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Abstract

We consider generalized linear models in regimes where the number of nonzero
components of the signal and accessible data points are sublinear with respect to
the size of the signal. We prove a variational formula for the asymptotic mutual
information per sample when the system size grows to infinity. This result allows
us to derive an expression for the minimum mean-square error (MMSE) of the
Bayesian estimator when the signal entries have a discrete distribution with finite
support. We find that, for such signals and suitable vanishing scalings of the
sparsity and sampling rate, the MMSE is nonincreasing piecewise constant. In
specific instances the MMSE even displays an all-or-nothing phase transition,
that is, the MMSE sharply jumps from its maximum value to zero at a critical
sampling rate. The all-or-nothing phenomenon has previously been shown to occur
in high-dimensional linear regression. Our analysis goes beyond the linear case and
applies to learning the weights of a perceptron with general activation function in a
teacher-student scenario. In particular, we discuss an all-or-nothing phenomenon
for the generalization error with a sublinear set of training examples.

1 Introduction

Modern tasks in statistical analysis, signal processing and learning require solving high-dimensional
inference problems with a very large number of parameters. This arises in areas as diverse as learning
with neural networks [1]], high-dimensional regression [2]] or compressed sensing [3, 14]]. In many
situations, there appear barriers to what is possible to estimate or learn when the data becomes too
scarce or too noisy. Such barriers can be of algorithmic nature, but they can also be intrinsic to the
very nature of the problem. A celebrated example is the impossibility of reconstructing a noisy signal
when the noise is beyond the so-called Shannon capacity of the communication channel [3]]. A large
amount of interdisciplinary work has shown that these intrinsic barriers can be understood as szatic
phase transitions (in the sense of physics) when the system size tends to infinity (see [6, [7, |8]]).

When the problem can be formulated as an (optimal) Bayesian inference problem the mathematically
rigorous theory of these phase transitions is now quite well developed. Progress initially came from
applications of the Guerra-Toninelli interpolation method (developed for the Sherrington-Kirkpatrick
spin-glass model [9]) to coding and communication theory [10} [11} 12} [13} 14} [15]], and more recently
to low-rank matrix and tensor estimation [[16} 17,118, |19} 120,21, 22} 23] 124]], compressive sensing and
high-dimensional regression [25} 26} 27, 28], and generalized linear models [29]]. In particular, for all
these problems it has been possible to reduce the asymptotic mutual information to a low-dimensional
variational expression, and deduce from its solution relevant error measures (e.g., minimum mean-
square and generalization errors). All these works consider the traditional regime of statistical
mechanics where the system size goes to infinity while relevant control parameters (such as signal
sparsity, sampling rate, or signal-to-noise ratio) are kept fixed.
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However, there exist other interesting regimes for which many of the above mentioned problems also
display fundamental intrinsic limits akin to phase transitions. Consider for example the problem of
compressive sensing. An interesting regime is one where both the number of nonzero components and
of samples scale in a sublinear manner as the system size tends to infinity. In this case we would like
to identify the phase transition, if there is any, and its nature. This question has first been addressed
recently in the framework of compressed sensing for binary Bernoulli signals by [30} 31,132]. An
all-or-nothing phenomenon is identified, that is, in an appropriate sparse regime, the minimum
mean-square error (MMSE) sharply drops from its maximum possible value (no reconstruction) for
“too small” sampling rates to zero (perfect reconstruction) for “large enough” sampling rates. The
interest of such regime is not limited to estimation problems. It is also relevant from a learning point
of view, e.g., it corresponds to learning scenarios where we have access to a high number of features
but only a sublinear number of them — unknown to us — are relevant for the learning task at hand.

Examples abound where the “bet on sparsity principle” [33] 34] is of utmost importance for the
interpretability of a high-dimensional model. Let us mention the MNIST handwritten digit database,
where each digit can be seen as a 784 = 28 x 28-dimensional binary vector representing the pixels
whereas the digits effectively live in a space of the order of tens of dimensions [35} 36]. Another
example of effective sparsity comes from natural images which are often sparse in a wavelet basis [37]].
Then, a fundamental question is “when is it possible to achieve a low estimation or generalization
error with a sublinear amount of samples (sublinear with respect to the total number of features)?”

