Supplementary Material for
Unsupervised Learning of Visual Features
by Contrasting Cluster Assignments

Mathilde Caron'2 Ishan Misra? Julien Mairal®
Priya Goyal® Piotr Bojanowski? Armand Joulin?
! Tnria* 2 Facebook AI Research

A Implementation Details

In this section, we provide the details and hyperparameters for SWAV pretraining and transfer learning.
Our code is publicly available at https://github.com/facebookresearch/swav.

A.1 Implementation details of SWAV training
First, we provide a pseudo-code for SWAV training loop using two crops in Pytorch style:

C: prototypes (DxK)
model: convnet + projection head
temp: temperature

for x in loader: # load a batch x with B samples
x_t = t(x) # t is a random augmentation
s(x) # s is a another random augmentation

I

X_S
z = model(cat(x_t, x_s)) # embeddings: 2BxD
scores = mm(z, C) # prototype scores: 2BxK

scores_t scores|[:B]
scores_s scores[B:]

1]

compute assignments

with torch.no_grad():
g_t = sinkhorn(scores_t)
g_s = sinkhorn(scores_s)

|

convert scores to probabilities
p_-t = Softmax(scores_t / temp)
p_s = Softmax(scores_s / temp)

swap prediction problem
loss = - 0.5 * mean(q_t * log(p_s) + g_s * log(p_t))

SGD update: mnetwork and prototypes
loss.backward()

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

https://github.com/facebookresearch/swav

update (model . params)
update(C)

normalize prototypes
with torch.no_grad():
C = normalize(C, dim=0, p=2)

Sinkhorn-Knopp
def sinkhorn(scores, eps=0.05, niters=3):
Q = exp(scores / eps).T
Q /= sum(Q)
K, B = Q.shape
u, r, ¢ = zeros(K), ones(K) / K, ones(B) / B
for _ in range(niters):
u = sum(Q, dim=1)
Q *= (r / u).unsqueeze(1)
Q *= (c / sum(Q, dim=0)).unsqueeze(0)
return (Q / sum(Q, dim=0, keepdim=True)).T

Most of our training hyperparameters are directly taken from SimCLR work [6]. We train
SwAV with stochastic gradient descent using large batches of 4096 different instances. We distribute
the batches over 64 V100 16Gb GPUs, resulting in each GPU treating 64 instances. The temperature
parameter 7 is set to 0.1 and the Sinkhorn regularization parameter ¢ is set to 0.05 for all runs. We
use a weight decay of 107, LARS optimizer [27] and a learning rate of 4.8 which is linearly ramped
up during the first 10 epochs. After warmup, we use the cosine learning rate decay [20, 22] with
a final value of 0.0048. To help the very beginning of the optimization, we freeze the prototypes
during the first epoch of training. We synchronize batch-normalization layers across GPUs using
the optimized implementation with kernels through CUDA/C-v2 extension from apex'. We
also use apex library for training with mixed precision [21]. Overall, thanks to these training
optimizations (mixed precision, kernel batch-normalization and use of large batches [13]), 100
epochs of training for our best SwWAV model take approximately 6 hours (see Table 1). Similarly to
previous works [6, 7, 18], we use a projection head on top of the convnet features that consists in a
2-layer multi-layer perceptron (MLP) that projects the convnet output to a 128-D space.

Note that SWAV is more suitable for a multi-node distributed implementation compared to contrastive
approaches SimCLR or MoCo. The latter methods require sharing the feature matrix across all
GPUs at every batch which might become a bottleneck when distributing across many GPUs. On
the contrary, SWAV requires sharing only matrix normalization statistics (sum of rows and columns)
during the Sinkhorn algorithm.

A.2 Data augmentation used in SWAV

We obtain two different views from an image by performing crops of random sizes and aspect ratios.
Specifically we use the RandomResizedCrop method from torchvision.transforms module
of PyTorch with the following scaling parameters: s=(0.14, 1). Note that we sample crops in
a narrower range of scale compared to the default RandomResizedCrop parameters. Then, we
resize both full resolution views to 224 x 224 pixels, unless specified otherwise (we use 160 x 160
resolutions in some of our experiments). Besides, we obtain V' additional views by cropping small
parts in the image. To do so, we use the following RandomResizedCrop parameters: s=(0.05,
0.14). We resize the resulting crops to 96 x 96 resolution. Note that we always deal with resolutions
that are divisible by 32 to avoid roundings in the ResNet-50 pooling layers. Finally, we apply random
horizontal flips, color distortion and Gaussian blur to each resulting crop, exactly following the
SimCLR implementation [6]. An illustration of our multi-crop augmentation strategy can be
viewed in Fig. 1.

