Inp,|~%)g 1( 1 In 2 2 )

- - + +
v Y\ |Inp,|s  [Inp, |1 pp|

*

Ty 1 On 1+ |Inp,|~ 3
sgmv%m(m@>s("””.<ﬂ>
Qo Pn v

Therefore, Vq € [a,, ,b,,]:

1 2 In?2 2
Ip, (a.1)+ - = -+ +
v Y \|lnp,l|d | In p, | 7| In py,|
1
< supins(q,7;0m, pn) < Ip, (1) + L4 ——— .
>0 Y y|lnp,|2

It directly follows that:

1 2 In2 2 .
- = -+ + + inf  Ip (g,1)+
Y\ |lnp,|7  [Inpy 7| In pp| 4€[ap, by, gl

< inf sup Z.RS (qa T3 Qn, pn) < ., 1 + { inf IPout (q7 1) =+ q} . (53)
9€lap, bp, ] r>0 Y1 py, |3 a€la,,, by, ] v

[

Note that ¢ — Ip,,, (g, 1) + £ is concave on [0, 1] so

. q . aPn bpn
inf IPom Qvl + — =min {IPO\H: Ap,, » 1)+ ’IPout b n? 1)+ }
4€[ap, bo,] (@1 v (@, 1) v (be. 1) ¥
1
— s min {IPM (0,1), f} . (54)
pn—0 0

Combining the bounds (53) on infycpy, 3, 15UP,>0 iRS(q, 75 Qn,y pr) With the limit (54) yields:

1
lim inf  supi , T Qs Pry) = N {I e (0,1 ,f} . (55)
p"*}O qe[aﬂnvbﬂn] T‘Z% RS(q p ) r b ( ) ’7

11



Upper bound on the limit superior of /(p,,«,) The upper bound on the limit superior of
I(pn, an) = infgeo1) SUP,>0irs (¢, 7; n, pn) directly follows from the limit (53) and the upper

bound I(py,, an) < infycia, b, 15UP,>0iRS (¢ T Qs Pn):

imsup (. 20) < min { 1, (0.1 1 (56)
v

pn—07F

Matching lower bound on the limit inferior of I(p,,, «,) We first rewrite I(p,,, «, ) by splitting
the segment [0, 1] = [0,a,,] U [a,,,b,.] U [b,,, 1]:

I(pvu an) = min { inf Supr>0iRS (Q7 T Qn, pn) 5 inf supr>0iRS (q: T3 Qn, pn) 5
q€[0,a,,, - q€lap, bp, -

inf Supr>0iRS(Q7T;O‘n7pn>}' (57)
q€[bp,, 1] -

Forall g € [0, a,, ] we have:

. rq 1 «
SUPTZOZRS(Q» 750, pn) = Ip,,, (g, 1) +sup {2 — —p,., <n 7’> }
r>0 P

rq 1 a
> Ip,,(g,1) + lim {2 - afniﬁPo,n (;T)} =1Ip,,.(q1).

r—07+
As g Ip, ,(g,1) is decreasing it follows that:

inf  supirs(q,7;0m,pn) > inf  Ip (¢,1) =Ip, (ap,,1). (58)
q€[0,a,,] 7>0 q€[0,ap,

Forall g € [b,,,1) we have:

SuprZOiRS (q7 75 Qn, pn) = IPout( ) + sup {2 - 7#}130 n (p > }
n

r>0

¢+ |Inp,|"3) 1 ap 2(1+ |Inp,|~3)

>t —Yp |
Y Qp, Pn Y

b 1 a, 2(1+|1n 7,,7%
ZM_¢Po,n<n( | In py,| ))

Yoo Pn y

b 1 1 In?2 2
> P~ -+ + : (59)

v A \|lnpals  [mpa| | 7lInpy

The first inequality follows from the trivial lower bounds Ip_, (¢,1) > 0 and

1 n _ 214 |lnp,|"1
Suprq_wo’n(i >>_¢P0n(p ) where r;:<+|;1p|>,
= n n

The last inequality follows from Lemma@applied with e = |In pn|_%:

1 an 2(1+ |Inp,|~ 1 1 1 In?2 2
b (222 AIDY 11 w2 [ 3,
Qn Pn Y Y\ |lnp,|2 |1n py, | 7|1 py, |

Note that the final lower bound (59) does not depend on ¢ € [b,, , 1) so the same inequality holds for
the infimum of sup,.>¢irs (¢, 7; @n, pn) over q € [b,,, 1. Combining (57), (58) and (59) yields:

I(pn, ) > min {Ipout (ap,,1); inf  sup,s¢irs(q, 75, Pn) ;
q€lap, bp,] -

b, 1 1 In?2 2 }
on 2 -+ + :
v v \Ulnppls  [npnl 7| 1In p|

12




Hence we have (remember the limit (55) and that a,, — 0 and b,, — 1 when p,, vanishes):

1 1 1
liminf I(py, @) > min {IpOut (0,1) ; min {Ipout (0,1), f} ; } = min {Ipout (0,1), f} .
Y Y

pn—0F 0
(60)
We see thanks to (56) and (60) that the superior and inferior limits of I(p,,, ;) match each other
and lim, o+ I(pp,,) = min {Ipout(O,l),%}. O

Finally, we obtain Theorem [2| for the specific choice Py ,, = (1 — p,)do + pnd1 by combining
Theorem [I] and Proposition [7]together:

X5 Y|®) min{Ipout(O, 1); i} . 61)

lim
n—-+o00 Ty,

4 Asymptotic minimum mean-square error: proof of Theorem 3|

Let X = X(Y, ®) be an estimator of X* that is a function of the observations Y and the measurement
matrix ®. Then the mean-square error of this estimator is EIX"~X[*/k, € [0, Exp, X?| where
the normalization factor k,, := np,, is the expected sparsity of X*. It is well-known that the Bayes
estimator E[X*|Y, ®] achieves the minimum mean-square error (MMSE) among all estimators of

the form )A((Y, ®). We denote the mean-square error of the Bayes estimator by

_ EIX* - EX*Y, ]|
- - :

The MMSE is therefore a tight lower bound on the error that we achieve when estimating X* from
the observations Y and the known measurement matrix ®. For this reason a result on the MMSE is
easier to interprete than a result on the normalized mutual information I(X";Y[®)/m,,. In this section,
we prove Theorem 3] that is, a formula for the asymptotic MMSE when n diverges to infinity while
pn = O(n™*) with A € (0,1/9) and v, = yp,|In p,| with v > 0. The proof of this theorem is
given at the end of this section. The proof relies on the -MMSE relation [§]] that links the MMSE to
the derivative of the mutual information with respect to the signal-to-noise ratio of some well-chosen
observation channel. For this reason, we first have to determine the asymptotic mutual information
of a modified inference problem in which, in addition to the observations (2)), we have access to
the side information Y(7) = /an7/,, X* 4 Z with 7 > 0 and Z an additive white Gaussian noise.
Indeed, the parameter 7 is akin to a signal-to-noise ratio and the derivative of the mutual information
1(x* Y. YO|®)/y,  with respect to 7 yields half the MMSE [8]:

MMSE(X*[Y, ®) :

(62)

) (1(X*;Y,3?<T>|<I>)) _ MMSE(X*[Y, Y™, ®) MMSE(X*|Y, ®)

or My 2 0+ 2

4.1 Generalized linear estimation with side information

Let (X;), X P, , be the components of the signal vector X*. We now have access to the
observations:

n

v :@Xﬁz , 1<i<n;

YH ~ out(' ’%)a lgﬂémn; (63)

where 7 > 0. Remember that the transition kernel Py, is defined in (@) using the activation
function ¢ and the probability distribution P4. The side information induces only a small change
in the (replica-symmetric) potential whose extremization gives the asymptotic normalized mutual
information. More precisely, the potential now reads:

r(EX? —q)

5 ;o (64)

. 1 Qay,
ZRS(% T, T; Qn, pn) = ?IP0,7L (p(r + T)) +1p,,, (Q7 EXQ) -

n

where X ~ P,. We then have the following generalization of Theorem [I]

13



Theorem 4 (Mutual information of the GLM with side information at sublinear sparsity and sampling
rate). Suppose that A > 0 and that the following hypotheses hold:

(HI) There exists S > 0 such that the support of Py is included in [—S, S].
(H2) ¢ is bounded, and its first and second partial derivatives with respect to its first argument
exist, are bounded and continuous. They are denoted 0,p, Oy .

(H3) (@) 2 N(0,1).
Let p, = O(n=*) with A € [0,1/9) and cv,, = vpy|In py,| with > 0. Then for all n € N*:

I(X5Y,YO|® 0l
KLY YTNR) g sup irs(q, v, 75 O, pn) | < \ﬁt Al , (63)
Mn q€[0,Ep,[X2]] r>0 niz— 4%

8“2'9 Hoo, A, ’Y) with positive coefficients.

where C'is a polynomial in ( , oo ‘

Proof. The proof is similar to the proof of Theorem [I] except for a small change in the adaptive
interpolation method due to the side information. More precisely, at ¢ € [0, 1] we have access to the
observations

Y~ PS5Y) , 1< p<mn; »
ven = fer yRi(OX;+Zi, 1<i<n ; (©0

where X i Py ., Z; 14 N/(0,1) and

1—t &
=/ : > 0 X7+ Ra(t,€) Vi + /t+ 25, — Ralt, e) Wy
=1

with ®,,;, V,,, W* 4 N/(0,1). The proof then goes by looking to the interpolating mutual information
pis Vi, Wy, p g y g P g

I(X* W)y (Y9 ¥ o) @) /1, and follows exactly the same lines than the proof of Theorem In
particular, the interpolation functions (R, R») are chosen a posteriori as the solutions to the same
second-order ordinary differential equations than for Theorem [T} O

Let X* ~ Py, L Z ~ N(0,1). We define for all » > 0:

wpo*" (’I“) = E{ln/dPO,n(.T)e_grz—i-rX*zJ,-\/sz} .

Note that Ip, (1) = I(X*;\/r X* + Z) = L Yp, , (r) where X ~ Py. For p,,a,, >0
and 7 > 0, we denote the variational problem appearmg in Theoremmby
I(Pmanﬂ') = inf sup ZRS(Q77"77'§04n7Pn)
q€[0,EX2] r>0
TEX? rq
= inf Ip EX —- - — —
delOEx?) T (0. BX7) + 2 " 750 { 2 wp" " <pn r+ T))}
EX?2 — n
— inf I (EX?) + TEX D fra o Ly (2L e
q€[0,EX?] h 2 r>T7 2 (079 " Pn

where X ~ Py. Similarly to what is done in Appendix [, we can compute the limit of I(p;,, ap, T)
for a discrete distribution with finite support F.

Proposition 8. Let Py ,, :== (1 — py,)00 + pnPo where Py is a discrete distribution with finite support
supp(FPo) C {—vKk, —Uk_1,...,—V1,V1,V2,...,Vk} Where 0 < v1 < -+ < vg < Vg1 = +00.
Let ay, = 7ypp|Inpy| for a fix v > 0. For every 7 € [0,2/%), I(pn,an, 7) defined in (67)
converges when p,, — 07 and (in what follows X ~ Py):

lim I(pn,an,T)
Prn—0F

1<k<K+1

P(|X| > E[X21; 510
(| |7_ V) n TE[ ;\XK k}]} 68)

= min {JPM(E[X%{X,m}],E[X?])+

14



Proof. Fix r € [0,2/2). Define Ip,, (¢, EX?) = Ip, (¢,EX?) + “EX*=9From (67) we have

out

rq
I(pn;an,7) = inf  Ip (¢EX?) +sup{ = — ) 69

G ) ge0EX?] o @ ) 7‘>12 { 2 7/’P0 ! (Pn >} ©
Note that Ip, . (-, EX?2) is concave nonincreasing on [0, EX2] — exactly as I, (-, EX?2) —, and that
the variational problem (69) has a form similar to the quantity I(p,,, a;,) whose limit is given by
Proposition[T3]in Appendix [F} The only difference that we have to take into account in the analysis is
that the supremum is over € |7, +00) instead of r € [0, +00).

Remember the definition (T96) of a*. By Lemma for every q € (p,E[X]?,E[X?]) there exists
a unique 7 (q) € (0,400) such that

ra(@a an rg 1 an

— n =sup — — oo 70

- arona (S2ri@) = - Son (1) 0

and Vg € [a(plf),]EXz) cri(g) = 2(1*\1npn|7%)/w§< By assumption 7 < 2/yv% so, for p,, small

enough, Vg € [a$) EX?) : 7% (q) > 7. It follows that Vg € [a$X), EX2) : 7% (q) satisfies

r(9)q an rg 1 an

—_ = — — = - - — —r). 71

2 s q/jpo,n <pn T (q)) ?};E 2 O d)PO n <pn T) (71)

Thanks to the identity (71) the same analysis leading to Propositions [[4] and [T5] can be repeated,

replacing Ip,, (-, EX?) by Ip,,, (-, EX?) (this makes no difference as we only need for I, (- EX?)
to be concave nonincreasing), in order to obtain the limit:

rq
li inf I EX?
e 28 @B+ 5 = i (S2)

. P(|X| > vg)
— 1§I£I£Iré+l {Ipout (]E[X 1{|X\2vk}]a EX ) + 5 . (72)
Note that the limit (72)) is for the infimum over g € [ap" X) EX2], not the infimum over ¢ € [0, EX2].