In this contribution we address this question for a mathematically simple, but precise and tractable,
setting. We consider generalized linear models in the regime of vanishing sparsity and sample rate,
or equivalently, of sublinear number of data samples and nonzero signal components. As explained
below these models can be used for estimation as well as learning, and we uncover in the sublinear
regime intrinsic statistical barriers to these tasks in the form of sharp phase transitions. These
statistical barriers are computed exactly and thus provide precise benchmarks to which algorithmic
performance can be compared.

Let us outline the mathematical setting (further detailed in Section [2). In a probabilistic setting the
unknown signal vector X* € R"™ has entries drawn independently at random from a distribution
Py, = pnPo + (1 — pn)do with Py a fixed distribution. The parameter p,, controls the sparsity
of the signal so that X* has k,, := np, nonzero components on average. We observe the data
Y = go(‘PX*/ VEn ) € R™ obtained by first multiplying the signal with a known m,, X n random
matrix ® whose entries are independent standard Gaussian random variables, and then applying ¢
component-wise. The number of data points is controlled by the sampling rate o, i.e., m, = a,n.
We consider the regime (p,,, a,) — (0,0) as n goes to infinity with «,, = yp,|ln p,|, for which
sharp phase transitions appear when F, is discrete with finite support. Note that both m,, and k,,
scale sublinearly as n — +o0.

The model can be interpreted as either an estimation problem or a learning problem:

¢ In the estimation interpretation, we assume a purely Bayesian (or optimal) setting. We know
the model, the activation function ¢, the prior Fy ,, as well as the measurement matrix ®. Our
goal is then to determine what is the lowest reconstruction error that we can achieve, i.e., what
is the average minimum mean-square error &k, 'E || X* — E[X*|Y, ®]||? when n gets large.

* In the learning interpretation, we consider a teacher-student scenario in which a teacher hands
out training samples {(Y},, (®,:)7=1)},,= to a student. The teacher produces the output label Y,
by feeding the input (®,,;)!"_; to its own one-layer neural network with activation function ¢ and
weights X* = (X)?_;. The student — who is given the model and the prior — has to learn the
weights X* of the teacher’s one-layer neural network by minimizing the empirical training error
of the m,, training samples. For example, the binary perceptron corresponds to ¢ = sign and
Y, € {£1}. Of particular interest is the generalization error. Given a new — previously unseen —
random pattern ®,,.,, = (P,.,,;)7, whose true label is Y,.,, (generated by the teacher’s neural
network), the optimal generalization error is E[(Y, .., — E[o(®newX"/vE)|Y, @, ®,...])?]; the
error made when estimating Y},q, in a purely Bayesian way.

Let us summarize informally our results. We set v, = 7yp,,|In p,,| where + is fixed and p,, vanishes
as n diverges. We first rigorously determine the mutual information m,; 1 1(X*; Y|®) in terms of a
low-dimensional variational problem, see Theorem I]which also provides a precise control of the finite
size fluctuations. Remarkably, when P is a discrete distribution with finite support, this variational



problem simplifies to a minimization problem over a finite set of values, see Theorem[2} For such
signals, using I-MMSE type formulas [38]], we can deduce from the solution to this minimization
problem the asymptotic MMSE and optimal generalization error, see Theorem[3} Our analysis shows
that both errors are nonincreasing piecewise constant functions of ~. In particular, if the entries of
|X*| are either 0 or some a > 0 then both errors display an all-or-nothing behavior as n — +o0,
with a sharp transition at a threshold v = ~, explicitly computed. These findings are illustrated, and
their significance discussed, in SectionE}