! github.com/NVIDIA/apex

github.com/NVIDIA/apex

2 Global C
Views C !

Jo

Loss

1
1
13~ s @:7 Jo
Additional
Small Views — ° !
ty+ 2~ Tonan f

Figure 1: Multi-crop: the image z,, is transformed into V' + 2 views: two global views and V' small
resolution zoomed views.

A.3 Implementation details of linear classification on ImageNet with ResNet-50

We obtain 75.3 top-1 accuracy on ImageNet by training a linear classifier on top of frozen final
representations (2048-D) of a ResNet-50 trained with SWAV. This linear layer is trained during 100
epochs, with a learning rate of 0.3 and a weight decay of 10~¢. We use cosine learning rate decay
and a batch size of 256. We use standard data augmentations, i.e., cropping of random sizes and
aspect ratios (default parameters of RandomResizedCrop) and random horizontal flips.

A.4 Implementation details of semi-supervised learning (finetuning with 1% or 10% labels)

We finetune with either 1% or 10% of ImageNet labeled images a ResNet-50 pretrained with SWAV.
We use the 1% and 10% splits specified in the official code release of SImMCLR. We mostly follow
hyperparameters from PCL [18]: we train during 20 epochs with a batch size of 256, we use distinct
learning rates for the convnet weights and the final linear layer, and we decay the learning rates
by a factor 0.2 at epochs 12 and 16. We do not apply any weight decay during finetuning. For 1%
finetuning, we use a learning rate of 0.02 for the trunk and 5 for the final layer. For 10% finetuning,
we use a learning rate of 0.01 for the trunk and 0.2 for the final layer.

A.5 Implementation details of transfer learning on downstream tasks

Linear classifiers. We mostly follow PIRL [22] for training linear models on top of representations
given by a ResNet-50 pretrained with SWAV. On VOCO07, all images are resized to 256 pixels
along the shorter side, before taking a 224 x 224 center crop. Then, we train a linear SVM with
LIBLINEAR [10] on top of corresponding global average pooled final representations (2048-D). For
linear evaluation on other datasets (Places205 and iNat18), we train linear models with stochastic
gradient descent using a batch size of 256, a learning rate of 0.01 reduced by a factor of 10 three
times (equally spaced intervals), weight decay of 0.0001 and momentum of 0.9. On Places205, we
train the linear models for 28 epochs and on iNat18 for 84 epochs. We report the top-1 accuracy
computed using the 224 x 224 center crop on the validation set.

Object Detection on VOC07+12. We use a Faster R-CNN [23] model as implemented in Detec-
tron2 [25] and follow the finetuning protocol from He et al. [14] making the following changes to the
hyperparameters — our initial learning rate is 0.1 which is warmed with a slope (WARMUP_FACTOR
flag in Detectron2) of 0.333 for 1000 iterations. Other training hyperparamters are kept exactly
the same as in He et al. [14], i.e., batchsize of 16 across 8 GPUs, training for 24K iterations on
VOCO07+12 trainval with the learning rate reduced by a factor of 10 after 18K and 22K iterations,
using SyncBatchNorm to finetune BatchNorm parameters, and adding an extra BatchNorm layer
after the resb layer (ResbROIHeadsExtraNorm head in Detectron2). We report results on VOC07
test set averaged over 5 independant runs.

Object Detection on COCO. We test the generalization of our ResNet-50 features trained on
ImageNet with SWAV by transferring them to object detection on COCO dataset [19] with DETR
framework [4]. DETR is a recent object detection framework that relies on a transformer encoder-
decoder architecture. It reaches competitive performance with Faster R-CNN while being conceptually

simpler and trainable end-to-end. Interestingly, unlike other frameworks [15], current results with
DETR have shown that using a pretrained backbone is crucial to obtain good results compared to
training from scratch. Therefore, we investigate if we can boost DETR performance by using features
pretrained on ImageNet with SWAV instead of standard supervised features. We also evaluate features
from MoCov2 [7] pretraining. We train DETR during 300 epochs with AdamW, we use a learning
rate of 10~* for the transformer and apply a weight decay of 10~%. We select for each method the
best learning rate for the backbone among the following three values: 1075, 5 x 1075 and 10~%. We
decay the learning rates by a factor 0.1 after 200 epochs.