This is because, for ¢ € (p,EX?, aE,n )), 7% (q) does not necessarily satisfy (7T). However, the limit

(72) directly implies the followmg upper bound on the limit superior:

P(|X| >
limsup I(pp, ap,7) < min {Ip (E[XQI{‘XD%}},EXQ) + (||_Uk)} . (73)
- Y

out
0+ 1<k<K+1

In order to lower bound the limit inferior, we have to lower bound the infimum over ¢ € [0, a(pi{)]

of Ip, (q,EX2) + SUp, >, {5 — a=¥r,.. (*7/pn) }. Because Ip,..(-,EX?) is nonincreasing and
q — Sup,>, {— — —1/11:0 . (a””/pn)} is nondecreasing (it is the supremum of nondecreasing
functions), we have:

- 1 "
inf ) Ipout(q,IEXQ) + sup {7“2q - —p, (ar>}
"\ p

g€lo, a;{; ] r>T (679 n
1 n
> Ipout( E,K),EXQ) + sup{—z/zpo . (ar> }
" r>T Qp ' Pn
1 n
> I, (0 EX?) = =, , (O‘T> : (74)
' Pn

The last inequality follows from ¥ p, , bemg nondecreasing (see Lemma@) We can use the computa-
tions in the proof of Lemma to write — 1/) Po.n (a" 7') more explicitly:

n B EX?2 1 lnhZ 7In pn |, vj; P, v,
1,/1130"(& 7‘>pn+7' 72 +]E|: 'YI pl 55 P p* p)]
Pn ¥ | In |

} N VA)

li [lnh (Z, 37| pnl, v5; pr, v, P, PT)
Rt [ In |
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where

K

1-— — 25 |lnp,

Bpn _ p “npp" |Eln (1 — D _|_an€ 21%‘ np |<p;r€\/’yv'lnpn|va +pi6\/’yrlnpn|vfz)>
" " i=1

andVz € R :
2 o2
~ “npn|(1,ﬂ,\/%z>
h(ZWTIlnpnl,vj;pn,v,pi,pﬂ =(1—pn)e s Vi
K 7’1)
3 e ol (T R wims) (. el (vwﬁzwzznl)) . (6)

We can show, exactly as it is done for A, in the proof of Lemma | that |B,, | < Y|mpn|. As
T < 2/y0% we have Vj € {1,...,K} : 1 —77%/2 > 0, and from (76) we then easily deduce that
vie{l,...,K},VzeR:

 Inh(z,y7Inpy|,vj; po, v, T, PT) yTU3
lim =1-
pn—0+ [1n py,| 2

(77)

By the dominated convergence theorem, making use of the pointwise limits (77), we have:

Z {hlh (Z.77| 0 pnl, vj; pn, v, PH, P )] +p_]E[ln7l(Z,VTIlnpnl,vj;pmv,p‘,w)
|1n py,| J | In py,|

K 2 2
VYTV yTEX
—>Zpg+pa ( 2 )Zl_ 2 (78
=

prn—0t

Combining the identity (73)), lim, _,o+ B,, = 0 and the limit yields:
1 n EX?2 1 1 EX?
lim —app, | 2r) =" - 2 (1= —0. (79)
pn=0 0 T\ 2 Yo 2

The lower bound (74) together with the limits (79) and lim,, o+ atf) =0 (see Lemma implies:

liminf inf  Ip. (¢, EX?) + sup {2(] - —d)po . (an ) } >1Ip,..(0,EX?).  (80)
p

pn—07F qE[O a(K)] r>T n

Finally, we combine the latter inequality with the limit (72)) to obtain

, ~ P(|X| > vi)
2 2
liminf £(pn, i, 7) 2 | _min {Ipm (E[X21 (x50, EX?) + ——= 6D

The upper bound on the limit superior matches the lower bound (8T]) on the limit inferior. Hence,

P(|X]| >
lim I(pn,0n,7) = min {IPout(]E[leﬂxka}],EX2)+(||vk)}

pn—0% 1<k<K+1 S
. > oy, TEX?1gx <oy | POX| > w) |
= 1§]I€T%1II§+1 {IPouc (E[X 1fx|>0 ), EX ) + 5 Ry - 7

where the last equality follows simply from the definition of 1, Powe - -

The next theorem is a direct corollary of Theorem @ and Proposition 8]

Theorem 5. Suppose that A > 0 and that Py ,, = (1 — py)do + pnPo where Py is a discrete
distribution with finite support supp(Py) C {—vk, —Vk_1,..., —U2, —V1,V1,V2, ..., VK —1,VK }
where 0 < v1 < Vg < -+ < Vg < Vg41 = +00. Further assume that the following hypotheses
hold:

(H2) @ is bounded, and its first and second partial derivatives with respect to its first argument
exist, are bounded and continuous. They are denoted 0., Oy p.
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(H3) (®ui) X N(0,1).
Let p, = O(n=*) with X € (0,1/9) and v, = ypy| In p,,| with y > 0. Then V1 € [0, 2/v%):

I(X5Y, YO |®

lim (XY, [®)

n—-+4oo My,

_ 5 oy, TEXPL{xi<oy] | POX] > we)
- 1<k<III}+1 {IPM( XL x1z00] BXT) + 2 o ¥ '

4.2 Proof of Theorem[3

For all n € N* and 7 € [0, +-00) we define i,,(7) := I(X*5Y.Y"|®)/, . the normalized conditional

mutual information between X* and the observations Y, Y(T) defined in — given ®. We place
ourselves in the regime of Theorem 3] that is, p, = ©(n~*) with A € [0,1/9) and cv, = vpy|In py|
with v > 0. By Theorem [5] I if the side-information is low enough, namely 7 < 2/yv%, then
lim,, s + o0 @ (7) = i(7) where

. : 2 oy, TEX?L{xi<oy] | P(IX] > o)
i(r) = IS%II;H{IPM(E[X L{ix (200 EX?) + s T, - (82)

We first establish a few properties of the function ¢,,. The posterior density of X* given the observa-
tions (Y, Y (7)) defined in (63) reads:

P(x[Y, YD) = ;ﬁdP (m.)e—%(?f“—\/%wi)Q h P (Y (@X)ﬂ>
’ Z(Y7?(T)) i1 0,nie et out 1% \/H )

(83)
where Z(Y,Y (") is a normalization factor. In what follows x denotes a n-dimensional random
vector distributed with respect to the posterior distribution (83). We will use the brackets (—),, - to
denote an expectation with respect to x. By definition of the mutual information we have:

. 1 Sir 1 L (g VX ) T (X
in(7) = —m—nEan(Y,Y( ))_|_mnIE[lnHe ;(yl VX IHLPout< \/H) >}
1 ~ 1 ("I’X*)l
=——ElhZ(Y, YD) - — +E|In Py ( V3 : 8
B2 e (1|7 ) Y

Derivation under the expectation sign, justified by the dominated convergence theorem, yields the

first derivative:
n 1
(7= o ey e )]
mni 1 PnT 2V pnt .

v n 1 n
[T ) 5 o = XD
i=1 pnT 2V pnT n,T

i (7)

I
¥ |-
3
Haghl
=
P
R
S
3

I
[\~
S|~
3
?
Nk
&=
X
[
>

. ]
2mn PnT

1ozn

o 2my, Pn p

_ EJIX* - EX*Y, YT, ]|

B 2k, ’
The second equality above follows from Nishimori identity. The fifth equality is obtained thanks to
a Gaussian integration by parts with respect to Z;. The final identity is the I-MMSE relation

(85)
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previously mentioned. Further differentiating with respect to 7 and integrating by parts with respect
to the Gaussian random variables Z; give

i (r) = —i Z;EK(@ — (w2 ] (86)

The identity shows that ,, is concave as its second derivative is nonpositive. By Griffiths’ lemma
it follows that whenever the pointwise limit (82) is differentiable at 7 € (0, 2/yv2) we have:

. ./ o
ngrfw i () =14(r) .

The final step is to determine '(7). Suppose that the minimization problem

. P(X|>v
min {IPout (]E[X21{|X‘2Uk}]’E[X2}) + (|fyk)}

1<k<K+1
has a unique solution £* € {1, ..., K+1}. Then, there exists € € [0, 2/yv% ) such that V7 € [0,¢) : k*
is the unique solution to the minimization problem

(87)

1<k<K+1

TE[X?1{x <0y }] N P(|X| > Uk)}
2 ~y '

min {Ipout (E[X21{|X\2vk}]v E[Xz]) +

Therefore, V7 € [0, €) :
TEX*1 X< 3] | P(X] > vpe)
2 + ol ’

i(7) = Ip, (E[X?1(x 50,1 E[X?]) +

E[X?1 -
i/(T) _ [ {|2X|< k }] )

We conclude that whenever the minimization problem (87) has a unique solution £* we have

E||X* — E[X*|Y, ®]||?
lim Zl XY RN i 91 (0) = 20/(0) = EX1(1x <0

n—-+o0o kn n—-+o0o

4.3 All-or-nothing phenomenon and its generalization

We now look at the asymptotic MMSE as a function of the number of measurements, i.e., as a
function of the parameter  that controls the number of measurements m,, =~y - np,|log p,|. Let
X ~ Py and assume that supp| X | = K. We place ourselves under the assumptions of Theorem
The functions k — Ip, . (E[X?1{x|>v,}], E[X?]) and k — P(|X| > v;) are nondecreasing and
increasing on {1,2,..., K + 1}, respectively. Hence, the minimization problem on the right-hand
side of (9) has a unique solution denoted k*(~y) for all but K or less values of v € (0, +00), and
Y1 <72 = k*(11) > k*(72) (assuming k* (1), k*(72) are well-defined). By Theorem 3] it implies
that the asymptotic MMSE as a function of v is nonincreasing and piecewise constant; its image
is included in {EX? E[X?1{x|<p 3]s - E[X?1{x|<0,}],0}. The asymptotic MMSE has at
most K discontinuities. As <y increases past a discontinuity, the asymptotic MMSE jumps from
E[le{\XKvk;ﬂ for some kf € {2,..., K + 1} down to a lower value IE[XQI{‘XKWE}] where
kye{l,...,k} —1}.

Therefore, when K = 1, the asymptotic MMSE has one discontinuity at vy, := 1/Ip, , (0,EX?)
where it jumps down from EX? to 0: this is the all-or-nothing phenomenon previously observed in
[9, 10} [L1]] for a linear activation function ¢(x) = x and a deterministic distribution Fy. Theorem

generalizes this all-or-nothing phenomenon to activation functions satisfying mild conditions and any
discrete distribution Py whose support is included in {—v, v} for some v > 0.

When K > 1, the phenomenology is more complex. The asymptotic MMSE exhibits intermerdiate
plateaus in between the plateaus “MMSE = EX 2” (no reconstruction at all) for low values of y and
“MMSE = 0” (perfect reconstruction) for large values of . For illustration purposes we now define
the following three discrete distributions with support size K > 1:

. Péﬁg is the uniform distribution on {/a, 2+/a, . .., K\/a} with a := 6/(k+1)(2K+1) so that
EX? =1 for X ~ P.
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. lﬁne)m is the distribution on {\/_ 2\/_ K\/_} with b = Zjil 1/kj? and
lmear (iv/b) = 1/Ki% so that EX? = 1 and E[X? 1{‘X|<k\[}] = k=1/k for X ~ Py,
i.e., the quantity E[X?1|y|<,,}] increases linearly with k.

o PP s the binomial distribution on {\/c, 2,/c, .. . , K\/c} with

binom

¢ = 1/(K-1)(K-2)p*+3(K—1)p+1

and PP (3. /¢) = (*“Hp (1 - p)X P so that EX? = 1

binom \? i—1

In Figure[T] we plot the asymptotic MMSE (using Theorem 3)) as a function of the noise variance A
(P p®) Pl(5) p5:0- 2)}

unif?

and the parameter y for three different activation functions and Py € inear’ Phinom

0545

0255

o091 §

o018 -

104

039

0884

0528

0106 -

Y

Figure 1: Minimum mean-square error in the asymptotic regime of Theorem[3|for A € [0,4] and v € (0, 10.5].
From left to right: the activation function is linear ¢(z) = x, the ReLU ¢(z) = max(0, z) and the sign function

() = sign(z). Top to bottom: the prior distribution Py of the nonzero elements of X* is P® PO and

R ) unif’ L linear @
5,0.2
Pbinom .
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A Properties of the mutual informations of the scalar channels

This appendix gives important properties on the mutual informations of the scalar channels defined in Section|[T]
We first recall the important Nishimori identity that we will use in this appendix and others as well.
Lemma 5 (Nishimori identity). Let (X,Y) € R™ X R"2 be a pair of jointly distributed random vectors. Let

k> 1. Let XV, ..., X® pe k independent samples drawn from the conditional distribution P(X ="]Y),
independently of every other random variables. The angular brackets (—) denote the expectation operator with
respect to P(X = -|Y), while E denotes the expectation with respect to (X,Y). Then, for every integrable
function g the two following quantities are equal.:

k

i=1

k—1
E(g(Y, X", .. xX*D X)) = ]E/g(Y7x“>,...7x(k*“,X) []dP?1y).

Proof. This is a simple consequence of Bayes” formula. It is equivalent to sample the pair (X, Y) according to
its joint distribution, or to first sample Y according to its marginal distribution and to then sample X conditionally
to Y from its conditional distribution P(X = -|Y). Hence the (k 4 1)-tuple (Y, X™ ..., X)) is equal in
law to (Y, XM ... X*=D X)) O

Lemma 6. Let X ~ Px be a real random variable with finite second moment. Let Z ~ N'(0, 1) be independent
of X. Define Ipy, (r) := I(X; Y ") the mutual information between X and Y := \/rX + Z, and

wPX (7') = ]Eh’]/dPX(m)e\/Fzy(7‘)7l

Then, Ip, (resp. 1 py ) is twice continuously differentiable, nondecreasing, Lipschitz with Lipschitz constant
E[X2]/2, and concave (resp. convex) on [07 +oo). Besides, if Px is not deterministic then Ipy (resp. Y py ) is
strictly concave (resp. strictly convex).

Proof. The properties of the mutual information Ip, are well-known and proved in [8, [12]. Note that

Vr > 0: Ipy (r) = "EIX?)/2 — 4pp, (r). The properties of 1p, follow directly from those of Ip, and the
latter identity. O

Lemma 7. Let A € (0,400). Let p : R x R¥4 — R be a bounded measurable function. Further assume that
the first and second partial derivatives of p with respect to its first argument, denoted O, and Oy, exist and
are bounded.

Let W*,V,Z ~ N(0,1) and A ~ Pa — Py is a probability distribution over R*4 — be independent random
variables. Define Ip,,, (q,p) = I(W*;Y @P|V) the conditional mutual information between W* and

V@0 = o(/p—gW* +/qV,A) + VA Z given V. Then:

* Vp € (0,400) the function q — Ip,,.(q,p) is continuously twice differentiable, concave and
nonincreasing on [0, pl;

e Forall p € (0,400), the ﬁmctlon q — Ip,..(q,p) is Lipschitz on [0, p] with Lipschitz constant
aa‘
il I where:

Ci(a,b) == (4a” +1)b*.

. For all q € [0,400), the function p — Ip, .. (q, p) is Lipschitz on [q, +00) with Lipschitz constant
Oo([[ & o 1222 M| o 1222 ) where:

Ca(a,b,c) := b*(128a* + 12a* + 27) + c(16a” + 41/2/x ) .

Proof. Let Pout(y|z) = [ d\I/DL(a) —2x (W=e(@2)° The posterior density of W* given (V, Y () is

27 A
1 dw _ w

= e vy (@:p) I v -
zo g Vo | e Ve—qwtvav), 88

P(w|V,Y@P) =

w? ~
where Z(q, p) f T P (Y@ | p—quw + \/q V') is the normalization factor. Then:

1P (‘M) =E[ln P (Y |\Vp— qW* + /qV)] —Eln Z(q, p)
=EInZ(p,p) —EIn Z(q, p) - (89)
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It is shown in [[7, Appendix B.2, Proposition 18] that, for all p € (0,400), ¢ — Eln Z(q, p) is continu-
ously twice differentiable, convex and nondecreasing on [0, pl, i.e., ¢ — Ip,,,(q, p) is continuously twice
differentiable, concave and nonincreasing on [0, p].