In our work the generalized linear model is treated by entirely different methods than the linear
model in [30,31]]. Importantly, the sparsity regime treated by our method requires the sparsity p,
to go to zero slower than n~/°, while it has to go to zero faster than n~/* in the results of [31]
for the linear case. From this angle, both results complement each other. Our proof technique for
Theorem T|exploits the adaptive interpolation method (see [39] 40]) that is a powerful improvement
over the Guerra-Toninelli interpolation and allows to prove replica symmetric formulas for Bayesian
inference problems. We adapt the analysis of [29] in a non-trivial way in order to consider the new
scaling regime of our problem where «,, = vp,,|In p,|, and p,, — 0 as n gets large instead of being
fixed. We show that the adaptive interpolation can still be carried through, which requires a more
refined control of the error terms compared to [29]]. It is interesting, and not a priori obvious, that
this can be done since this is not the usual statistical mechanics extensive regime. For example, the
mutual information has to be normalized by the subextensive quantity m,, = 0(n). Quite remarkably,
with this suitable normalization, the asymptotic mutual information, MMSE and generalization
error have a similar form to those famously found in ordinary thermodynamic regimes in physics
[41], 1421 143] 144].

In Section 2] we present the setting and state our theoretical results on the mutual information and
the MMSE in the sublinear regime. We use these results in Section [3|to uncover the all-or-nothing
phenomenon for general activation functions. In Section 4] we give an overview of the adaptive
interpolation method used to prove Theorem |I} The full proofs of our results are given in the
Supplementary Material.

2 Problem setting and main results

2.1 Generalized linear estimation of low sparsity signals at low sampling rates

Let n € N* and m,, :== a,n with (o, )nen+ a decreasing sequence of positive sampling rates. Let
Py be a probability distribution with finite second moment Ex. p, [X?]. Let (X)), X P, ,, be the
components of a signal vector X* (this is also denoted X* 9 Py ), where

PO,n = pnPO+(1_pn)60 (1)

The parameter p,, € (0, 1) controls the sparsity of the signal; the latter being made of k,, == p,n
nonzero components in expectation. We will be interested in low sparsity regimes where k,, = o(n).
Let k4 € N. We consider a measurable function ¢ : R x R¥4 — R and a probability distribution P4
over R*4 . The m,, data points Y := (Yy,)py are generated as

1
V= o —=(@X"),, Ay) + VAZ,, 1< <my, @

where (A,)7"" X Pa, (Z,)521 X N(0,1) is an additive white Gaussian noise (AWGN), A > 0 is
the noise variance, and ® is a m,, X n measurement (or data) matrix with independent entries having
zero mean and unit variance. Note that the noise (Z,,);;; can be considered as part of the model, or
as a “regularising noise” needed for the analysis but that can be set arbitrarily small. Typically, and
as n gets large, (#X").//E, = ©(1). The estimation problem is to recover X* from the knowledge
of Y, ®, A, p, Py, and Py (the realization of the random stream (AH)L”:”1 itself, if present in the
model, is unknown). It will be helpful to think of the measurements as the outputs of a channel:

1
Y#Npm(. ‘\/7({>X*)u)7 1< pu<m,. 3)

The transition kernel P,y admits a transition density with respect to Lebesgue’s measure given by:

1 . R
Pout(y|z) = \/ﬁ/dPA(a) e~ za(y—e(@.a)" 4)



The random stream (AH)Z‘:"1 represents any source of randomness in the model. For example,
the logistic regression P(Y,, = 1) = f((®X")u/yE,) with f(z) = (1 + e~ **)~! is modeled by
considering a teacher that draws i.i.d. uniform numbers A,, ~ /[0, 1], and then obtains the labels
throughY,, = Loa, <paxnu ey — La, s rexn. gy (e denotes the indicator function of an
event £). In the absence of such a randomness in the model, the activation ¢ : R — R is deterministic,
ka = 0 and the integral [ dP4(a) in @) simply disappears. Our numerical experiments in Section
are for deterministic activations but all of our theoretical results hold for the broader setting.

We have presented the problem from an estimation point of view. In this case, the important quantity
to assess the performance of an algorithm estimating X* is the mean-square error. Another point
of view is the learning one: each row of the matrix ® is the input to a one-layer neural network
whose weights X* have been sampled independently at random by a teacher. The student is given
the input/output pairs (®,Y) as well as the model used by the teacher. The student’s role is then
to learn the weights. In this case, more than the mean-square error, the important quantity is the
generalization error.