A.6 Implementation details of training with small batches of 256 images

We start using a queue composed of the feature representations from previous batches after 15 epochs
of training. Indeed, we find that using the queue before 15 epochs disturbs the convergence of the
model since the network is changing a lot from an iteration to another during the first epochs. We
simulate large batches of size 4096 by storing the last 15 batches, that is 3, 840 vectors of dimension
128. We use a weight decay of 10~°, LARS optimizer [27] and a learning rate of 0.6. We use the
cosine learning rate decay [20] with a final value of 0.0006.

A.7 Implementation details of ablation studies

In our ablation studies (results in Table 5 of the main paper for example), we choose to follow
closely the data augmentation used in concurrent work SimCLR. This allows a fair comparison and
importantly, isolates the effect of our contributions. In practice, it means that we use the default
parameters of the random crop method (RandomResizedCrop), s=(0.08, 1) instead of s=(0.14,
1), when sampling the two large resolution views.

A.8 SimCLR loss with multi-crop augmentation

When implementing SimCLR with multi-crop augmentation, we have to deal with several positive
pairs formed by an anchor features and the different crops coming from the same instance. We denote
by B the total number of unique dataset instances in the batch and by M the number of crops per
instance. For example, in the case of 2x160+4x96 crops, we have M = 6 crops per instance. We call
N = B x M the effective total number of crops in the batch. Overall, we minimize the following
loss

N
1 1 expzlot/T
L=—— log L . @))
NM-1 ;wg{:ﬁ} exp zlvt /T + D - efor} €XP zZlv= /T

For a feature representation z;, the corresponding set of positive examples {v;" } is formed by the
representations of the other crops from the same instance. The set of negatives {v; } is formed by
the representations of all crops in the same batch except ones coming from the same instance as x;.
Note that this extension of SimCLR loss with several pairs of positive is similar to the one used in
Khosla et al. [17].

B Additional Results

B.1 Running times

In Table 1, we report compute and GPU memory requirements based on our implementation for
different settings. As described in § A.1, we train each method on 64 V100 16GB GPUs, with a batch
size of 4096, using mixed precision and apex optimized version of synchronized batch-normalization
layers. We report results with ResNet-50 for all methods. In Fig. 2, we report SWAV performance
for different training lengths measured in hours based on our implementation. We observe that after
only 6 hours of training, SWAV outperforms SimCLR trained for 1000 epochs (40 hours based on
our implementation) by a large margin. If we train SWAV for longer, we see that the performance gap
between the two methods increases even more.

Table 1: Computational cost. We report time and GPU memory requirements based on our imple-
mentation for different models trained during 100 epochs.

Method multi-crop time / 100 epochs peak memory / GPU

SimCLR 2x 224 4h00 8.6G

SwAV 2 x 224 4h09 8.6G

SwAV 2x160+4 x 96 4h50 8.5G

SwAV 2x224+6 %96 6h15 12.8G
576 Figure 2: Influence of longer training. Top-1
g 7l) ImageNet accuracy for linear models trained on
g7l ® SimCLR frozen features. We report SWAV performance for
2 63 u SWAV different training lengths measured in hours based
&t on our implementation. We train each ResNet-50
8 64 [m models on 64 V100 16GB GPUs with a batch size

0 ‘ ‘1'5‘ ‘3'0 : ‘4'5‘ of 4096 (see § A.1 for implementation details).

running time (hours)

B.2 Larger architectures

In Table 2, we show results when training SWAV on large architectures. We observe that SWAV
benefits from training on large architectures and plan to explore in this direction to furthermore boost
self-supervised methods.

Table 2: Large architectures. Top-1 accuracy for linear models trained on frozen features from
different self-supervised methods on large architectures.