We prove the second point of the lemma by upper bounding the partial derivative of Ip_,, with respect to q. The
Lipschitzianity will then follow directly from the mean-value theorem. We denote an expectation with respect

to the posterior distribution (88) using the angular brackets (—)q . i.¢., (9(w))q,p := [ g(w)dP(w|V, Y (@),
Let uy () := In Pout(y|z). We know from [[7L Appendix B.2, Proposition 18] that Vp € (0, 4+00),Vq € [0, p]:

0 IPout
dq

_ 9ElZ

a,p dq

= —%]EKUI}?(q,m (Vo—quw+ \/?JV)>2 } : 90)

QP

QP

By Jensen’s inequality and Nishimory identity, it directly follows from (©0):

1
2

‘81})0[16 <

dq

B (i (Vo= qu+vaV)?) | = 3E[uban (Vo=aW +vaV)’] . o

q,p

Remember that 0, ¢, 0.4 ¢ denote the first and second partial derivatives of ¢ with respect to its first coordinate.
The infinity norms ||¢||eo and |0z ¢||o are finite by assumptions. Note that Vz € R:

[ e g oz, a) dP;(z)efﬁ(yfv(x,a))z

uy (@) = ; (92)
v J A 3 el
+ oo
uy@) < MNPl gy ©3)
Then [u% (4., (7)| < w |8z¢|| o0 This upper bound combined with (91) yields:
0 Ipy,, 4llell3 +A >
9L Pout. < Pl T2y 5 Sl12 94
’ e Ar 0= %4)

which implies the second point of the lemma thanks to the mean-value theorem.

To prove the third, and last, point of the lemma we will now upper bound the partial derivative of Ip, , with
respect to p. Note that

Bin2(q,p) = | [[dyers (PN [ o]
) \/7

2
Therefore:
OEInZ [ w* / (z) / dw =ty vl ]
[ :]E y—— d Uy (T 1 dw oy, —w \/a ) ;
ap ap _2@/ y(uy(x)e )’z:\/ﬁw*+ﬁv n \/ﬁe _

B |5t (V= G0+ Va V)Z,J

o W Lo (@) AWy (Vrmqutyvav)-22 |
7E_2\/ﬁ/dy (@™ ) yrgwes yav 12 VI i
J’_

%(q,ﬂ)(vp_qW*"_\/aV)}

E

_w
12Vp—¢q

1
E]E [(u%(q,p) (ZE) + u’f/(‘l»ﬂ) (SL')2)

in 2(a.7)]

e=Vpma Wy /qV

1 *
+ 38 wn (V=T + V)|

15[ (shi0m () + vhian () (n Z(a.) + 1)

e=Vp=qW*+qV
1 *
- i]E[U:?(q,p)(\/ﬂ—qW + \/W)?} : 95)
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The second equality follows from Nishimori identity and the third one from integrating by parts with respect to
W*. We now define Vp € [0, +00) : h(p) := Eln Z(p, p) = E[[ dy e"vV? V), (,/p V)]. We have:

W(p) = E {% /dy VY (uy (V) + 1), (VP V)}

= %]E -/dye“y(‘/ﬁv) (uy (/P V) +uy(v/pV)?) (uy (/P V) + 1)}

_ +%]E{/dye-f)’(f‘/)}

LT
= iE (ul)i/(p,p) (1’) + u/f/(p,p) (1‘)2)

Combining (89), (93) and (98) yields
olp,, 1
Tpt =;E {(u%mn) (%) + UG (.0 (33)2)

ap 2

Lot
oy 2P 0) + 1)} + 3B[U5 0 (VEV)] - (96)

20+ )
z=\/pV

- %E |:(u/§i/(qﬂp) (z) + u;?(q‘p) (‘r)z) (In Z(q, p) + 1)]

em AW TV
1 1 «
+ §E[u§~,(q,p)(\/ﬁ‘/)2] + §E{“§7<p.p>(\/P* qW” + \/5‘/)2} . O

The last two summands on the right-hand side of (97) are upper bounded by M 102]|% (see the proof
of the second point of the lemma) The first two summands on the right-hand s1de of (97) involve the function

(z,y) = uy (x) + ujy(z)*. We have:

f (y—p(z,8)? 05 p(z,a)? — Aamq:(a: a)°+A0:0 ¢(z,8) (y—¢(x,a)) dPa(a) ,— o= (y—p(z,2))?
V2w A

" / 2 _
uy (2) + uy (v)” = [ dPA(a)e o (y—w(z,a))2

(98)
Then, by a direct computation, we obtain:

“+oo
[ @) + ey

— [apagay [~ Lo o2 = D)onote.a) + Merploa)ly - o) S

A2 27 A
+oo (772 _ —
9> = 1)dop(z,a)® + VADup(z,a)y e~ T dy
:/ aF A(a)/ — A \/ﬁy
—0. 99)
Therefore:

z:\/ﬁW*Jr\/EV}

—5[([ e+ @ an)

(In Z(q, p) + 1)]

B[ (10 0) + 0 (27)

=0.
r=+/p—q W*+\/§V:|
This directly implies:

E (u'i z) 4+ ub x 2)
(Faan@ +dan@?)|

(mz@mHM)] . (100)

- K ( " 3 2)
|: uy(q,p) ($)+uy(q,p) (1’) o=/ W+ GV 2

We use the formula @8) for u), () + u,(z)* to get the upper bound:

) 2y _ (@llello + VAIZ])? + A)[|0:0]1% +A||3xwlloo(2\|<ﬁl\oo+\F|Z\)
|uy(q p)( )+u}7(q,p)(m) |§

A2
(101
Trivially, Pous (y|2z) < 1/+v/27A. This implies
~ In(2wrA
In Z(q,p ln/r Pout(Y(q‘p)\\/p—qw—&—\/(jV)S—%,
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while, by Jensen’s inequality, we have

dw _w? 1
InZ(q,p) =In | —e~ 2 dPa(a)——e
(@.0) =t [ e apa(a)—

s (VTP —(x,a))?

dw In(27A) (Y@ — o(x,a))?
\ﬁ 2 dPa( )(— 5 - A )
_In@27A)  2[lello +\F|Z|)
= 2 2A
Hence

Combining (T00), (I0T), (I02) yields the following upper bound of the second term on the right-hand side of

EE {(u;m,p) (&) + g (2)?) (In Z(g,p) + ”] '

<ol AL oo

where C(a, b, ¢) := b°(64a" + 6a> + 13.5) + ¢(8a® + 2\/2) This upper bound holds for all ¢ € [0, p]. In

particular, it holds for the first term on the right-hand side of (97) where ¢ = p. We now have an upper bound
for each summand on the right-hand side of (97) and we can combine them to get:

Oatp o e |I”
Sl G W b W e RS I
a.p VAL VA Al
We can conclude the proof of the third point of the lemma using this last upper bound and the mean-value
theorem. O

z=vp—qW*+,/qV
zzSD

Ogp 2
A

0 ]Pout
dp

oo

B Properties of the interpolating mutual information

We recall that uy (z) := In Pout (y|x), and that u;, (-) and u;, (-) are the first and second derivatives of uy(-). We
denote Pout (y|x) and P.(y|z) the first and second derivatives of © — Pyt (y|z). Finally, the scalar overlap

isQ = Z o X
B.1 Derivative of the interpolating mutual information
Proposltlonm(extended) Suppose that A > 0 and that all of [(HI)| [(H2)| and[(H3)| hold. Further assume that

Ex~p,[X?] = 1. The derivative of the interpolating mutual information @ wzth respect to t satisfies for all
(t,e) € [0,1] x By:

. _ 1 an In Z; . P _
Zn,e(t)—O( m)+o< gy 1120 )+2an“<t><1 0.()

1 1 = p Oy Pn
+5E <(Q —qc(1)) (mn Zl u’yu(t,e) (SY ))u;y,e) (s — are(t)>> K (104)
p= n,t,e

2
'(9( ! )’ < 5C and '(9( —V In 2, 6)‘ < S? D%Var In Z:.c ;
N2 /1epn Pn Mn Pn Mn

with (O and Oz denote the first and second partial derivatives of @ with respect to its first argument):

where

VAL VAl Va )
D:‘BW ! l‘&w@ ’
“valle 20 VA

24



In addition, if both sequences (un)n and (Prn/an)n are bounded, i.e., if there exist real positive numbers
Mo, M, such thatVn € N* : oy < Mo, Prfan < M, then for all (t,€) € [0,1] x By:

e®) = 02— ) 4 Lr (01 - acl0)

1 1 - / (t,e)y, / (t,e) Pn
+5E <(Q — (1) <m—n ; oo (S Dtyo (™) = g ) ) o (109)

n

where

‘O( 1 )‘< SQC+SQ\/D(61+Mp/a52+Ma53)
vV pn V1 pn '

Here 51, 52, Cs are the polynomials in (S7 H % H g 8\7{ Hoo) defined in PropositionH

oo 1572 oo |

Proof. We recall that Z;. is the normalization to the joint posterior density of (X*, W™) given
(Y(t’e),Y(t’E), ®, V). We define the average interpolating free entropy fn,(t) := ElnZt,e/m,,. Note that
i () = L WY () ¥ (9) @ V) /0, - satisfies:

. Eln Z; . 1 _lz)? . .

ine(t) = ———"+ —E[In(e” 2 Pour(Y"9|S"))]

Mn Mn

1 O altre
= ~fne(t) = 5— +E[In Pout (Y9SN

Given X*, S{" ~ N(0, V") where p(*) = % | X*||I> + t + 2sy,. Then:
E In Poue(Y{"91S{"7) = E[E[ln Poue (Y, |S{"9)|X"]] = E[R(p")] ,

where h : p € [0, +00) = Evonro1y [ uy(y/p V)e ™ VP V) dy. Allin all, we have:

1
in,e =E[h ® n,e 5 - 1
i c(t) = EIR()] = foelt) = 5 (106)
We directly obtain for the derivative of ir,¢(-):
* (12
ine(t) = —E {h’(pm) (”),i—” - 1)} ~ Fre(®) (107)

where R/, f}, . are the derivatives of h, f, c. In Lemmaof Appendix@ we compute b’ and show:

/ %) 83690 za P
Vp e |0,+ 2 |h <C:=C L == ,
P e ltoo I (FAR AR N

with C(a, b, c) := b*(64a” + 2a® + 12.5) + c(8a® + 24/ 2 ). The first term on the right-hand side of (T07)
thus satisfies:

*|2 * |2
‘]E{h'(p(t))(uxk I 1 <c,/Var “X ” ./nVar Ve (108)

We now turn to the computation of fn,e.

Derivative of the average interpolating free entropy Note that

1 . o
fn,g(t):—IE{ jyiy e Mt X Wy 5.8.V) 1n/dPo,n(x)Dwe*”w("’wwy*y*q’v")} (109)

2
lw il

where the expectation is over X*, ®, V, W*, Dw := dw\eﬁmn and the Hamiltonian H . is:

My

Hie(x,w;y,y, ®,V) ZlnPout (Y] s Z —VERi(te)m)? . (110)

We will need its derivative H} . with respect to ¢:

Mn as(t,e) ,

<t
5 uyu(s(f‘e))— _ e Zaz Ui —VRi(t,e)z;) . (111)

Hi(x,w:y,¥,®, V) = —
e Y,y ) )

n=1
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The derivative of f,,. can be obtained by differentiating (I09) under the expectation:

1 * * €) ~(te
Fre(t) = ——E[H, (X" W5 YO, Y09, @, V)In 2., ]

— LR w YO T 8, V)

Mn n,t,e
- f—E[HtE(X W5YE) Y0 & V)in 2, ]
Mn
- LE[HQE(X*,W*;Y“‘),?“‘),<1>,V)] . (112)

The last equality follows from the Nishimory identity
E (Mt (x,wi YOO, Y @ V) oo = E[H (X, W5 Y, Y09 8 V)]
Evaluating (TTT) at (x, w;y, ¥, ®, V) = (X*, W*; Y9 Y9 & V) yields:
Hy (X, WY ED) Y9 e V) = e Mu, (o (S — ZX Zi. (113)
o ’ ’ ’ T = ot YuooH R1 t €)
The expectation of (TT13) is zero:

(t,e€)
EH, (X", W5 Y") Y9 & V) ZIE‘, asgt ’Y@ o (S 6>)}

2n (t,€)
— _ ZE OSJ E[u;ﬁﬁt,e)(Sl(fye))‘x*’w*,v, @]:|

ot
p=1
Mn 'as(t,e) . .
== > B[ 255 [ () Pt 5600
p=1 =
Mn 'as(t,e) .
—- >5[ 255 [Pt s )

The last equality is because for all x:

(= (x,a))?
2

/ _ Yy— 80(557 a) e 24 —
/Pout(y|a:)dy = /dPA(a)ﬁch(x,a)/ A S dy=0.