2.2 Asymptotic mutual information

The mutual information I(X*; Y|®) between the signal X* and the data Y given the matrix ® is
the main quantity of interest in our work. Before stating Theorem [T] on the value of this mutual
information, we first introduce two scalar denoising models that play a key role.

The first model is an additive Gaussian channel. Let X* ~ Fy ,, be a scalar random variable. We
observe Y(") := \/rX* + Z where r > 0 plays the role of a signal-to-noise ratio (SNR) and the
noise Z ~ N (0, 1) is independent of X *. The mutual information Ip, , (r) := I(X*; Y (")) between
the signal of interest X* and Y (") depends on p,, through the prior Py, and it reads:

WExp, [X2 . ra?
Ip,, (r) = “Pn=XeiblR ] X2P0[ | _Em / APy (x)er X otV 2o )
The second scalar channel is linked to the transition kernel P, defined by @). Let V, W* be two
independent standard Gaussian random variables. In this scalar estimation problem we want to infer

W* from the knowledge of V' and the observation y(@r) ~ Pouwi(-|\/@V + /p—qW™) where

p > 0and g € [0, p]. The conditional mutual information Ip,_, (g, p) = I(W*; Y (@P)|V) is:

o

w2

e 2

Ip,..(q,p) :]Elnpout(f/(p’p)h/ﬁ‘/) f]Eln/dw 7Pout()~/(q’p)|\/§v+\/pqu) . (6)

V2
Both Ip,,, and Ip,, have nice monotonicity, Lipschitzianity and concavity properties that are

important for the proof of Theorem [] (stated below).

We use the mutual informations (3) and (6) to define the (replica-symmetric) potential:

. 1 Qn r(Ep [X?] —
ZRS(qa T Qnp, pn) = ;Ipo,n (?T> + IPout (an’Po [X2]) - w . (7)

Our first result links the extrema of this potential to the mutual information of our original problem.

Theorem 1 (Mutual information of the GLM at sublinear sparsity and sampling rate). Suppose that
A > 0 and that the following hypotheses hold:

(HI) There exists S > 0 such that the support of Py is included in [— S, S].
(H2) ¢ is bounded, and its first and second partial derivatives with respect to its first argument
exist, are bounded and continuous. They are denoted 0,p, Oy

(H3) (®;) ©N(0,1).

Let p, = O(n=*) with X € [0,1/9) and v, = pyn|In py,| with v > 0. Then for all n € N*:

I(X*Y|® . , VC |[Innl|/e

IOCYI®)  int sup dns(arrsan )| < Yo ®)
My, 4€[0.Epy [X2]] 720 niz =

where C'is a polynomial in (S, H% ||oo, ’ ?}”‘Aﬁ HOO, ‘ 8\'7%" ||oo, A, ) with positive coefficients.



Hence, the asymptotic mutual information is given to leading order by the variational problem
infqe[07]EP [X2]] SUP,>0 RS (¢,7; @, pr). Note that this variational problems depends on n and
Theorem does not say anything on its value in the asymptotic regime, e.g., does it converge or
diverge? Our next theorem answers this question when P, is a discrete distribution with finite support.

2.3 Specialization to discrete priors: all-or-nothing phenomenon and its generalization

Theorem 2 (Specialization of Theorem [I|to discrete priors with finite support). Suppose that A > 0
and that Py ,, := (1 — py,)00 + pnPo where Py is a discrete distribution with finite support

Supp(PO) g {_UK>_UK717" '7_U17U15U27"'7UK} 5

where 0 < vy < vy < --- < Vg < Vg1 = +00. Further assume that the hypotheses|(H2)|and|[(H3)|
in Theoreml|l|hold. Let p,, = ©(n=*) with A € (0,1/9) and cv,, = Yp,,|In p,,| with v > 0. Then,

o IXmY[®) 2 oy, POX] = i)
T 1<£212+1{1Pm EXCLx 10 L BT + =—==¢,  ©)
where X ~ PB,.