Method Arch. Param. Topl
Supervised EffNet-B7 66 84.4

Rotation [12] RevNet50-4w 86 55.4
BigBiGAN [9] RevNet50-4w 86 61.3
AMDIM [2] Custom-RN 626 68.1

CMC [24] R50-w2 188 68.4
MoCo [14] R50-w4 375 68.6
CPCv2[16] R161 305 71.5
SimCLR [6] R50-w4 375 76.8
SwAV R50-w2 188 77.3
SwAV R50-w4 375 77.9
SwAV R50-w5 586 78.5

Implementation details for SWAV R50-w2. The model is trained for 400 epochs on 128 GPUS
(batch size 4096). We train the model with 2x224+4x96 (total of 6 crops). All other hyperparameters
are the same as the ones described in appendix A.1.

Implementation details for SWAV R50-w4. The model is trained for 400 epochs on 64 GPUS
(batch size 2560) with a queue of 2560 samples starting from the beginning of training. We train
the model with 2x224+4x96 (total of 6 crops). All other hyperparameters are the same as the ones
described in appendix A.1.

Implementation details for SWAV R50-w5. The model is trained for 400 epochs on 128 GPUS
(batch size 1536) with a queue of 1536 samples starting from the beginning of training. We train
the model with 2x224+4x96 (total of 6 crops). All other hyperparameters are the same as the ones
described in appendix A.1l.

B.3 Transferring unsupervised features to downstream tasks

In Table 3, we expand results from the main paper by providing numbers from previously and
concurrently published self-supervised methods. In the left panel of Table 3, we show performance
after training a linear classifier on top of frozen representations on different datasets while on the right
panel we evaluate the features by finetuning a ResNet-50 on object detection with Faster R-CNN [23]
and DETR [4]. Overall, we observe on Table 3 that SWAV is the first self-supervised method to
outperform ImageNet supervised backbone on all the considered transfer tasks and datasets. Other
self-supervised learners are capable of surpassing the supervised counterpart but only for one type of
transfer (object detection with finetuning for MoCo/PIRL for example). We will release this model so
other researchers might also benefit by replacing the ImageNet supervised network with our model.

Table 3: Transfer learning on downstream tasks. Comparison between features from ResNet-50
trained on ImageNet with SWAV or supervised learning. We also report numbers from other self-
supervised methods (T for numbers from other methods run by us). We consider two settings. (1)
Linear classification on top of frozen features. We report top-1 accuracy on Places205 and iNat18
datasets and mAP on VOCO7. (2) Object detection with finetuned features on VOC07+12 trainval
using Faster R-CNN [23] and on COCO [19] using DETR [4]. In this table, we report the most
standard detection metrics for these datasets: AP5y on VOC07+12 and AP on COCO.

Linear Classification Object Detection
Places205 VOCO07 iNatl8 VOCO07+12 (Faster R-cNN) COCO (DETR)
Supervised 53.2 87.5 46.7 81.3 40.8
RotNet [11] 45.0 64.6 - - -
NPID++ [22] 46.4 76.6 324 79.1 -
MoCo [14] 46.97 79.8t 31.5% 81.5 -
PIRL [22] 49.8 81.1 34.1 80.7 -
PCL [18] 49.8 84.0 - - -
BoWNet[11] 51.1 79.3 - 81.3 -
SimCLR [6] 53.37 86.47 36.2f - -
MoCov2 [14] 52.9f 87.1T 38.9% 82.5 42.0f
SwAV 56.7 88.9 48.6 82.6 42.1

B.4 More detection metrics for object detection

In Table 4 and Table 5, we evaluate the features by finetuning a ResNet-50 on object detection with
Faster R-CNN [23] and DETR [4] and report more detection metrics compared to Table 3. We
observe in Table 4 and in Table 5 that SWAV outperforms the ImageNet supervised pretrained model
on all the detection evaluation metrics. Note that MoCov2 backbone performs particularly well on
the object detection benchmark, and even outperform SwAV features for some detection metrics.
However, as shown in Table 3, this backbone is not competitive with the supervised features when
evaluating on classification tasks without finetuning.

B.5 Low-Shot learning on ImageNet for SWAV pretrained on Instagram data

We now test whether SWAV pretrained on Instagram data can serve as a pretraining method for
low-shot learning on ImageNet. We report in Table 5 results when finetuning Instagram SwAV
features with only few labels per ImageNet category. We observe that using pretrained features from
Instagram improves considerably the performance compared to training from scratch.