The expectation of (TT3) being zero, the identity (TT2) reads:

Mn (t,€)
Fre(t) = iZJEPS“ w0 (S9) In 2, } L_re® Z]E [(X;ZimZ.]. (114)

Mn =i ot n2\/R1 t, 6

First, we compute the first kind of expectation on the right-hand side of (IT4). Vi € {1,...,mn}:

ot v
_1 (PX")u qe(t) Ve (1 —g:(0)Wy
=-E|( - + +

2 VEn(1—1)  /Ra(t,e) /t+2s, — Ralt,e)
An integration by parts w.r.t. the independent standard Gaussians (®,;);; yields:

(‘I:'X*)u / (t,e)
E| i’ (00 (S59) In 2,
[ T g o (5 ) In 2

(t:6)
IEPS“ e (SE° )1nzt}

) Uy (10 (S In 2, } . (115)

Z [ q:‘,uzX /dyd§ u;“ (S;(Lt,e))e—'Ht,e(X*7w*;y’§,,c1>,v) ln/dPO,n(x)Dwe_H“(x’w‘y’g"q)’v)]

Vil 1)

n . Xiu! o (SE9)
Xi 2 . . Y(t ,€) .
= ]E|:< & ) (u;’/y,g)(Sﬁt‘ )) +u;:t,5)(S£t’ ))2) ant,c k—<wiu;/_(t,e) (Sff' ))>n,t,6:|
i=1 n " *
X7 Pl (Y, <“>|s<“)> } (G, (gt
= - ~-InzZ; . +E<Qu (t,e) (S ug 00 (8507 )> ; (116)
[ k' Poue (V91509 Vi VAR e
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2 _ Pli(ylz)

where, in the last equality, we used the identity wy (z) 4 uy (z)* = 3 (ylz) - Another Gaussian integration by

parts, this time with respect to V,, ~ N(0, 1), gives:

qe (t) Vi
RQ (t, 6)

_g| OV [ () MK W iy T e ) ln/dPon(x)Dwe‘“t»E""W‘y’y"I”V>}

:\/Rz(t,G)

= E|ge(t) (uf 0.0 (S57) + 1, 00 (S9)?) In Zoe + ge(t)u ’Yy,e)<Sﬁf‘>><u;y,e>(sif‘>>>n,t,é]

o (58 m 21 |

r 1 (t,e)| alt,e)
=E qe( )Pou (Y(t |S(t ))
L Pouwt(Yu ©) [S.")
Finally, a Gaussian integration by part w.r.t. W,; ~ N(0,1) gives:

(1 —qe(1))W) / (t€) ] _ {
E co(SUNINZ | =E|(1 — qe(t
{ t+2sn—R2(t,e)uYé’)( w2, (1= a(t)

Plugging (T16), (TT7) and (TI8) back in (TT3), we obtain:

(t,€) 1 (t,€) | alt,e) 112
E{LS“ U (20) (S;(f’e))lnzt,e} = _11@{ °ut(Y‘zt €)|S‘(‘t E)) (”X ” —1) 1nzt,€]
ot [ 2 Pout (Y1985 kn
1
_ §]E<(Q — qg(t))u;ét,e)(sﬁt,e)) }/;(f ‘)( (t, e))>nt E (119)
It remains to compute the first kind of expectation on the right-hand side of (TT4), i.e.,

(VELG O (X] —2)+2;)> ]
2

1nzt,e] +E (g (0 .0 (SS 0N o (s50)) (117
© ©

n,t,e

Pou(Ye"]57)
Pou (V"84

1nzt,e] . (118)

E[X;Z:In 2] = E[X;*Z ln/dPo,n(x)Dw Poue (Y9 |(8:9)e~ i
= —E[X; (VRi(t, )(X] —z) + Zi), , ]
—V/Ra(t,e)E ((pn — Xi*xi)>n,t’6 . (120)

The second equality follows from a Gaussian integration by parts w.r.t. Zi ~ N (0,1). Plugging the two
simplified expectations (T19) and (I20) back in (I14) yields:

2 Lp[ S P I800) (X2 ) In 2
foclt) = =L ()1 — gu(8) — ,E[ Iz
2an 2 Z Pout(Y;Etﬁ)'S/,(Ltye)) kn M,

p=1

1 1 <X , (t,e)y, 7 (tye) Pn
215<(Qqe(t))<mn;un(m(sM ey .o (5 )707«5@) - (121)

Ty

The last step to end the proof of the proposition is to upper bound

mn 7/ (t,e) (t,e) * (12
AL = E{Z P““t(y"(t e)ls’(t 5>) (”i . 1) lnz’*} (122)
p=1 Pout (Y 18577) n Mn

which appears on the right-hand side of (I21).

Upper bouding the quantity (122) Remember that u)) (z)+u), (z)* = szzgig and Pou (y|z) = e"v*).
Therefore, V:
tee 11 +oe " ’ 2\ _uy(x)
[ Ptindy = [ @) + @ty =0,
—o0 —o0
where the second equality follows from the direct computation (©@9) in Lemma|Z|of Appendix [A] Consequently,
using the tower property of the conditionnal expectation, for all 1 € {1, .

S Poue (Vi 18107) (X2 [b.sd /s
2 b (== )%
Z Pou (Y, ‘ft € |5}(j f)) kn kn

u=1

out Y<t ‘ |S(t 6)) (t,e)
(t €)| alt,e) X" S
out |S )

2| )
:EKHX*HZ )m:/ Pyl 8L e))dy}

(123)
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Making use of (I23) and Cauchy-Schwarz inequality, we have:

. mp, “ Y(t ,€) S(t ,€) X*||2 In2Z; .
|Ag,)|:’E[Z e (V) )(nkn —1)(m“ ‘f”‘(“m

Pout (Y(t ,€) ‘S(t e))

p=1
nn (t€)) a(te) 2 291
SE{(Z OUt(Y(t e)|S(t e))) (”)]i H - 1) :| Var% . (124)
p=1 Pous (YF" |SAU' ) i mMn

Using again the tower property of the conditional expectation gives:
EKmZ b (Vi “)) (IIX*H2 ~ 1)]
Pow(V"15) )\ R

p=1
SICL=nE[6> é’ut(Yf‘)ISﬁt"))z
kn = Pous (ViS5

p=1

; H (125)

Note that conditionally on S the random variables (Pé'ut(Y;Et’E)ISLt’E))/Pout(y;E“)\s“ 6)))u are i.i.d. and

centered. Therefore:
Mn JE € 2
(t,€) = Z out Y(t )|S<t ) (t €)
Pout (t €) |S(t €

= Pou(Y, é’f ENSJ f>> =
—m EKPAMY“ 718" %) e e>]
= M (09| o(6e)
Pout (Y7 7715777)
+oo prr (t,€)y2
= mnE[/ Pout(|731(te))dy] . (126)
—oo Pout(y[S17)

We now use the formula (98) for u (z) + uj,(z)? = Pout(¥12)/ Py (y]x) (obtained in Lemma of Appendix@)
with Jensen’s equality to show that for all x:

1" 2 f((y—w(z,a))zamgo(z,a) ABTAP(:E a)24+ A0, 0(z,a)(y—¢(z, a)))2 dpA(a) _M
out(y‘x) m
Pout(ylz) /) — [ dPs(a) —y=eGan?
V2rA
f((y o(x,2)2 8, p(x,8)% — Aaw(m 8)2+ A0y p(z,a) (y—p(z, a)))2 dPs(a) M
_ m

Pout(y[z)
It follows that for all x:

/*“’ out(ylx)) dy :/dPA(a) /*‘” ((u2 —1)8x<p(:c,a)2+\/Z8mga(x,a)u>2 du_ 2

Pout (yll' A V 2
4 2
< 4‘ ?/Ig + 2‘ 8“2"
Let D := H S50 H H Oagp H2 . Combining this last upper bound with (126) and (123) yields:

My, (t,e)| alt,e) * |2 2 * (|2 4
EKZ CunV IS 5>)) <|I)]<§ I” _ 1) ] §41)mwaw(“)](C I > _ 4DonS (127)
u=1 Pout(Yy |Su ) n n P

Going back to (T24), we have (¢, €) € [0,1] x By:

AG)] < 282, | DOmyar B2t (128)
Pn Mn

Putting everything together: proofs of (I04) and (I05) Combining and (21 yields the follow-
ing formula for the derivative of i, . (remember the definition (I22) of Al ‘6)):

= 7wl (1)) 2 s -0

n 20,

1 1 - 9y _ Pn
+ i]E <(Q - qe(t)) <m7" ; u’Y‘Et’E) (Sﬁt ))uly‘gt’E) (38 )) — ?nré (t)) >n . . (129)

A2
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Combining the identity (T29) with the upper bounds (T08) and (128} yields (T04).

It remains to prove the identity @ that holds under the additional assumption that Vn : an < Mg, Pr/a, <
M, /o Combining (I28) with the upper bound (144) on the variance of Var(In Zt.c/m.,) (see Propos1t10n|§|of
Appendix[C) gives:

AS,E) SQ\/D(él +Mp/a62—|—Ma63)
< .
‘ 2 1~ Vnpn
The constants 51, 62, Cs are deﬁned in Proposition@while D has been defined earlier in the proof. Besides, as
2
pn < 1, we have W < fp and we can loosen the upper bound (T08): ‘IE [ (X1 ” ] ' < \%szn .
Then, the term A% /2 — E[R (p)(IX"1I%/k, — 1)] on the right-hand side of@) isin 0 (1/v/mpn) and this
proves the identity (103). 0O

B.2 Proof of Lemmalll

Proof. Att = 0 the functions r. and g. do not play any role in the observations @) since R1 (¢, €) = €1 and
Ra(t,€) = ¢2. While in the main text we restricted ¢ to be in B,, := [sy, 25,]7, we can define observations

(Y(0 <)y © 6)) using fort = 0 and € € [0, 2s,,]%. We then extend the interpolating mutual information at
t=0toalle € [0,2s,]":
inc(0) 1= — (X", W) (YO, Y09 @, V)
Mn

Note that the variation we want to control in this lemma satisfies:

. I(X*;Y|® . . IX*;Y|®
inc0) = TR < i 0) i o )] + [ oy 0) = TEYIE) (130)
Mn Mn
We will upper bound the two terms on the right-hand side of (]Eg[) separately.
1. By the IlMMSE relation (see [8]]), we have for all € € [0, 2s,]
Din,e(0) 1 . 21 o BIXDY _ pn
O - L oprxr — )02 < - P 131
’ Oer ’ 20in, [( 1= (#1)no, ) } - 2an 20in, (131)

To upper bound the absolute value of the partial derivative with respect to €2, we use that € € [0, 2s,,]?:

in (0 ‘ "
Oine®) _ _Lplur 0 (509) o (50, . ]

This identity is obtained in a similar fashion to the computation of the derivative of i, () in Appendix -
(see (IT7) and @) in particular). Under the hypothesis [[H2)] we obtain in the proof of Lemma|2|the upper
bound (93) on |uy ()| for all z € R. Making use of this upper bound yields Vz € R : }u o o(@)] <

2llelloo + 1Z1])]|02 ]| 0o - Therefore:

Dinc(0)] 1
Zrmed )«
‘ 862 ‘ -2

By the mean value theorem, and the upper bounds (T31)) and (I32), we have:

E[2ll¢lle +1Z1)?10:001%] < (@llell + Ddel% - (132)

(“llellz + DIzl ez

in,e(0) = in,e=(0.0)(0)|

IN

< (£ + (el + Dol )25,

< (Mpya +2(llll% + DIG= I ) sn (133)
2. It remains to upper bound the second term on the right-hand side of (I30). Define the following observations

where X* 1 Py ., @ := (®p5) B N(0,1), W := (W) B N(0,1) and 7 € [0, +00):

Y;")Npout(.’(q’\/)i) +\fW>+ZH,1§u§mn. (134)

The joint posterior density of (X*, W*) given (Y (", &) reads:

(%),
VEn

dP(x,w|Y" &) .= —dPOn H dw“ (Y“”

+\/ﬁwu> , (135)
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where Z, is the normalization factor. Define the average free entropy fn(n) := EInZp/m,. The mutual
information i, () := =1 ((X*, W"); Y™ |®) satisfies:

""(”):E{h(%”)} o)~ 5 (136)

Qn

where h i p € [0, +00) = Evonr0,1) [ uy(v/p V)e"vV?V)dy. The identity (I36) can be obtained exactly as
the identity (T06) in Appendix Under the assumptions of the lemma, all the hypotheses of domination are
reunited to make sure that 7 — i, (n) is continuous on [0, 2s,] and differentiable on (0, 2s,,). Therefore, by the
mean-value theorem, there exists n* € (0, 2sy,) such that:

I(X";Y|®)

in,e=(0,0)(0) — -

' = Jin(282) — i (0)] = [i% (") 255 (137)

Again, in a similar fashion to the computation of the derivative of i, (-) in Appendix we can show that
Vn € [0, 4+00):

) X* 2
i = (B )] - (139)
m X
o) =+ i b (V7| R + IV m 2, (139)
2 LS P (7| B+ ) e
In Lemma of Appendix@ we compute h’ and show:
’ 2 rx P
e wionzo=of| 7] [Z| )
peEl ) = [ (p)l VAl VAL
with C(a, b, ¢) := b*(64a* + 2a® + 12.5) + ¢(8a® + 24/ 2 ). The first term on the right-hand side of (T38)
thus satisfies:
(1X)?
E|W( 5= +n)||<C. (140)

The second term, i.e., f,(p) is similar to the quantity A defined in (122). We upper bound A in the last
part of the proof in Appendix m We can follow the same steps than for upper bounding A9 and obtain:

)l < \/m (1ah)
mn

In 277 25

— noanp

where C

is a polynomial in (5, [|¢][ec; |02¢]lco, [|0xz0llecs Ma, M, /o) with positive coefﬁ01ents. In fact this upper
bound holds for all ) € [0, 2sy,], i.e

Note that Z,=2s,, = Z¢=0,e=(0,0)- BY Proposition|§|in Appendixwe have Var

v € [0, 25,] :Var(lnzn) < ¢

Mp T NOnppPn

The proof of this uniform bound on Var (1" Z"I/mn) is the same as the one of Proposition@ only that it is simpler
because there is no second channel similar to Y *9). We now combine (T37), (T38), (T40). (T4} to finally

obtain:
) I(X";Y|® DC
in,e=(0,0)(0) — Q’ (C + )25n . (142)
Mn Pn
3. We now plug (T33) and (T42) back in (I30) and use that p,, € (0, 1] to end the proof of the lemma:
. I(X* Y|@) 2 2 ~ Sn
in,e(0) — —————2| < (M, /0 + 2(4]|¢lloe + D]|Oz¢lloe + 2C + V DC .
(0) = TR < (Mo + 2l + Dl Viné) e

C Concentration of the free entropy

In this appendix we show that the log-partition function per data point, or free entropy, of the interpolating model
studied in Section @ concentrates around its expectation.
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Proposition 9 (Free entropy concentration). Suppose that A > 0 and that all of [[HI)| [(H2)| and [[H3)) hold.
Further assume that Ex . p,[X?] = 1. We have for all (t,¢) € [0,1] x By:

Var(mz“)g L (614 L2t anGy) | (143)

My, NOn P

where (0@ and 0. denote the first and second partial derivatives of p with respect to its first argument):

2 2 2
~ P 2 ¥ Ovp
Ci:=15+4|2=| +8%(4|=| +1
' Hﬂw (“ﬂm )‘ﬁw
+ (el V3 (gl ros -] 52] )
VAL m VAL VAL’
Cy =15+ 125%;
2
: o I A W e IR e W A IR P W
Cs :=85%(3 + || = +12 2 /2= )
’ (‘x/ﬁoo VAl VA |l VAl VAT T VAlLIIVATL

In addition, if both sequences (ozn)yL and (/’"/an)n are bounded, i.e., if there exist real positive numbers
Mo, M, o such thatVn € N* : oy < Mo, Prfan < M, then for all (t,€) € [0,1] x By:

Var(ln Z’f‘) < ¢ (144)
M, nam Pn

where C 1= 51 + Mp/aéz + Maag.