The proof of Theorem |2|requires computing the limit of infqe[oy]gpo [X2]] SUP,>0 1RS(q; 75 s Pr)
and is given in the Supplementary Material.

When doing estimation, one important metric to assess the quality of an estimator X (Y, ®) is its
mean-square error E|X"~X(Y,®)|*/k, . The latter is always lower bounded by the mean-square
error of the Bayesian estimator E[X*|Y, ®]; the so-called minimum mean-square error (MMSE).
Remarkably, once we have Theorem 2] we can obtain the asymptotic MMSE with a little more work.
First, we have to introduce a modified inference problem where in addition to the observations Y we

are given YO =/ ant/p, X* 4+ Z. When 7 is close enough to 0, the analysis yielding Theorem
can be adapted to obtain the limit

I(X* Y, Y|P
i [X5Y, )

n—-+o0o my,

| X > vg) n TE[X?1{x|<u,)]
g 2 '
We can then apply the -MMSE identit38, 45]] to obtain the asymptotic MMSE:

Theorem 3 (Asymptotic MMSE). Under the assumptions of Theorem |2} if the minimization problem
on the right-hand side of Q) has a unique solution k* € {1,..., K + 1} then
E|X* — E[X*|Y, ®]|?
lim XY, ]) = E[X?1{x|<vp.}] » where X ~ Py . (10)

n—-+oo kn

IP(
. 9 )
- 1§IICI%1[I%+1 {IPOU‘ (E[X 1{|X|2Uk}]v]E[X ]) +

We prove Theorem|[3]in the Supplementary Material. We remark that it is possible with more technical
work [29, Appendix C.2] to weaken in Theorems[2]and[3to the assumption “There exists € > 0
such that the sequence E|p((®X")1/\/E,, A1)|?*€ is bounded, and for almost all a ~ P4 the function
2 — p(x,a) is continuous almost everywhere.” Hence, Theorems andalso apply to the linear
activation p(z) = z, the perceptron p(x) = sign(x) and the ReLU ¢(2) = max(0, z).

3 The all-or-nothing phenomenon

We now highlight interesting consequences of our results regarding the MMSE of the estimation
problem as well as the optimal generalization error of the learning problem in the teacher-student
scenario. Reeves et al. [31] have proved the existence of an all-or-nothing phenomenon for the linear
model when X* is a 0-1 vector and here we extend their results in two ways: 7) for the estimation
error of a generalized linear model, and i) for the generalization error of a perceptron neural network
with general activation function (.

2The derivative of Z(X*;¥. Y7 |®)/,,, - with respect to T at 7 = 0 is equal to half the MMSE of the original
problem.



We consider signals whose entries are either Bernoulli random variables, i.e., Py ,, = (1 — pn)do +
pnPo with Py = ¢1, or Bernoulli-Rademacher random variables, i.e., Py, = (1 — pn)do + pnPo
with Py = (61+6-1)/2. In both cases Ep, [X?] = 1 (we can always assume the latter by rescaling the
noise). We place ourselves in the regime of Theorem [3| I where o, = vpy|In p,,| for some fixed v > 0
and p,, — 0 in the high-dimensional limit n — +o0.

MMSE In this regime, and for such signals, Theorem [3]states that the minimum mean-square error
MMSE(X*|Y, ®) = EIX —EX"|[Y.®]|"

n

satisfies:

0 if Ip,  (0,1)>~"";
lim MMSE(X*|Y,® oue s ’ 11
oo (X7NY, @) = {1 if Ip, (0,1) <~} (5
Therefore, we locate an all-or-nothing phase transition at the threshold
1
= ———— . 12
T T 0D 1

