
We thank the reviewers for their thorough comments and suggestions. Let us first address the main weakness of the1

submission: all the reviewers point out that the discussion on the asymptotic MMSE and the all-or-nothing phenomenon2

is nonrigorous. We are now able to resolve this point. The main difficulty in order to make the discussion on the MMSE3

rigorous is to compute the limit of the variational formula in Theorem 1 when ρn vanishes. Since the submission4

deadline we have proved that the latter limit is given by the minimum of a finite set of values whenever P0 is a discrete5

distribution with a finite support. We can combine this limit with Theorem 1 to obtain the result:6

Theorem 2. Suppose that ∆ > 0 and that P0,n := (1 − ρn)δ0 + ρnP0 where P0 is a discrete distribution with fi-7

nite support supp(P0) ⊆ {−vK ,−vK−1, . . . ,−v1, v1, v2, . . . , vK} where 0 < v1 < v2 < · · · < vK < vK+1 := +∞.8

Further assume that the hypotheses (H2), (H3) of Theorem 1 hold. Let ρn = Θ(n−λ) with λ ∈ (0, 1/9) and9

αn = γρn| ln ρn| with γ > 0. Then (in what follows X ∼ P0):10

lim
n→+∞

I(X∗;Y |Φ)

mn
= min

1≤k≤K+1

{
IPout

(
E[X21{|X|≥vk}],E[X2]

)
+

P(|X| ≥ vk)

γ

}
. (1)

Once we have Theorem 2 we can obtain the asymptotic MMSE with a little more work. First we have to introduce a11

modified inference problem where in addition to the observations Y we are given Ỹ (τ) =
√
αnτ/ρnX∗ + Z̃. When τ12

is close enough to 0, i.e., τ < 2/γv2K , the analysis yielding Theorem 2 can be adapted to obtain the limit13

lim
n→+∞

I(X∗;Y , Ỹ (τ)|Φ)

mn
= min

1≤k≤K+1

{
IPout

(
E[X21{|X|≥vk}],E[X2]

)
+

P(|X| ≥ vk)

γ
+
τE[X21{|X|<vk}]

2

}
.

We can then apply the I-MMSE identity1 to obtain the asymptotic MMSE:14

Theorem 3. Suppose that ∆ > 0 and that P0,n := (1 − ρn)δ0 + ρnP0 where P0 is a discrete distribution with fi-15

nite support supp(P0) ⊆ {−vK ,−vK−1, . . . ,−v1, v1, v2, . . . , vK} where 0 < v1 < v2 < · · · < vK < vK+1 := +∞.16

Further assume that the hypotheses (H2), (H3) of Theorem 1 hold. Let ρn = Θ(n−λ) with λ ∈ (0, 1/9) and17

αn = γρn| ln ρn| with γ > 0.18

If the minimization problem on the right-hand side of (1) has a unique solution k∗ ∈ {1, . . . ,K + 1} then19

lim
n→+∞

E‖X∗ − E[X∗|Y ,Φ]‖2

kn
= E

[
X21{|X|<vk∗}

]
. (2)

When P0,n is a Bernoulli or Bernoulli-Rademacher distribution we have K = 1 and Theorem 3 corresponds to the20

all-or-nothing phenomenon. If K > 1 the phenomenology is different and the asymptotic MMSE exhibits up to K21

sharp phase transitions.22

If our submission is accepted we shall use the additional content page to state both Theorems 2 and 3 in Section 2.2.23

We shall refer the reader to the supplementary material for the proofs. We shall slightly rewrite the introduction and24

Section 3 to take into account that the discussion on the asymptotic MMSE is now rigorous and not only heuristic.25

Let us now address the main other points raised by the reviewers.26

• About the figures. The horizontal lines in Figure 1 indeed correspond to the value of the potential at q = 1. We plot27

these lines to highlight how the minimum of the potential shifts from being close to q = 0 to being close to q = 1 at28

the all-or-nothing phase transition. We will make this clear in the caption. The inset plots in Figures 2 and 3 are zooms29

on tight intervals around the all-or-nothing phase transitions. We propose to get rid of these inset plots and instead to30

pick a tighter interval for the x-axis of the main plots (in the submission αn/αc(ρn) ∈ [0.1, 10]). In Figure 2 and 3 the31

dotted lines correspond to the performance of GAMP algorithms as predicted by the state evolution equations (see the32

paragraph “Further remarks” in Section 3). The departure of a dotted line from the thicker line having the same color33

puts in evidence the algorithmic-to-stastical gap mentioned in the paragraph “Further remarks”. When this gap is34

small the dotted line is not visible on the figures as it matches the MMSE curve. Our captions will be corrected.35

• The scaling ρn = Θ(n−λ) with λ < 1/9 is indeed a proof artifact. To be more precise, we have to lower bound the36

vanishing rate of ρn by n−1/9 if we want that the upper bound of Lemma 10 in the supplementary material vanishes.37

• The value γc = 0 for noiseless linear models in Table 1 indeed shows that there is no all-or-nothing phenomenon38

in this case, and is in agreement with the existing literature. E.g., Reeves, Xu, and Zadik2 locate the transition at a39

sample size n∗ that vanishes when the noise variance approaches zero.40

Finally, we take note of the additional reference as well as the rephrasings and grammatical corrections suggested by41

the reviewers in order to improve our manuscript.42

1The derivative of I(X∗;Y ,Ỹ (τ)|Φ)/mn with respect to τ at τ = 0 is equal to half the MMSE of the original problem.
2Galen Reeves, Jiaming Xu, and Ilias Zadik. “The all-or-nothing phenomenon in sparse linear regression”. In: Proceedings of the

Thirty-Second Conference on Learning Theory (Phoenix, USA). Vol. 99. PMLR, 2019, pp. 2652–2663.