To lighten notations, we define k1 := \/Ra(t, €), k2 := \/t + 285, — Ra(t,e). Let X* 14 Py . & := (D) 1d

N(0,1), V= (V,)m, B A(0,1) and W* := (W), 54 A(0,1). Remember that

. T—t o .
s = [T v as

and that, in the interpolation problem, we observe:

{Yu(t,e) ~ tp(Sff‘e):A#) +VAZ,, 1< < my; (146)

V9 = /Rilt,e) X{ + Zi , 1<i<n
where (Z,,);", (Z)P-1 1 A(0,1) and (Au)jmy X Pa. Z. is the normalization to the joint posterior
density of (X*, W*) given (Y9, Y*9) & V), ie.,

_ H\/Rl(tve)’;—‘?(t’e)”2

Zie = /dPo,n(x)Dwe Pout(Yﬁft‘e)|sff‘€)) ,

llwll?

where Dw := % and s{/) =, [A=E (®x), + k1 Vi + k2 wy,. We define:

e(S5 AL — (s au) .

(te) .
rie .= "

€ € _1p(te) . .
By definition, Pout(YVi"9|s{"”) = [ dPa(ay) \/217?@ 50" 4+20°  Therefore, the interpolating free
entropy satisfies:

mzZ,. 1 1 s 1 s, 2,
S = S n(2nA) — > 2 - > 2D e 147
M, 2 n(2r4) 2y, = B 2my, — o M, (147)
where
Ziei= /dPo,n(x)DdeA(aM)e_ﬁ""(x’w’a) ; (148)
77 1 o= t,e)\2 t,e
Ht,g(X,W,a) = §H§71(FIS )) +2ZHFl(i )

+ % ST Ri(h(X] — 20)? + 22/ Ri(h (X — ). (149)
=1
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From (I47), it follows directly that:

ant,E 1 < 2 1 = —2 lné\t,e
Var(T) < SVar(ﬂ uZ::l Zu) + 3Var(2mn ZX;ZZ) + 3Var(T)

n n

3 + 3 +3Var<%) (150)

2a,n 20210 n

In order to prove Proposition@ it remains to show that In ZAt,E / m,, concentrates. We recall here the classical
variance bounds that we will use. We refer to [13| Chapter 3] for detailed proofs of these statements.

Proposition 10 (Gaussian Poincaré inequality). Let U = (Ux,...,UnN) be a vector of N independent standard
normal random variables. Let g : RN — R be a C* function. Then
Var(g(U)) < E[|[Vg(U)[*]. (151)
Proposition 11 (Bounded difference). LetU{ C R. Let g : UY — R a function that satisfies the bounded
difference property, i.e., there exists some constants ci, . ..,cn > 0 such that
sup lg(ut, s uiy. o yun) — gur, ..y uh, .. un)| < e forall 1<i<N.
(ur,.un)eulN
u;EZ/l
Let U = (Un,...,Un) be avector of N independent random variables that take values in U. Then
Var(g Z . (152)

Proposition 12 (Efron-Stein inequality). LetU C R, and a function g : UYN 5 R Let U = (Uy,...,Un) be
a vector of N independent random variables with law Py that take values in U. Let UD q vector which differs
from U only by its i-th component, which is replaced by U, drawn from Py independently of U. Then

Var(g ZEUEU, U) - g(UY))*]. (153)

We first show the concentration w.r.t. all Gaussian variables ®, V, Z, Z’, W*, then the concentration w.r.t. A
and finally the one w.r.t. X*. The order in which we prove the concentrations does matter.

We will denote 0, ¢ and 0,4 ¢ the first and second partial derivatives of (¢ with respect to its first argument. Note
that [R1| < 25, + S 7max and, by the inequality (94) in Lemmaof Appendix@ Tmax 1= 2| =5 aIPm" |1 A<
204 (]| WH‘X” H ||oo) with C1(a, b) := (4a® + 1)b*. Then, the quantity

S O CAR W)

upper bounds | R1|. Besides, | R2| is upper bounded by 2.
Concentration with respect to the Gaussian random variables

Lemma 8. Let E,, 5 be the expectation w.r.t. (Z, 2) only. Under the assumptions of Theorem we have for all
(t,e) € [0,1] x By:

E[(lni - EpamZ,) ] s O (154)

M, nonpn  na2 ’

where Co := 4“%“; + 8526’1(”%”%, ’ 9y H and Cs =452

Proof. In this proof we see g := In 2,5,6 /My as a function of Z and Z, and we work conditionally on all
other random variables. We have ||Vg||®> = || Vzg||® + ||V g|/>. Each partial derivative has the form

Oug = my (OuHy.c)r.c. We find:

My, 2
v 2 _ F(t e) . < 4m 1 a ,
IV g|| = mn2R1 t,€) Z (x4) 6) < 4Kn5'2m;2n
i=1
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So || Vgl|* < 4m,* H \ﬁH K" ) Applying Proposmonlylelds

. ~[(h12L6__Ezzlnzﬁe>1 < e [P, KaS?
Z,Z Mn M, ~ nan VAL Qn

4 2 982, 267 Oz

= . 5A+——Cl =£
nomn \/Z 0o Qn \/7 \/Z )

4 2 ) ¢ P 45?
< — —_— — .
: nanpn( 28 Cl(HﬂHoo’ ‘«Z o)) " naz

The last inequality follows from p,, < 1 and 2s,, < 1. Taking the expectation on both sides of this last inequality
gives the lemma. O

Lemma 9. Let E¢ denotes the expectation w.r.t. (Z, Z,V,W* ®) only. Under the assumptions of Theorem
we have for all (t,€) € [0,1] X By:

EKEZ,Zant,E _Eg lni,e)? - _Ci

Mn Mn T NOpPn

(155)
where Cy := (4”%”00 + 2\/%)2 (4+ SQ)H%HZQ

Proof. In this proof we see g = E, 5 In fﬁ'\t,e /my as a function of V, W*, ® and we work conditionally on
A, X*. Once again each partial derivative has the form ,,g = m, * (8uﬁt,5)t,€. We first compute the partial

derivatives of g w.r.t. {V,,} '™
<t (] 5] +12) 22 “”“"H |

; ary
Ez,i<(FgY)+Zu) = >
t,e
=m,
(&l =2 vl

oV,
|. To compute the derivative w.r.t. ®,,;, we first remark that:

99
av,,

—1
=m,

)

The same inequality holds for | 635*
A

orie 1—¢ T—t, . .
0%, \ Ak, {X O ( (X )“+klv“+k2w“’A“)
1-1
— 81@(1/T(1§x)u + kiV, + kzwu,a#)} .

Therefore:
0g -1 (t,€) arﬁf’ﬂ 1 %) Oz
= E, 5( (T} Z < E, || 2| == Z,]) 28| ==
| =t a0 + 20T | < U (2] ||+ 1) 2|22

U RO -

Putting together these inequalities on the partial derivatives of g, we find:
“Vﬂ2:§ih%% +§:bww2+§j§:h%?
p=1 u=11i=1
< e (AL VL + o Gl 2
<o (] 22 w21

In the last inequality we used that p, < 1. To end the proof of the lemma it remains to apply Proposition[T0]as
we did in Lemmal[8]

2

O
A

oo

¢S]

Concentration with respect to the random stream We now apply the variance bound of Proposition[T]]
to show that E¢ In Z; . /m., concentrates w.r.t. A.
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Lemma 10. Let Ea denotes the expectation w.r.t. A only. Under the assumptions of Theoremm we have for all
(t,e) € [0,1] x Bp:

z 5 \2
E{(Eglnzt,e 71EG,A1nzt,E) } _ G (156)
M My Noin
2 2 %) 2
where Cs = (2 sl +v/2) 11515
Proof. We see g = Eq In Z;../mn as a function of A only. Let v € {1,...,m,}. We want to estimate the

difference g(A) — g(A™) corresponding to two configurations A and A(") such that A(V> A, forp #v
and AY”) ~ P, independently of everything else. We will denote Hgf') and F<t <) the quantities H;.. and
I‘ff’e) when A is replaced by A®). By Jensen’s inequality, we have:
OBEP NG ) 1 OB
mi]EG<H Ht15>t,e < g(A) - g(A ) < mi]EG<Ht,s - Ht@)’fvﬁ (157)

n
where the angular brackets (—)¢. and (—)E"() denote expectation with respect to the distributions o<

— 7 (V)
Py, (x)DwdPa(a,) e 05" and oc dPo,n(x)DwdPa(a,) e "te %) respectively. From the
definition (T49) of H:,e,

H) — Hee = ((rf}f’(”))Q — () 427, (0190 — FS@)) :

N | —

Note that:

2
92 _ (pthoy? Loz (pta®) _p(te ’< gl #
(P90 = (r9) 422, ( )| <8|%

We thus conclude that g satisfies the bounded difference property:
‘ . H . (158)

W& flsesmal o) — oA < (3] ]+ \[) Vs

To end the proof of Lemma[T0] we just need to apply Proposition[TT] O

Concentration with respect to the signal Let E._x~ = Ea, ¢ denote the expectation w.r.t. all quenched
variables except X*. It remains to bound the variance of E.x~ In Z; . /m,, (which only depends on X*).

Lemma 11. Under the assumptions ofTheorem we have for all (t,¢€) € [0, 1] X By:
E{(E[lnz,ex*} - Elnz?t,eﬂ - Co  Crpn

M M, ~ npn no

where C7 := 852 and

Cs —ss(H

Proof. g = Elln Z¢,¢|X*)/rm,, is a function of X*. For j € {1,...,n}, we have:

99 _ 1g OH,q .
BXJ’.‘_ M 6X* .

T Tm EZE %&w( SE AL (CE N e + Z) X*]

2

e
™

Oz
VA

4

VA

2 \2
oo

vl

2
o]

P I

Al

']

x*}

p=1
+ B[R - o)+ VRGOZ), , [X]
=\ 55 ZE @i Oup (S, AL e X*]
R t7 * *
+ %E[(Xj — (@i )nte)| X (159)
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To get the last equality we use E[®,;0:0(S"VAL)Z,|X* | =E[®,;0:0(SA,)|X*|E[Z,]=0 and
E[\/Ri(t, € ZJ |X*] = 0. An integration by parts with respect to ®,,; yields:

E[@,,000(S, AT i

1—¢
=,/ —FE
ken A
+

X*]
xSDQ + axac@)(s;(f’e): Au) ’X*]

[X. @

\/2:2: E[X; 000 p(SL, A (o (5(, )t
-zl
Vel

E[0: (S5, A (s, a,)

X*]

SLt76)7 Au)<xj81@(3£f’e)a au))n,t.e

X*]

(X5 020(S, Ay) = 250.0(s( a0)) (T + Z,))

*
n,t,e X ]

1-t¢

A Blose(S ), A e(sil ) )

<(X;aztp(5£f’5>7 Ay) —x; 81‘»0( & 6) )) (FS’E) + Zu)>

<./ %56 where:

X*]

n,t,e

It directly follows that: }E[@Hjaxgp(s,&t’f), A )(EN, |X*]

% : 2| ¢ daip ||
o 2|22l Il 2kl bl
(I F R i IR ozl 1AL
Making use of this upper bound, we obtain forall j € {1,... }:
dg Cs 25K, Cs 28 Dup
< = — + — | 2sn 9dn —_—
e i =R

1 ~
erse((gl o)) 2

Forafixedj € {1,...,n}, let X ) be a vector such that Xm X/ fori # jand X(J) ~ Py, independently
of everything else. By the mean-value theorem and thanks to (T60), we have:

Ex-Ey ) [(g(X*) — g(X*9))?]
(& el 1)) 2o

2
L (¢ @ Oz 1652p,

We used E[ (X} X(”) ] = 20nEx~po[X?] — 202Ex~py[X]* < 2pnEx~p,[X?] = 2py, and Jensen’s
inequality (a+ b) < 2a® +2b? to get the last inequality. To end the proof it now suffices to apply Proposition
O

IN

IN

Proof of Proposition[9} Combining Lemmas|[8] 9] [10]and [[T]yields:

Var lné\t,e < Cy+ Cy + Cs3+ Crpn " Cs " Cs (161)
M, = nanpn na2 no,  Mpn
Plugging (I6T) back in (T30) gives:
InZ; Cy+Cy C3+C7pn+1.5 Cs+1.5 Ce
Ve : < ~6
ar( Mnp ) ~ nanpn + na + nay + npn
<02+C4+C5+1.5+03+C7+1.5+&
= NCn P na? npn
1
- (Co+ Cot Cs 415+ 22(C+Cr415) +anCs) . (162)
Nan Pn n

The second inequality follows from p,, < 1. It ends the proof of Proposition[9}
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D Concentration of the overlap

In this appendix we prove Proposition Define the average free entropy fr,c(t) := nﬁE In Z, .. In this section
we think of it as a function of R1 = R1(t,€) and R = Ra(t, €), i.e., (R1, R2) — fn,(t). Similarly, we also
view the free entropy for a realization of the quenched variables as a function

(Ri, Rs) > Fo(t) = mi 2. (Y, Y., ®,V) .

In this appendix, to lighten the notations, we drop the indices of the angular brackets (—),, e and simply write
(—). We denote with - the scalar product between two vectors. We define:

1 (|l . x-i)
L=— (1L _x.xX*— .
kn< 2 0ER:

The fluctuations of the overlap ) := ﬁX* - x and those of £ are related through the inequality:

%E<(Q —E(Q))*) <E((£ —E(L))?) . (163)

The proof of (I63) is based on integrations by parts with respect to Zanda repeated use of the Nishimori identity
(see Lemma|3)). Proposition2]is then a direct consequence of the following:

Proposition 13 (Concentration of £ on E(L)). Suppose that A > 0, that all of (H1)| [((H2)| |(H3) hold, that
Ex~p, [X2] = 1 and that the family of functions (r<)eceB,., (¢c)eeB,, are regular. Further assume that there
exist real positive numbers Mo, M, o, m,) o such that Vn € N*:

ma n
an <My and 22 <Py,
n «

n

Let (85,)nen+ be a sequence of real numbers in (0, 1/2]. Define By, := [sn,25,]. We have Vt € [0, 1]:

/ deB{(L = B(L)n,1e)*),, , . < .
n p%(#) —Ph

P/

, (164)

ol

where C' is a polynomial in (S, || %Hw, || 8% ||007 || 8\"”/23 Hoo7 Mo, My, mp/a) with positive coefficients.

Because E((£ — E(L))*) = E((£ — (£))*) + E[((£) — E(L))?], Propositionfollows directly from the
next two lemmas.
Lemma 12 (Concentration of £ on (L)). Under the assumptions of Proposition vt € [0,1]:
1

deE{(L — (LYn,t,c) < —.
[, B 0, <
The second lemma states that £ concentrates w.r.t. the realizations of quenched disorder variables. It is a
consequence of the concentration of the free entropy (see Proposition[J]in Appendix [C).
Lemma 13 (Concentration of (L) on E(L)). Under the assumptions of Proposition[2} Vt € [0,1]:

[ deBI(E) e~ BLh0e)] < ¢« (165)
n nmn 3
p%(ian”mp/a) —p3

azLPH Hamzlﬂ
oo’

where C'is a polynomial in (S, H %Hm, ‘ VZS VN Hoo, My, M, o, mp/a) with positive coefficients.