Remember that v controls the amount m,, of training samples. In the high-dimensional limit, perfect
reconstruction is possible if v > . (the asymptotic MMSE is zero) while it is impossible to do better
than a random guess if 7 < . (the asymptotic MMSE is equal to lim,, _, | o EIX"~EX*|I?/f, = 1;
the asymptotic MMSE in the absence of observations). As Ip,, (0,1) == I(W*; o(W*,A) +VAZ)
where W*, Z 1 A7(0,1) L A ~ Pa, the threshold ~, is fully determined by the activation function
and the amount of noise, and it can be easily evaluated in a number of cases. In Figure |I| we draw
ve for p(z) = z, p(x) = sign(z), p(z) = max(0,x) and noise variance A € [0, 0.5]. We see that
for A small enough the ReLLU activation requires less training samples to learn the sparse rule than
the linear one; it is the opposite once A becomes large enough. When A diverges both the linear
and sign activations have the asymptote 7. ~ 2A while the ReLU activation has another steeper
asymptote . ~ aA, a =~ 5.87. The corresponding formulas for ~. are given in Table[T} Note that for
the random linear model ¢(x) = z, the threshold a.(py) = Yepn|ln pn| = 2e210pnl/in(1+4-1) is
in agreement with the sample rate n* for which [31]] prove that weak recovery is impossible below it
while strong recovery is possible above.

4 o
linear P

3 sign e
ReLU T

Figure 1: Threshold ~. of the all-or-nothing phase transition for different activation functions as a function of
the noise variance A.

Activation p(z) V(A =0) ~.(A)forA>0
x 0 2/In(1+ A1)
sign(z) 1in2 1/(In2 — E[In(1 + 672(1+‘/ZZ)/A)})
max(0, z) 0 4A/(1— 4A]E[hA( )ln ha(Z )])

with ha(Z) = + 2(1+A>f¢ﬁ dt 7§

Table 1:

Optimal generalization error When learning in a (matched) teacher-student scenario, the com-
ponents of X* correspond to the unknown weights of the teacher’s one-layer neural network. The

Closed-formed formulas of . for different activation functlons. We use Z ~ /\/ (0,1).



Mp

student is given the model and training samples { (Y}, (®,,:)7=1)},~;. Then, the optimal gener-

alization error is the MMSE for predicting the output Y,., ~ Poyu(-|®rewX"/VE,) generated by
a new input ®,., = (Poew.i) e M(0,1). More precisely, the optimal generalization error is
MMSE(Y,.,|[Y,®,®,...) = E[(Y,., — E[Y,..|Y,®, ®,..])?]. Based on our proof of Theorem
and the optimal generalization error when p,, = ©(1) (regime of linear sparsity and sampling rate)

[29, Theorem 2], we conjecture that, under the assumptions of Theorem 3]

lim MMSE(Y,..[Y, &, ®,..) = A+E[(p(V. A) ~Elp(vq" V + VEX? — ¢~ W, A)|V])*]
n—+00

13)
where V,W* ~ N(0,1) L A ~ P4 and ¢* is such that EX? — ¢* = E[X?1{x|<y,.}] is the
asymptotic MMSE (I0). For Bernoulli and Bernoulli-Rademacher signals (the ones considered in
this section), it simplifies to

A+E[(p(V,A) = Elp(V, A)[V])?]if v > 7 ;
A + Var(p(V, A)) if v <.

We thus find that the optimal generalization error also displays an all-or-nothing phase transition at
v More precisely, if v <+, then the optimal generalization error equals A + Var(p(V, A)) when
n — +oo. This is the same generalization error achieved by the dumb label estimator in the Bayesian
sense; the one predicting the new label to be the output value averaged over all possible inputs,
weights and noise. If instead v > . then it is equal to A + E[Var(p(V, A)|V)]; the irreducible error
due to both the noise Z and the random stream (A ;)"

lim MMSE(Y,.|Y,® ®,.) { (14)

n——+oo

p=1:

Proving (T3] entails introducing side observations in the original problem and differentiating with
respect to the signal-to-noise ratio of this side channel to exploit the -MMSE relation, in a similar
fashion to what we do in the proof of Theorem 3] (see Supplementary Material). The side observations
have the same form than the ones used in [29| Section 5 of SI Appendix] to determine the asymptotic
optimal generalization error in the regime of linear sparsity and sampling rate.