B.6 Image classification with KNN classifiers on ImageNet

Following previous work protocols [26, 28], we evaluate the quality of our unsupervised features
with K-nearest neighbor (KNN) classifiers on ImageNet. We get features from the computed network
outputs for center crops of training and test images. We report results with 20 and 200 NN in Table 7.
We outperform the current state-of-the-art of this evaluation. Interestingly we also observe that using
fewer NN actually boosts the performance of our model.

Table 4: More detection metrics for object detection on VOC07+12 with finetuned features
using Faster R-CNN [23].

Method AP AP0 APTS
Supervised 53.5 81.3 588
Random 28.1 52.5 262

NPID++[22] 523 79.1 56.9
PIRL [22] 540 807 597
BoWNet[11] 558 813 611
MoCovl [14] 559 815 62.6
MoCov2[7] 574 825 64.0

SwAV 56.1 82.6 627

Table 5: More detection metrics for object detection on COCO with finetuned features using
DETR [4].

Method AP APs9 APy APs APy AP
ImageNet labels 408 612 429 20.1 445 603
MoCo-v2 420 627 444 208 456 609
SwAV 421 631 445 197 463 60.9

C Ablation Studies on Clustering
C.1 Number of prototypes

In Table 8, we evaluate the influence of the number of prototypes used in SWAV. We train ResNet-50
with SWAV for 400 epochs with 2 x 160 + 4 x 96 crops (ablation study setting) and evaluate the
performance by training a linear classifier on top of frozen final representations. We observe in Table 8
that varying the number of prototypes by an order of magnitude (3k-100k) does not affect much
the performance (at most 0.3 on ImageNet). This suggests that the number of prototypes has little
influence as long as there are “enough”. Throughout the paper, we train SWAV with 3000 prototypes.
We find that using more prototypes increases the computational time both in the Sinkhorn algorithm
and during back-propagation for an overall negligible gain in performance.

C.2 Learning the prototypes

We investigate the impact of learning the prototypes compared to using fixed random prototypes.
Assigning features to fixed random targets has been explored in NAT [3]. However, unlike SWAV,
NAT uses a target per instance in the dataset, the assignment is hard and performed with Hungarian
algorithm. In Table 9 (left), we observe that learning prototypes improves SWAV from 73.1 to 73.9
which shows the effect of adapting the prototypes to the dataset distribution.

Overall, these results suggest that our framework learns from a different signal from "offline"
approaches that attribute a pseudo-label to each instance while considering the full dataset and then
predict these labels (like DeepCluster [5] for example). Indeed, the prototypes in SWAV are not
strongly encouraged to be categorical and random fixed prototypes work almost as well. Rather, they
help contrasting different image views without relying on pairwise comparison with many negatives
samples. This might explain why the number of prototypes does not impact the performance
significantly.

C.3 Hard versus soft assignments

In Table 9 (right), we evaluate the impact of using hard assignment instead of the default soft
assignment in SWAV. We train the models during 400 epochs with 2 x 160 + 4 x 96 crops (ablation
study setting) and evaluate the performance by training a linear classifier on top of frozen final
representations. We also report the training losses in Fig. 3. We observe that using the hard

Table 6: Low-shot learning on ImageNet. Top-1 and top-5 accuracies when training with 13 or 128
examples per category.

examples per class 13 128
topl top5 topl top5

No pretraining 254 484 564 804

SwAV IG-1B 382 67.1 647 87.2

Table 7: KNN classifiers on ImageNet. We report top-1 accuracy with 20 and 200 nearest neighbors.

Method 20-NN 200-NN
NPID [26] - 46.5
LA [28] - 49.4
PCL [18] 54.5 -
SwAV 59.2 55.8

assignments performs worse than using the soft assignments. An explanation is that the rounding
needed to obtain discrete codes is a more aggressive optimization step than gradient updates. While it
makes the model converge rapidly (see Fig. 3), it leads to a worse solution.

C.4 Impact of the number of iterations in Sinkhorn algorithm

In Table 10, we investigate the impact of the number of normalization steps performed during
Sinkhorn-Knopp algorithm [8] on the performance of SwAV. We observe that using only 3 iterations
is enough for the model to converge. When performing less iterations, the loss fails to converge.
We observe that using more iterations slightly alters the transfer performance of the model. We
conjecture that it is for the same reason that rounding codes to discrete values deteriorate the quality
of our model by converging too rapidly.