We now turn to the proof of Lemmas[12]and[I3] The main ingredient will be a set of formulas for the first two
partial derivatives of the free entropy w.r.t. R1 = R (¢, €). For any given realisation of the quenched disorder:

dFPnc(t) _ pn, . 1 a2, X Z
S a0 = g (X ) (166)
1 d2Fn,e(t) _ Pn 2 2 2 1 *
o are = (Br) e - ) )+ gl (X = (). (167)
Averaging (T66) yields:
dfn,c(t) _ _pn 1\ _ e (ElI°
0 -2 w0+ ) - £ (A )

To obtain the second equality we simplified E(L) by using an integration by parts w.r.t. the standard Gaussian
random vector Z and E(x - X*) = E||(x)||*> (by Nishimori identity, see Lemma . Averaging (T67) and
integrating by parts w.r.t. the standard Gaussian random vector Z gives:

mi%}%(t) = (82) UL — (0%~ g ELONID — 601 (169)

36



Proof of Lemma[12] From (T69) we have:
2
B((c—(0)") = (22) " L hell) 1 (30 B — 1601
an df(t) 1
pin  dR? dernpn
where we used E(||x||?) = E||X*||* = np, by the Nishimori identity and R1 > ¢1. Recall B,, := [sn, 25,]°.
By assumption the families of functions (qe)ces, and (r¢)ces, are regular. Therefore, R : (e1,€e2)

(Ri(t,€), Ra(t, €)) is a C*-diffeomorphism whose Jacobian determinant |.Jz¢ | satisfies Ve € By, : |Jgt ()| > 1.
Integrating (T70) over € € B,, yields:

(170)

n dR1dR> d>fn (1) 1 der
deE .c-z:2<a—/ : 2 de
fo deme—OP) S B [ R T e,
on d? fr.c(t) Sn
< == dR1dRy ———2-+ In2. 171
S on s,y dRY T I, " a7
Note that R (Br) C [sn,28n + %% 7max] X [sn, 2sn + 1] (by definition of the interpolation functions). Thus:
25, +1 df (t) 257L+%Tnlax s
deE((L — (L)) < 2 dR {"7] + -2 In2
[, aemie—op) < g [ an | 0] T s
<l S0 b (172)
2pnn dnpy nPn

The last inequality follows from s, < 1/2 and (In2)/2 < 1. To obtain the second inequality we bounded the
partial derivative of the free entropy using (I68) and E||(x)||*) < E{||x||*) = np» (again by the Nishimori
identity):

dfn.e(t) dfn,c(t) _ pn E[|(x)|? Pn
- = — - = — —_ )< —
‘ dR1 ‘ dR1 200, (1 k‘n ) - 20, (173)

|

Proof of Lemma We define the two functions:

= VRS VAL ) = R () = ) -

F(Ry) = Fyp(t) — = VR

LOSE|Z| . (174)

Qn

Because of (T67), we see that the second derivative of ﬁ(Rl) is positive so that it is convex. Without the extra

term F,, (t) is not necessarily convex in Ry, although f, (¢) is (it can be shown easily). Note that f(R1) is
convex too. Convexity allows us to use the following standard lemma:

Lemma 14 (A convexity bound). Let G and g be two convex functions. Let § > 0 and define Cs(x) =
g (x+98)—g'(x —8) > 0. Then:

G'(@) —g'@|<s" > |G(u) —g(w)| + Cs(x) .

ue{zr—68,z,x+46}
Define A := min S| |Zi| — E|Zy|. From (T74), we directly obtain:

F(Ry) — f(R1) = Fp,e(t) — fn.c(t) — VRi12SA . (175)
Thanks to (I66) and (I68) the difference of derivatives (w.r.t. Ry) reads:

= rd n n *|1? *'N A
F(R1)*f(R1):Z—n(]E(£>7<£>)fzﬁTn(”)]in” *”/ji\/}zle) - 51?1' (176)

Let§ € (0, s,). Define C5(R1) := f'(R1 +0) — f/(R1 — 6) > 0 (this is well-defined because § < s, < Ry).
Combining (T73) and (T76) with Lemma[T4] gives:

Pn —
L) B <67 > [(Fac(t) = fre(®) g, | +251AVu
n we€{R1—68,R1,R1+6}
SIAl | pa [IX7) X*-Z
+C5(Ry) + == + > -1
B A ke Fx

<5 3 | (Frsc(t) = fre(®)) o, |

uwe{R1—6,R1,R1+6}

1 6VR) |, e |[IXTP X Z
+06(R1)+S|AI(\/E+ 5 )+2an o 1+kn\/RT .77
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The last inequality follows from /Ry + § + v/ R1 — § < 2v/R;. Taking the square and then the expectation on
both sides of the inequality (T77), and making use of (3°0_, v;)? < 6 30, v? (by convexity) yields:

E[((£) — E(£))"] < 56 (a")Q 3 Var (Fuc(t)], ) +6(%05(31))2

Pr/ we(r—5R1 R} pr

2 * 12 * 7
an Y o 21 1 12 36R;\ 3 [X*?  X*-Z
) SPE[A%) o + = = . a7
+6(pn>S [ ](Rl +—+ >+ 2Var< P (178)

02
By PropositionEI, under our assumptions, the free entropy F), ((t) = In Zt,¢/m,, concentrates such that:
C

Var(Fn,E(t)) <

(179)
N Pr

where C' is a polynomial in (S, H % ”OO, | ‘?}%” Hoo, H a% Hoo) with positive coefficients. Remark that, by
independence of the noise variables, we have:
1-2/m 1

na2 na2

E[4%] <

(180)
Also, the last term on the right hand side of satisfies:
(DS, S x| X*-Z )
o T ) = Vel — == XiZ
Var< kn + knvR1 Var kn, + Var /Ry k2 Var(( 1))+ k2R1 —— Var(X] 1)

s* L1
npn  npnR1

IN

(181)

Plugging (T79), (I80) and (T8T) back in (I78) yields

18Cay, anCs(R1)Y 652/ 1 12  36R; 354 3
E[((£) — E(£))?] < 6 = =+-=
[(< ) { >) ] — npdd? ( " + npz \ R1 + 0 + 02 2npn, + 2npn R1
18Caun anCs(R1)Y  2945% Ry 3 .1
< 6 S — 182
= et ( P T 2 T2 \C TR (152
where the last inequality follows from Rfl <§l< Ri/s2,
The next step is to integrate both sides of (I82) over B, := [sn,2sn]>. By assumption, the families
of functions (ge)ees, and (re)ces, are regular. Therefore, R' : (e1,€2) — (Ri(t,¢€), Ra(t,€)) is a
C!-diffeomorphism whose Jacobian determinant |Jg:| satisfies Ve € B, : |Jgi(e)] > 1. Besides,
R'(B,) C [sn, Kn] X [Sny 285 + 1] where K, := 2s,, + (’—”rmax. Therefore,
29452 Ry (t,¢) _ 29457 K, 2945 K,s2 2 ans?
Jo S S T o = T S O ) L 089

where we use that K, = (25n0n /o, +Tmax ) (*n/pn) < (My)o+Tmax)(*n/pn) a8 sp < 1/2and Pn/a, < M, ),
We now upper bound the integral of (¢nCs(R1)/,,.)%. Remember that Cs(R1) == f'(R1 +06) — f'(R1 —6) > 0.
By the definition (T74) of f and the upper bound m we have

~ . S
E|7| < 57+ ,

anVR 1211 < 200, apVR1

where we use that E| Z; | < 1. The inequality (T84) implies |Cs(R1)| < (pn + 25/vsn—5)/cn. Then,

/ de Cs(Ry(t,€))?

n

IF (R < 2 ~+

(184)

de Cs(R1(t,€))
B'Vl

IN
|
N
S
3
+

26n+1 Kn
/ dR; / ARy Cs(Ry)

Sn Sn

)

mt ) /mm PRIl
)
)

IA
|~
/\?/\
S
+
o
n

IA

2|~
s
3
_|_

255, +1 ~ - ~ ~
[ R (Tt 8) = Fu =)+ Flsn = 5) = Flsn+))

n
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By the mean value theorem and the upper bound (T73)), we have (uniformly in R2)

. s 5 s
\F(Ry — 6) — F(Ri + )| <25<2a +ﬁ) < 7<pn+527) ,

Rl - Qp n — 5
Therefore,
aan(R1)>2 (14 s,)0 ( 25 )2 36 ( 1428 )2 3(1+25)28
d < n + <= = . (185
/Bn ‘ < Pn - P 5n—0/) ~ 2p2 \ s, — 0 2p%(sn — 9) (18

For all € € B,,, we have Ri(t, €) > sp so (remember that fB de = s2)

3 4 1 3 s 1 3sn 3s, (5%
< - — )< n =
/Bnde Tnon (s + Rl(t,e)) < Znom /Bnde (S +Sn> < 2npn(s +1) < 2npn<2 +1

(186)
Integrating (T82) over € € B, and making use of (T83), (I83), (I86) yields

OcnSn 35, 54 9(1 + 25 2
/ deE[((£) —E(£))?] < s (180+294S ( ,,/a+rmax)) + (7 +1> + %

n

We can use Pn/an < My/o, pn < 1,0 < sp, and s, < 1/2 — in this order — to show that

sno_ pa0® omsi _ Mpjapnd® amsi _ Mpad® amsi o ansi _ My ans;
npn  QnSp NP3s2 — Sn np3d% —  sp np3d? — plosm np3é2 — 2 np3 o2

Thus, we finally obtain

oznsfL 1
2

/Bn deE[((£) —E(L))"] < Clnp%(;Q “ AC R

where C1 1= 18C + 2945%rmax + (2945 + 35%/s + 3/4) M, and C2 = 9(1 + 25)2.

The convergence of the ratio ¢/s,, to zero is a necessary condition for the second term on the right-hand side
of (T87) to vanish. If ¢/s, — 0 then (p3 (sn/s — 1))71 = O(%/p2s,). In that situation, both terms on the
right-hand side of (T87) are equivalent, that is, @7 /np3 52 = ©(5/p2s,,), if we choose & o (O‘"/npn)%sn. Note
that we can choose § x (*n/np,,) 35, and still make sure that § € (0, sn) because there exists m,,/, such that

m . . m Qn l .
Lo > Zrl2 forallm > 0. Plugging the choice § = (—22-")3 s, back in (T87) ends the proof of the lemma,

Qn npn
C 1 1
[ acr((te) - E@)*) < 2 e 1
n Mp/a ( pnn_ \3 p2 pnn )g — p2
anmpy/ T\ enmp /a0 "
C 1
(o)t
ol L

E Proof of Proposition 4]

Before proving the proposition, we recall a few definitions for reader’s convenience. We suppose that
mﬁ H3)|hold and that A = Ex~p,[X?] = 1. For all n € N*, we define the interval B, := [sn, 25,]
where (sn)nen+ is a sequence that takes its values in (0, 1/2]. Let rmax := —2 aanut/aq‘qzl ,— Anonnegative

real number. We have X; i Py, A, 4 Py and ®,:,V,,, Wy, Z., Zi 4 N'(0,1) fori = 1...n and
pw=1...my. Forfixedt € [0,1] and R = (R1, R2) € [0, +00) X [0, t+ 23n] consider the observations:

Y = (ST AL + Zy, 1< p <
~ out( . )S,L(l«tYR2)) )
YR = VR X+ Zs ,1<i<nm
where §f2) = g{t-F2) (x* Wy =, /% (2X*). +VRa2V,+ vt + 25, — R2 W;. The joint posterior
density of (X*, W*) given (Y #2) Y(®:RD & V) is:

dP(x, w|Y"F2) vy (R0 g )

1 T 3 (VR v 0R0) T dw
= dPo n(x; 1T
Zt,RiI:[l bn(@e) €2 g\/ﬁe

a2
Yu
2

Pou (V2SR (x,w,,))
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where Z¢ r is the normalization. The angular brackets (—) .+ r denotes the expectation w.r.t. this posterior. The
scalar overlap is the quantity ) := ,% >, Xi @i We define:

I
F{(t,R) :=E(Q)n+r and F™(t,R):= —2%% .
Pr O g=E(Q)p,i,r.p=1
We now repeat and prove PropositionEl
Proposmon@(extended) Suppose that (HI)|\(H2)|[(H3) hold and that A = Ex~p,[X?] = 1. Forall e € By,
there exists a unique global solution R(- [0 — 0 2 to the second-order ODE:
y(t)= (Ff"><t,y<t>>,F§"><t,y<t>>) . y(0)=e.
This solution is continuously differentiable and its derivative R/ (-, €) satisfies:
R'([0,1],¢) C [o, ‘;‘—"rmax} x [0,1] .

Besides, for all t € [0, 1], R(t,-) is a C'-diffeomorphism from By, onto its image whose Jacobian determinant is
greater than, or equal to, one:
Vee B, :det JR(t,-)(e) >1,
where Jg(4,.) denotes the Jacobian matrix of R(t, -).
Finally, the same statement holds if, for a fixed r € [0, rmax}, we instead consider the second-order ODE:

y(t) = (%T,me(m) Y0 =c.

Proof. We only give the proof for the ODE 3/ = (Fl(") (t,y), F\(t, y)) since the one for the ODE ' =
(on7/pm, Fy E" )(t y)) is simpler and follows the same arguments.

By Jensen’s inequality and Nishimori identity (see Lemmal5):
El[()ne.rll” _ E{x]*)ner _ EIX

E n — tadl < 1Yy — — 1

<Q> 6 R k., = kn & )

ie., E(Q)n+.r € [0,1]. By Lemmal[] the function ¢ — Ip,, (g, 1) is continuously twice differentiable,
concave and nonincreasing on [0, 1]. Therefore q — —2091pyy, aq’ , is nonnegative and nondecreasing

on [0, 1], which implies 7281Poug/8q’q b1 € [0, "max). We have thus shown that the function F' : (¢, R) —
(F™(t, R), F{™ (t, R)) is defined on all

D= {(t Bu, R2) € [0,1] x [0,400)” s Ry < 4250},
and takes its values in [0, @n7max/p,| X [0, 1].