Ilustration of the all-or-nothing phenomenon In Figure 2] we use (IT)) to draw in solid black
lines the asymptotic MMSE in the regime of sublinear sparsity and sampling rate, for both priors
Bernoulli and Bernoulli-Rademacher and the activation functions p(z) = z, p(z) = sign(x),
(z) = max(0, ). For comparison we also draw in dashed colored lines the asymptotic MMSE in
regimes of linear sparsity and sampling rate, that is, p, = p and a,, = yp|In p| are constant with n.
In this case, the asymptotic MMSE is given by [29, Theorem 2]

lim MMSE(X*|Y,®)=1—¢*, (15)
n—-+4o0o

whenever arg min ¢ (o 1) SUp,> irs (¢, 75 vp| In p|, p) is a singleton {g*}. To optimize the potential
irs(q, r;vp|In p|, p) we initialize ¢ € [0, 1] at different values and iterate the following fixed point
equation (obtained directly by setting the gradient of the potential to zero):

ol 2 n
p= g Tou , q= ——I};O . (ar> . (16)
aq q,1 Pn ’ Pn

Finally, the fixed point ¢* yielding the lowest potential sup,~q irs(¢*, r;vp|1n p|, p) is used to
determine the MMSE thanks to (T3). In all configurations the asymptotic MMSE jumps from a value
close to 1 to approximately 0 as v increases past y.. As p, = p gets closer to 0, this jump becomes
sharper with the MMSE approaching 0 or 1 depending on which side of . we are. Though this jump
becomes sharper, a pure all-or-nothing phase transition only occurs in the regime of sublinear sparsity
and sampling rate (solid black lines).

In Figure 3] we use (I4) to plot in solid black lines the asymptotic optimal generalization error for
the Bernoulli prior and the same activation functions. The dashed colored lines again correspond to
regimes of linear sparsity and sampling rate; they are obtained using the formula for the asymptotic
optimal generalization error given by [29, Theorem 2]:

Jim MMSE(Y,.|Y. @, ®,..) = A+ E[(p(V. A) - Elp(Va"V + /T ¢ W*, A)V])].
(17)

In all configurations the optimal generalization error jumps from a value close to A + Var(p(V))
to approximately A as 7y increases past 7, (note that the activations are deterministic so there is no



contribution from A in the error). The value A is as good as the optimal generalization error can get,
i.e., it is equal to the noise variance which is the squared error we would get if we were given the true
weights X*. Again, the jump gets sharper as p,, = p approaches 0 but a pure all-or-nothing phase
transition only occurs in the regime of sublinear sparsity and sampling rate (solid black lines).

The all-or-nothing behavior of the asymptotic MMSE and optimal generalization error is quite
striking. Indeed, in the limit of vanishing sparsity and sampling rate either estimation or learning
is as good as it can get or as bad as a random guess. This purely dichotomic behavior only occurs
in the truly sparse limit, and is shown here to be pretty general in the sense that it occurs for a wide
variety of activation functions. An important aspect of our results is to provide a definitive statistical
benchmark allowing to measure the quality of algorithms with respect to the minimal amount of
sparse data needed to estimate or learn. This benchmark is provided by non-trivial formulas (12)) for
the threshold ~y, given for several examples in Table[T] We note that such precise benchmarks are
quite rarely obtained in traditional machine learning approaches.
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Figure 2: Asymptotic MMSE as a function of 7/+. in the regime of sublinear sparsity and sampling rate (p,, =
©(n~*) with A € (0, /o), solid black line), and in the regime of linear sparsity and sampling rate (p,, fixed,
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Further remarks Algorithmic aspects are beyond the scope of this paper. However, we make a
few remarks about generalized approximate message passing (GAMP) algorithms. In the regime
of linear sparsity and sampling rate, the state evolution equations precisely tracking the asymptotic
performance of the algorithm are linked to the fixed point equation (T6) [46]. The fixed point ¢*!
reached by initializing (T6) arbitrarily close to ¢ = 0 can be used in (I3)) and (I7) — instead of ¢*—
to obtain both the mean-square and generalization errors of GAMP algorithms. These errors are
represented with dotted colored lines in Figures[2]and 3] We observe an algorithmic-to-statistical
gap, that is, the dotted lines corresponding to the algorithmic performance do not drop to zero around
v, but at a higher algorithmic threshold. In this work we don’t study the performance of GAMP
algorithms in the regime of sublinear sparsity and sampling rate. However, reference [32] rigorously
shows that in this regime the all-or-nothing behavior also occurs at an algorithmic level for GAMP
algorithms. It would be highly desirable to extend their results to other activations and derive the
corresponding thresholds.