D Details on Clustering-Based methods: DeepCluster-v2 and SeLa-v2

In this section, we provide details on our improved implementation of clustering-based approaches
DeepCluster-v2 and SeLa-v2 compared to their corresponding original publications [1, 5]. These two
methods follow the same pipeline: they alternate between pseudo-labels generation (“assignment
phase”) and training the network with a classification loss supervised by these pseudo-labels (“training
phase”).

8r Soft — Hard

7 k
2 6 \ Figure 3: Hard versus soft assignments. We
; I report the training loss for SWAV models trained
< 5t \ with either soft or hard assignments. The models
(,3, I are trained during 400 epochs with 2 x 160 +

4t 4 x 96 crops.

3 L

0 100 200 300 400
epochs

Table 8: Impact of number of prototypes. Top-1 ImageNet accuracy for linear models trained on
frozen features.

Number of prototypes 300 1000 3000 10000 30000 100000
Top-1 728 736 739 741 73.8 73.8

Table 9: Ablation studies on clustering. Top-1 ImageNet accuracy for linear models trained on
frozen features. (left) Impact of learning the prototypes. (right) Hard versus soft assignments.

Prototypes Learned Fixed Assignment Soft Hard
Top-1 73.9 73.1 Top-1 739 733

D.1 Training phase

During the training phase, both methods minimize the multinomial logistic loss of the pseudo-labels
q classification problem:
exp (1z'cy)
l(z,c,q) = — q®logp®, where p¥ = a .
2 e (12T cr)

The pseudo-labels are kept fixed during training and updated for the entire dataset once per epoch
during the assignment phase.

2)

Training phase in DeepCluster-v2. In the original DeepCluster work, both the classification head
c and the convnet weights are trained to classify the images into their corresponding pseudo-label
between two assignments. Intuitively, this classification head is optimized to represent prototypes
for the different pseudo-classes. However, since there is no mapping between two consecutive
assignments: the classification head learned during an assignment becomes irrelevant for the following
one. Thus, this classification head needs to be re-set at each new assignment which considerably
disrupts the convnet training. For this reason, we propose to simply use for classification head c the
centroids given by k-means clustering (Eq. 5). Overall, during training, DeepCluster-v2 optimizes
the following problem with mini-batch SGD:

min £(z, ¢, q). 3)

Training phase in SeLa-v2. In SelLa work, the prototypes c are learned with stochastic gradient
descend during the training phase. Overall, during training, SeLLa-v2 optimizes the following problem:

Iglicn l(z,c,q). 4)

)

D.2 Assignment phase

The purpose of the assignment phase is to provide assignments q for each instance of the dataset.
For both methods, this implies having access to feature representations z for the entire dataset. Both
original works [1, 5] perform regularly a pass forward on the whole dataset to get these features.
Using the original implementation, if assignments are updated at each epoch, then the assignment
phase represents one third of the total training time. Therefore, in order to speed up training, we
choose to use the features computed during the previous epoch instead of dedicating pass forwards to
the assignments. This is similar to the memory bank introduced by Wu ef al. [26], without momentum.

Table 10: Impact of the number of iterations in Sinkhorn algorithm. Top-1 ImageNet accuracy
for linear models trained on frozen features.

Sinkhorn iterations 1 3 10 30
Top-1 fail 739 73.8 73.7

Assignment phase in DeepCluster-v2. DeepCluster-v2 uses spherical k-means to get pseudo-
labels. In particular, pseudo-labels q are obtained by minimizing the following problem:

N

. 1 . T

Cél]’}lgl})l(K ~ Z mO}n -z, Cq, 5)
n=1

where z,, and the columns of C are normalized. The original work DeepCluster uses tricks such as

cluster re-assignments and balanced batch sampling to avoid trivial solutions but we found these

unnecessary, and did not observe collapsing during our trainings. As noted by Asano et al., this is

due to the fact that assignment and training are well separated phases.