To invoke Cauchy-Lipschitz theorem, we have to check that F' is continuous in ¢ and uniformly Lipschitz
continuous in R (meaning the Lipschitz constant is independent of ¢). We can show that F' is continuous on D,
and that, for all ¢ € [0, 1], F'(¢, -) is differentiable on (0, +00) x (0, ¢ + 2s,,) thanks to the standard theorems of
continuity and differentiation under the integral sign. The domination hypotheses are indeed verified because we
assume that hold. To check the uniform Lipschitzianity, we show that the Jacobian matrix Jp ¢, .y (R)
of F(t,-) is uniformly bounded in (¢, R). For all (R1, R2) € (0, +00) x (0,t + 2s,), we have:

oFs™

0
t,R t,R ot
JF(t,)(R) = |:C( 1 ) C( 1 ):| 1 1t,R 8F2(n) , (188)
0 Rz |, g
with ¢(t, R) := _gan Plrgy and

YT T 8¢ | g™ (4 Ry p=1
OF™ 1 & )
OR: |, 0 Bn ijzzl [(zizj)n.e.r = (@i)n.e.r(Ti)ne,R) ] (189)
8F2(") ( \R) / (t,R) ?
OFs |, ZE[H e G, = W (8 60, 90

The function /() is the derivative of u, : @ ~ In Poy(y|z). Both 975" /or, and 9F5™ /or, are clearly
nonnegative. Using the assumption [(HD)] we easily obtain from (T89) that

(n) 4
OgaFZ §4Sn. (191)
OR1 |, g Pn
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In the proof of Lemma [7, under the hypothesis [(H2)| we obtain the upper bound @3) on |uy (z)]. It yields
Ve eR: {ulY(t'R) ()] < (2ll¢lloo + 1Z1]) |02l 0o Then, we easily see from (T89) that
n

8F2('n)
OR>

0< 2 Opn

5% (4llel% + 110z 0ll%

(192)
t,R

Finally, by Lernma Lq— — i qu“‘ . , 1s nonnegative continuous on the interval [0, 1], so it is bounded by a

constant C and c(¢, R) € [0,2Cn/p,,]. Comblnlng the later with @) (197) and (T92) shows that Jp(z,.)(R)

is uniformly bounded in (¢, R) € { t,R1,R2) € [0,1] x (0,400)% : Ry < t + ZSn}. By the mean-value
theorem, this implies that ' is uniformly Lipschitz continuous in R.

By the Cauchy-Lipschitz theorem, for all ¢ € B,, there exists a unique solution to the initial value problem
y' = F(t,y), y(0) = ¢ that we denote R(-,¢) : [0,6] — [0, +00)?. Here § € [0,1] is such that [0, §] is the
maximal interval of existence of the solution. Because F has its image in [0, @nmax/p,,] X [0, 1], we have that
vVt € [0,0] : R(t,€) € [Sn,25n + tanTmax/Pn] X [$n, 28n + t], which means that 6 = 1 (the solution never
leaves the domain of definition of F).

Each initial condition € € B,, is tied to a unique solution R(-, €). This implies that the function € — R(t, €) is
injective. Its Jacobian determinant is given by Liouville’s formula [[14, Chapter V, Corollary 3.1]:

oF™ aFQW)
s,R(s,e))

t
det Jgr,. = d
et Jr(,(€) eXp/ 8< or tom
t (n)
OF:
= d s R(s, =
exp/0 S (c(s (s,€)) R
This Jacobian determinant is greater than, or equal to, one since we saw that all of ¢(¢, R), 8F1(")/8R1 and
or{™ /oR, are nonnegative. The fact that the Jacobian determinant is bounded away from O uniformly in €
implies by the inverse function theorem that the injective function € — R(t, €) is a C*-diffeomorphism from B,
onto its image. O

s,R(s,€)

oE™
R;

s,R(s,€)

F Proof of Theorem 2|for a general discrete prior with finite support

In the whole appendix we assume that Py, := (1 — py)do + pn Po where P, is a discrete distribution with finite
support supp(Po) C {Fwv1,..., vk} with0 < vy < v2 < --- < vk. Foralli, Po(v;) = pf, Po(—vi) = pj
with pf, p;7 > 0 and p; == p} + p; > 0. Of course, Zfil p; = 1. Note that the second moment of X ~ Py
s E[X?) = X, pyod.

For pr, an > 0 we denote the variational problem appearing in Theorem T|by

I(pn,an) == inf sup irs(q,7;an, pn) , (193)
g€[0,EX2] r>0

where the potential igs is defined in (7). Let X™* ~ Py, L Z ~ N(0,1). We define for all » > 0:
1/]P0,n (’I“) — E In / dP()yn(z)ei%xQJer*erﬁxZ] (]94)

2
—E[ln (1 — pn +pnze T (prer XTI g X vi_ﬁzw))} :

=1
Note that I, , (r) = I(X*; 7 X* + Z) = “2EXZ) _yop () where X ~ Py s0
I(pn,an) = inf [Pouc(q,EXQ) 'i_sup{ﬂ - 7¢P0n (77ﬂ)} . (195)
q€[0,EX 2] r>0 [ 2 p

The latter expression for I(pn, o) is easier to work with. We point out that ¢ p, , is twice differentiable, nonde-

creasing, strictly convex and 2 ”%Xz -Lipschitz on [0, +00) (see LemmaEI) while Ip, ., (-, EX?) is nonincreasing
and concave on [0, EX?] (see [[7, Appendix B.2, Proposition 18]).

Our goal is now to compute the limit of I(pn, an) wWhen o, == ypn|In p,| for a fix ¥ > 0 and p,, — 0. We
first look where the supremum over r is reached depending on the value of ¢ € [0, EX?].

Lemma 15. Let Py, := (1 — pn)do + pnPo where Py is a discrete distribution with finite support supp(Py) C
{tv1,2ve, ..., 2ok} with0 < v1 < v2 < -+ < vk. Let apy = ’ypn\lnpn|f0r a fix v > 0. Define
9o 7 € (0,+00) > %w}mn(iz r) andVp, € (0,e"),Vj € {1,...,K}:

1 1

2(1 — |Inpn|™ 2 ; 21+ |Inpn| ™2

ap) = gpn(—( 'W;’ | )) L) = gpn(—( 'Wf | )). (196)
J J
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Let X ~ Py. For py,, small enough we have

paB[X]? < alf) <0l <ol < plED < <0l < b < E[X7] (197)
and forallj € {1,...,K}:
2 : j 2
pL1m0a(]) =E[X 1(x50;3) pL}I_r)lOb;{q? =E[X 1{x|50;}] - (198)

Besides, for every q € (pnE[X]?, E[X?]) there exists a unique };(q) € (0, 400) such that
T 1 An 4 r 1 Qn
1 L, (L) =sup = Lo, (220). (199)

2 Qn

and¥j € {1,...,K},Yq € [a5),b$)):

1 1
21— |Inpy| % . 21+ |In pn| %
sz"') <ri(g) < %j"') ) (200)
K Tj
1 ‘ _1
The bounds [E00) are tight, namely, 7 (a5)) = %, rE(d$)) = %.
3 Yi
Proof. Forevery q € (0,1) we define f,,, ¢ : 7 € [0, +00) = % — J=4pp, , (527) whose supremum over r
we want to compute. The derivative of f,,, 4 with respect tor reads
aTL
Fonalr) = wPM (;T > : (201)

The derivative wfpo . is continuously increasing and thus one-to-one from (0,+occ) onto
(P2E[X]?/2, pnE[X?]/2). Therefore, if ¢ € (0,p,E[X]?] then f, , < 0 and the supremum of
fon.q is achieved at » = 0. On the contrary, if ¢ € (pn,E[X?]) then there exists a unique solution
r,,(q) € (0,+00) to the critical point equation f, ,(r) = 0. As f,, 4 is concave (¢'p,,n is convex) this
solution 7}, (¢) is the global maximum of fpmq. ‘We now transform the critical point equation:

(&7

fona(r) =04 on 'd}PO n (?7"> =qgp. (1) =0, (202)
where g,,, : 7 — %w}mn (%T) is continuously increasing and one-to-one from (0, +o0) to (p,EX? EX?).

By definition of aﬁ,{} and b(pjn), r:(aﬁf;}) 2(1—|1m pnl )/'y'u and rn(b(])) = 2(1+/mpnl )/wz Besides, if
4= 95, (r7:(0)) € [, 3)] then
1 1
20~ |lpnl ) o 204 (ol )
Y5 VU5
as g,,, is increasing. Because g,,, is increasing with 0 < vy < - -+ < vy, it is clear that we have the ordering
(T97) provided that py, is close enough to 0.

It remains to prove the limits (T98). In order to so, we first rewrite the derivative of ¥p, ,,. For all r > 0, we
have:

ro? L
wl (7‘) . 1E|:X* Pn Zf(:l vie - (p+ rX*v; /T Zv; _p.:67TX vi—/TZ l) :|
Po,n =3 J
) 2 TU’i . B -
1-— Prn + Pn Zz 1€ T2 (pjeT‘X v +/TZv; +p1 e—TX Uz,—ﬁZvi)
2 K K ,ﬂ + _rvivi+\TZv; L rvvi =TT,
Le sy vie 7 (pfe™ —p; e i )
- 2ZPME[ i€
j=1 1-— Prn + Pn Zfil e R (pjerij-!—ﬁZvi +p;6_"‘vivg‘—ﬁ2vi)

7"()2

2 K ZK_ vie~ = p; e
+Z"ijvﬂ€[ = i s
j=1

v

TV v +VTZv; _pz-e*wz‘vj*\ﬁZvi) :|
1—pn—+pn Zfil e~ 2" (p ervivitVTZv; _'_p-%—e—rv Uj—fZU1)

T(vl v;
K +.. K ) +fZ v;—v + - —2rv;v;—2TZv;
_ Pn E Py U D imy Vi€ (i) (pf —pie ’ )
- 2 . rov? r(v; —vj
j=1 %67%*\/FZ’UJ' 4 Zfil e i +fZ(’U1 vj) (p:r +p;e—2rv,yvj—2ﬁZvi)
(v —v;
K -y K . 7+\/7Z v;—v te —2rv;v; —2/TZv;
Pn E p; vj D e Vi€ ( 3) (pi — Db ’ )
+ o Z L o2 X r(v;—v;
j=1 ;:n e~ 2 —VTZu; 4 Zi:l e 7+f2(vz vj) (pl— +p'i*'e—2mivj—2ﬁzw)
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The latter expression is shorten to

Wy (1) = 2 ij O E[R(Z, 7,055 pn, v, p", P 7)] + 0 E[R(Z, 70500, v,p )] 5 (203)

o +

where v == (vi,va,...,vk), pT = (pT,p5,...,0). P~ = (P ,P3,---,Px) and we define V(z,7,u) €

R x [0, +00) % (0, +00):

h(z,r, U; Pn, 'V, p+7 p_)
ZK L vie,MJ’,\/’z(UI,u)(

o 72rvu 2/Tzv;
:: "‘('U ; — 1L) p/L pl ) : (204)
%67 —VTrzu +ZZ e —l—— - V/Tz(v;—u) (pz' +pi—672rviu—2ﬁzvi)
Note that Vz € R :
1
1 Inpn|”%)|1n pn if j <k;
h( 201+ |Inpn] *)|lnp 'wj;pn,v,pi,ij) S (205)
v} =0 |v;ifj > k.
1
2(1 — |Inpn|™%)| In pn| + 0 ifj<k;
h i pn,V,p,pT | —— . ’ 206
(Z’ v? AL SRE S B, v;ifj > k. (206)

By the dominated convergence theorem, making use of the identity (203) and the limit (Z03), we have Vk €

{1,...,K}:

®) . 2(1—|Inpa| 9)\ _ 2, (2(1—[lnp,|"5)[Inp,|
Ap,, = 9pn T = p*ano,n 2

K 1
2(1 — [Inp,|~ )| 1In pp .
:ZpﬁjE{hG, (-] np2\ Olenl v p,p )}
j=1 Uk
K 1
_ 2(1 — |In pp|™2)|In pn _
+ijvj]E[h(z, - pU2| Jnpnl v p JD*)}
— k

2
om0 Zp Y5 +ZPJ 2 = E[X°1{X|>0}] -

>k

Similarly, using this time the limit 206), we have Vk € {1,..., K} :

(204 ]Inpa ")) _ 2, (201 +][Inp|"5)[Inp,]
bﬂn — an - -2 - ?wpo,n 2

oL 2
K 1
2(1 + In n| 4 In n N
:ijvjE{h(z’ - pv2‘ Alnp |’Uj;v,p+,1’ ﬂ
Jj=1 k
K 1
— 2 1+ h’lpn 2 lnpn B
+;pjvjE[h(z’ — ug' Woenl v p.pt
_ 2 2
pn—0 Zp +_§>:kpj Uj =E[X 1{|X\ka}] .
V-

O

Note that lim,,, o b({? = lim,, o aE,J,, 28 Thus, Lemmaessentially states that in the limit p,, — 0 the
segment [0, E[X?]] can be broken into K subsegments [aE,]n , bﬁfﬂ] and for qe€ [ap 9 b“ '] the point at which

the supremum over 7 is achieved is located in an interval shrinking on r* = 2/y»2. The next step is then to
determine what is the limit of J:-4p, ,, (52 Wi ).