4 Overview of the proof of Theorem ]|

The interested reader will find the proof of Theorem|I]in the supplementary material. In this section
we give an outline of the proof and its main ideas. The proof is based on the adaptive interpolation
method [39} 40] whose main difference with the canonical interpolation method [47, 48] is the
increased flexibility given to the path followed by the interpolation between its two extremes. The
method has been developed separately for symmetric rank-one tensor problems where the spike has
1.i.d. components [39, 40|, and for one-layer GLMs whose input signal has again i.i.d. components
[29]. The sparse regime of the problem studied in this contribution differs of the usual scaling for
which such techniques have been developed. They have been used in a regime where the number of
measurements and sparsity are linear in n as in [29]]. Working in the sparse regime requires writing
more refined concentration bounds and proving that the key steps of the adaptive interpolation can
still be carried through.

1. Interpolating estimation problem To simplify the presentation we assume that A = 1 and
Ex~p,[X?] = 1. The proof starts by introducing an interpolating inference problem that depends
on a parameter ¢t € [0, 1] and two continuous interpolation functions Ry, Rz : [0,1] — R with
R1(0) = R2(0) = 0. Let X* & Py, = (®,5) X N(0,1), V := (V) % N(0,1) and
W= (W) K N(0,1). We define for all ¢ € [0, 1] an “interpolating pre-activation”:

S = \/(0=0/k, (BX"),, + /Ra(t) V, + \/t — Ra(t)

The inference problem at a fixed ¢ is to recover both unknowns X*, W* from the knowledge of V,
® and the data

Y/l(t) ~ out( |S(t)) s LS p<mp;
VW = VRWOX;+Zi, 1<i<n ;

where Z,,, Z; 1 N(0,1). The corresponding interpolating mutual information is:
i () = my LT (X5, W5 (YO, YD) 8, V) .

2. Fundamental sum-rule Note that at ¢ = 0 we recover the original problem of interest and
1, (0) = I(X"Y|®)/mm,,. At the other extreme ¢ = 1, the mutual information can be written in terms
of the simple mutual informations Ip, , and Ip, ,, thatis, i, (1) = Iro (B1(D)/a, 4 Ip,, (R2(1),1).

We link the mutual information at both extremes by computing the derivative i/, (-) of 4,,(+) and then
using the fundamental identity 4,,(0) = 4, (1 fo ! (t)dt. It yields the sum-rule:

IOGYIR) _ Ly (D) + In (Ra(1). 1) — L / By (5)(1 = By()dt + Ry
My, Qo ’ Qn Jo

The last term R, is a remainder whose absolute value we want to control in order to get Theorem

3. Controlling the remainder This is done by plugging two different choices of interpolation
functions (R1, Ro) in the sum-rule. One choice yields an upper bound on the difference in the left-
hand side of (8), while another yields a lower bound. Each choice of interpolation functions (R;, R2)
is defined implicitly as the solution to a first-order ordinary differential equation. Remarkably, under
these two choices, the remainder R,, can be controlled using precise concentration results.



Broader Impact

We believe that it is difficult to clearly foresee societal consequence of the present, purely theoretical,
work. The results presented inscribe themselves in the larger theme of providing guidelines for
better and parsimonious use of data when possible, for example when learning a sparse rule. On the
long run, such guidelines must be taken into account for building engineering systems that are more
efficient in terms of computational and energetic cost.
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