Lemma 16. Let Py, := (1 — pn)do + pn Po where Py is a discrete distribution with finite support supp(FPo) C
{£vi,£v2,..., Lok} with0 < v1 < vz < -+ < vk. Let apn = Ypn|1n pn| for a fix v > 0. Then, for every
ke{l,...,K}:

(@m + 1npn|i>> _ EX°Lxm0g]  BOX| > w)
P

(207)
i oL gl
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Proof. Fix k € {1,..., K}. The function v, ,, is Lipschitz continuous with Lipschitz constant %[XQ].
Therefore:

1
21 £ |Inp,|™ 2 2
wPOH( ( | pl )) wPOn(i )
Pn i P VUi
WE[X2] o 2|10 pn| 1 _ E[x? 1
< B dlnpl 4B
20, Pn yv2

—1/4 _ —1/4
The latter inequality shows that the limits of - z/) Poon (p—: %) and - AV, (52 %)

are the same and equal to the limit of Zw Po.n ( To compute the 1atter we first write 1p, , (r) in a

pn YV )
more explicit form. We have for all » > 0:

r .2 *
wPO,n (T) ::E[ln/dpom(x)67§m +rX z+\/;ZZ:|

2
[ln (1—pn+pnze S pl o X vi-&-\/FZvi_"_pi—e—T'X vi—ﬁZvi))}
i=1

2

=(1-pn)E [ln(l—pn+ane T preV™ZY 4 poe —va))]

i=1

+anp+E[ln (1—pn+pnze T + eV +\TrZv; +p rvjvi—\/;Zvi)>i|

T‘U‘z
+ pn Zp}E [0 (1= pu+ Z €7 (pre T I p prerat VA )
j=1

=1

By symmetry of Z ~ N(0, 1) we can replace Z by —Z in the expectations of the last sum. It comes:

K o 2
(1) = (1= po)E[In (1= o+ pu €™ 7 (pf 770 4y e V777 )|

i=1
+ pn Zp+]E[ln (1 — Pn+ P Z N e +p_6_m’”’_fzv’))]

er

+pn2p} [ln (1fpn+pnze oL p—erv]'u +\FZv,+p o TV fzm))]
; i=1
= (1= p)E[In (l—pn-l-pnze TZ (e 4+ pre V™))
i=1
_,_%[X]_Fpn]npn_ypnzzﬁﬂi lnh(Z,nvj;pn,v,pﬁp*)]
j=1
+pnzp] [InA(Z, 7,055 pnsvop P 1)] s (208)
where v = (vl,vg,...,vK),p = (pf,p3,....p%), P~ == (p1,P5,....px) and we define V(z,r,u) €

R x [0, +00) X (0, +00):

Fﬁ(z7r7u;pn’v’pi7p¢)

K
1-— ru? r(v;—u)? ) . S
_ ; Pn e 8 —/rzu + Z e*f+ﬁz(v17u) (p;l: + p?6727vlu72\/77zv1) . (209)
" i=1
It follows directly from (Z08) that:
2 A E[X?
71/]1’0 " < ) =+ [72]

P YV, v ok

v

{lnlNL(Z, 2"“‘{"',vj;pn,v,p+,p_)}

T
Fnh(z,

| I pn |
2|1Inpp|
vk

+ (210)

1

'Y

K » Ujs P ’V’p77P+)
1 Jo
W : ]
v [T pn|
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where
v2[Inpn|\ % 202 | Inpnl) %
1 il (| (2Egenl)zy  _(2uilhenl)ig
Ap, = mEln< anran e Yk <i+€ k tpe k .

Next we show that A,,, vanishes when p, — 0. We can use the inequalities 5~ < In(1 + z) < = valid for all
x > —1 to get the following bounds on A,,,:

K v2 202 1n pn |\ 5 202 1n pn |\ 3
1—pn *%““W( (Fpeml)zz o (pemd) Z)}
A, < E E e "k fe Uk +pie Yk -1
Pn —= |1npn| ( [ . pz pz

i=1
K
1—pn —2—%|Inpp]| 1—pn
_ e _ < _
(S )<
v2 202 1n pn |\ 5 202 n pn |\ 5
K ——%|npy| ——a—)"Zz —N\—t=)"Z
1 e i (p?e( vk ) +p{e( i ) )—1
— Pn =1
APn— 1 1
[T pn| K~ Simpn (e, (2Elaenlyiy
1*pn+,0n26 k p; € k +p16 k
=1
_1
= |Inpa|

The last inequality follows from (#=1)/(1—p,,+pnz) > ~1/(1—p,) for > 0. Together the upper bound and lower
bound imply that |A,,, | < 1/ p,| — 0. The last step before concluding the proof is to compute the limits
Pn—

of each summand in both sums over j € {1,..., K} in ZI0). Note that Vz € R:
v? 202
~ 21 n [1n n|(17—17 772)
vi

K (vi—v;)? 7 vivj vi (V5
*Il“Pn|( ,2J - o S Lz —4|1Inpp |2 (L4 2
+Y e i VTmenl (pﬁp?e i G i) ) i
=1

From (2TT)) we easily deduce the following pointwise limits for every z € R :

(=, 28l 15, ) P
( i o Vo PP 1= % ifj<k;
vy, (212)
\1npn| Pn=0 | ifj>k.
By the dominated convergence theorem, making use of the pointwise limits (Z12)), we have:
K lnﬁ(za 2“n2pn‘7vj;p’ﬂ7v7p+7p7) 11’17’;(2, 2l pnlav]';pn7v7p77p+)
> pE - +p;
= [ I pn| [T pn
2 2
B V2 E[X*1 v,
—— > (o +p){1— 5 ) =P(X] <) - EXT10x1<0] IS 51 TE
pn—0 4 vi v;
i<k
Combining the identity ZI0), lim,,, .0 A,,, = 0 and the limit ZT3) yields:
2 E[X>1 v
lim -y, (an 2 ) _ E[XQ] 1 POX| <o) [ (XI< i3]
=0 P VUL CH Y v i
_EX*1gx50] - POX| > o)
TR gl ’
thus ending the proof of the proposition. O

We can now use Lemmas [I3] and [T6] to determine the limits when P — 0 of the infimum of
SUp,>¢ iRs(q, 73 n, pn) OVer g restrained to different subsegments of [0, EX?].

Proposition 14. Let Py, = (1 — pn)do + pnPo where Py is a discrete distribution with finite support
supp(FPo) C {:I:vl,:lzvg, LUk P WIth) < vy < w2 < -+ < vi. Let an = ypy|In pn| for a fix v > 0.
Then, Vk € {1,...,K}:

. . ) . . 2 2 P(X] > vk)
pnhf(lw qe[aig)f’bg?]glg irs (¢, 5 O, pn) =min {IPout(E[X Lix|>v ), EXT) + S ;
P(|X| >wv
Ipout(E[X21{‘X|21,k}},IEX2)+7“ |7— ’“)} (214)
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whileVk € {2,..., K} :
P(1X] > vk)

. . . . _ 2 2
p:ﬂ)*qe[béi)r,lig’ffl)]iglo) iR (4,75 0ns pn) = TPy (E[X 71 x 50,3, EXT) + - (215)
and

lim inf  sup irs(q,7; an, prn) = Ip,. (O,EXQ) , (216)

pn=0F g€[0,a5 ] r>0

liminf inf sup irs(q,7;n, pn) >
prn—0% geplt) 1] r>0

. (217

2=

Proof. In the whole proof p, is close enough to 0 for the ordering (I97) to hold. First we prove (ZI4). Fix
ke{l,...,K}. By Lernrna forallg € [aé’f), bE,’fL)] we have

rqg 1 o ra(Q)g 1 Qn
Sup —° — ——4p, , (7"7“> = % — =Py, (Fnrn(q))

[0 7% n

_1 _1
where 2(17““/’271' 1) < *(q) < 2(1+\1nﬂ2n\ 1)

Tk = i) = Tk
k k
vq e [a(pVL)7 b/(fn)] :

. This and the fact that 9 p, ,, is increasing imply that

%2(1+|1npn|—i>)

1 1
I E X2 q 1—11 _41; _
Pout (4, E[X7]) + TU% ( [Inpn|~%) o Py ., o yv2

S sup iRS (q7 T3 Qn, p”)

r>0
! 21— |Inpa| %)
_1 Qn — | pn
< T @D + L (1 ) = L (2220 LD g
Yk Qn ’ Pn Yy,
These inequalities are valid for every g € [ag?, bE,’fl)] so the same inequalities will hold if we take the infimum
over g € [a%), b8")] in (ZT8). Note that ¢ — Ip,, (¢, E[X?]) + #(1 F|In pn|’%) are concave functions on
k

[aﬁ,]f,?, bﬁ,’f}] so the minimum of each function is achieved at either endpoint agf,? or b;’f}. It comes:

%2(1¥|lnﬂni))
Pn Yoy

1
1 n 2(1 1 n| 4 . -1
:_7¢P07"(&M>+ min Ipout(q,E[XQ])—‘r#(lﬂ:“npn‘ 5
k

an P i qe{all) biE)y
P(|X| > v E[X*1{x|>0 .
(IX] > vx) _ [ {\)Q(IZ k}} min Ipout(q,E[XQ]) + 12
pn—0 y YUk {E[X21{|X\>vk}]a Tk
LB L x5 03]
. P X]| >wv
= min {IPOUt (]E[X21{\X|>vk}]vE[X2D + wv
P(|X| >wv
I (BIX*1{1x|20,3], E[X?]) + w} ' e
The limit when p,, — 0 follows from (T98) in Lemma|[T3]and (207) in Lemma|[I6] Taking the infimum over

g€ [a b)) in (218) and using the fact that the upper and lower bounds have the same limit 219) ends the

proof of 214).

We now turn to the proof of the limit ZT3). Fix k € {2,...,K}. As the supremum of nondecreasing
functions, the function ¢p, ,, : g € [0,EX N SUp,>q 3 — aiqppo’n (%r) is nondecreasing. The fact that

Ip,.. (-, EX 2) and ’lZ Py, are respectively nonincreasing and nondecreasing imply that:
IPout (a’(PIfL_l) ’ ]EXZ) + JPO,TL (bI(JIjL))
. : k - k—
Anf ) SUD RS (0,75 0 o) < Trp, (B EX®) 4 0y, (al V) . (220)

<
q€lby,’ ap, 1r>0
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By Lemma|T3] we have

* (1. (k)yp (k)
- Tn b n b n 1 An &
Do (b)) = Tnlben)oon —wpo,n<—pn m(bé?)) ,

2 On
v (k=1)\ (k—1)
" (k=1)y _ Tn(@p, ")ap, 1 Mn s/ (k-1)
wPOJL (a/’n ) - £ 2 = - ?nwpo,n pinrn(a‘ﬂn ) )

where r;';(bffi)) = 2(1+] lnpnlfl/“)/wﬁ and r,ﬁ(aﬁ,’fl)) =2(1-| lnpn\71/4)/~,v§71. Making use of the limits

(198) in Lemma[T3]and 207) in Lemmal[T6]yields:

BIX*Lyxppuy] _ BXPLgxppun] | PUX[ >0 _ POX| > w) |

lim p, (b)) =

pn—0F gl YR gl gl ’
2 2
B -1y _ B Lgxsu 3] BX T xzey] | PIX] > ween)  P(X] > o)
hm wPO,n (G’Pn ) - 2 - 2 + - :
pn—07F YVk—-1 YVk—1 8 0
Besides, as  lim bE,’Z) = lim afffl_l) = E[X?1{;x|>v,}] and Ip,,, is continuous, we have:
pn—0t pn—0T -

)
pn—0 o pn—0

lim+ IPout (b(k) EXQ) = hm+ IPout (at(jjz_l)7 ]EXQ) = IPout (E[XQ]'{‘XlZ'Uk}LEXQ) .
Thus, the lower and upper bounds in (220) have the same limit. It ends the proof of ZI3).

The proof of ZI6) is similar to the one of ZI3). We have that

IPout (a’/(JIf) ) EX2) + Jpo,n (O)
< inf sup ins(q 75 Qn, pn) < T (0,EX®) + ¥p, , (afh)) - (221)

q€[0,a55)1 r>0

Clearly z’/;po," (0) = 0 while lim, _,o+ Ip,,, (aé{f),EXQ) = Ip,,.(0,EX?) by continuity of Ip,,, and
lim, o+ ag:) = 0. By Lemma Jpoyn(a(pf)) = riagn)abn) /2 — TPPO,H(%Tﬂag?))/an where
ri(al)) = 20-1mpal74)/,02 Tt follows from the limits (198) in Lemmaand 07) in Lemmathat

lim, o+ %Py, (a%)) = 0. Thus, the lower and upper bounds in (221) have the same limit. It ends the proof
of (216).
It remains to prove (217). The fact that Ip,, (-, EX %) and {/; Py, are respectively nonincreasing and nondecreas-

ing imply that

inf sup irs(q,75 Qs pn) = I (EX*EX®) 4§, (85)) = 0, (65)) - (222)
q€[byy) EX2] r>0

Hence, the inequality (Z17) follows from taking the limit inferior on both sides of (222) and the limit
* 1
ra(bSp) oy (G2rabh))

2 Qn
E[X*1{x50,3)  EX?1{x|50,}] n P(|X]| > v1) _1

{Z}'P(),n (bgi)) =

2 2 .
pn—07T A Y1 Y Y

O

Proposition 15. Let Py, = (1 — pn)50 + pnPo where Py is a discrete distribution with finite support
supp(FPo) C {—vk, —VK—1,..., —V1,01,V2,..., 0k} With0 < v1 < -+ < Vg < Vg+4+1 = +oo. Let
an = vpn|ln py| for a fix y > 0.

Then the quantity I(pn, o) = infqe[O,lEXNPOX?] SUp,.>q 9Rs(q, T Qn, pn) converges when prn — 0" and

lim I(pn,an) = min {[pout (IE[XQIHX‘Z%}],E[XQD + w} ) (223)

on—0+ 1<k<K+1

Proof. The proof goes in two steps. We first prove a upper bound on the limit superior of I(pyn, o), and then
prove a lower bound on the limit inferior thats turns out to match the limit superior.
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Upper bound on the limit superior Note the following trivial upper bound:

I(pn,om) < IE}QK{ e supms(qﬂ“;ampn)} - (224)
SKkS E[apn, Pn] >0

The upper bound on the limit superior of I(pn, o) thus directly follows from (224) and Proposition[14]on the

limits of the infimums over g € [apn , b(k)}

P(X| > vk)
< 2 2
liirf(l)lff(pn,an)  pip, min {Ipout(JE[X 1(x )50 E[X7]) + -

Pl X]| > v
T (BIX*L (11001 EIX?]) + %}

. P(X] > vk)
= min {Ipout (E[X*1q1x|5003), BIX?]) + - (225)

Matching lower bound on the limit inferior The lower bound on the limit inferior is obtained by
studying the infimum on each segment of the following partition:

K K
087 = 0,60 (Ul o1) o (U e ) upex. @20
k=1

k=2

By Proposition[T4] we directly have:

lim inf inf p irs(q,7; Qtn, Pn)

pn—=0F qeUK_ [al) b)) >

=, {IPout(E[le{\xwzvk}LE[XQ])+M};

1<k<K+1 p
LIT?nglquUK [b(’g), (k 1)]sup ZRS(QaT Oén,pn)
PX| > vk)
2 -_
:2212 {IPout (E[X 1{x 503, EIX7)) +f ;

liminf inf  sup irs(q,7; @n, pn)
pn—0%F q€(0,ap,’] >0

P(|X| > 400)

= Ty (O.BLX) = T (BIXT x4y} B + XLZ 22D,

liminf inf sup irs(q,7; an, pn)
pn—0%F geplt) 1] r>0

P(X] > v1)
gl

>~ = Ipu (BIX 1 x50 ) E[X7]) +

2=

Following the partition (226), the limit inferior of inf [0,EX2] SUD,.>0 iRS (¢, 75 n, prn) is equal to the minimum
of the above four limits inferior. It comes:

>
liminf I(pn,an) > min {Ipout (]E[X21{\X|2Uk}],E[X2]) + w} ] (227)

on—0T 1<k<K+1

We see that the lower bound (227) on the limit inferior matches the upper bound (223)) on the limit superior, thus
ending the proof. O

Proof of Theorem[2] Combining Theorem |I]together with Proposition[I5]ends the proof of Theorem
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