Assignment phase in SeLa-v2. Unlike DeepCluster, SeLa uses the same loss during training and
assignment phases. In particular, we use Sinkhorn-Knopp algorithm to optimize the following
assignment problem (see details and derivations in the original SeLa paper [1]):

min /(z,c,q). (6)
a

Implementation details We use the same hyperparameters as SWAV to train SelLa-v2 and
DeepCluster-v2: these are described in § A. Asano et al. [1] have shown that multi-clustering
boosts performance of clustering-based approaches, and so we use 3 sets of 3000 prototypes ¢ when
training SeLa-v2 and DeepCluster-v2. Note that unlike online methods (like SWAV, SimCLR and
MoCo), the clustering approaches SeLa-v2 and DeepCluster-v2 can be implemented with only a
single crop per image per batch. The major limitation of SeLa-v2 and DeepCluster-v2 is that these
methods are not online and therefore scaling them to very large scale dataset is not posible without
major adjustments.

References

[1] Asano, Y.M., Rupprecht, C., Vedaldi, A.: Self-labelling via simultaneous clustering and repre-
sentation learning. International Conference on Learning Representations (ICLR) (2020) 8, 9,
10

[2] Bachman, P., Hjelm, R.D., Buchwalter, W.: Learning representations by maximizing mutual
information across views. In: Advances in Neural Information Processing Systems (NeurIPS)
(2019) 5

[3] Bojanowski, P., Joulin, A.: Unsupervised learning by predicting noise. In: Proceedings of the
International Conference on Machine Learning (ICML) (2017) 7

[4] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object
detection with transformers. arXiv preprint arXiv:2005.12872 (2020) 3, 6, 7

[5] Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning
of visual features. In: Proceedings of the European Conference on Computer Vision (ECCV)
(2018) 7, 8,9

[6] Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning
of visual representations. arXiv preprint arXiv:2002.05709 (2020) 2, 5, 6

[7] Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive
learning. arXiv preprint arXiv:2003.04297 (2020) 2, 4, 7

[8] Cuturi, M.: Sinkhorn distances: Lightspeed computation of optimal transport. In: Advances in
Neural Information Processing Systems (NeurIPS) (2013) 8

[9] Donahue, J., Simonyan, K.: Large scale adversarial representation learning. In: Advances in
Neural Information Processing Systems (NeurIPS) (2019) 5

[10] Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Liblinear: A library for large linear
classification. Journal of machine learning research (2008) 3

[11] Gidaris, S., Bursuc, A., Komodakis, N., Pérez, P., Cord, M.: Learning representations by
predicting bags of visual words. arXiv preprint arXiv:2002.12247 (2020) 6, 7

[12] Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image
rotations. In: International Conference on Learning Representations (ICLR) (2018) 5

10

[13] Goyal, P, Dollér, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., Tulloch, A.,
Jia, Y., He, K.: Accurate, large minibatch sgd: Training imagenet in 1 hour. arXiv preprint
arXiv:1706.02677 (2017) 2

[14] He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual
representation learning. arXiv preprint arXiv:1911.05722 (2019) 3,5, 6, 7

[15] He, K., Girshick, R., Dollér, P.: Rethinking imagenet pre-training. In: Proceedings of the
International Conference on Computer Vision (ICCV) (2019) 4

[16] Hénaff, O.J., Razavi, A., Doersch, C., Eslami, S., Oord, A.v.d.: Data-efficient image recognition
with contrastive predictive coding. arXiv preprint arXiv:1905.09272 (2019) 5

[17] Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian, Y., Isola, P., Maschinot, A., Liu, C.,
Krishnan, D.: Supervised contrastive learning. arXiv preprint arXiv:2004.11362 (2020) 4

[18] Li,J., Zhou, P., Xiong, C., Socher, R., Hoi, S.C.: Prototypical contrastive learning of unsuper-
vised representations. arXiv preprint arXiv:2005.04966 (2020) 2, 3, 6, 8

[19] Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Doll4r, P., Zitnick, C.L.:
Microsoft coco: Common objects in context. In: Proceedings of the European Conference on
Computer Vision (ECCV) (2014) 3, 6

[20] Loshchilov, I., Hutter, F.: Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983 (2016) 2, 4

[21] Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen, E., Garcia, D., Ginsburg, B.,
Houston, M., Kuchaiev, O., Venkatesh, G., et al.: Mixed precision training. arXiv preprint
arXiv:1710.03740 (2017) 2

[22] Misra, 1., van der Maaten, L.: Self-supervised learning of pretext-invariant representations.
arXiv preprint arXiv:1912.01991 (2019) 2, 3,6, 7

[23] Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with
region proposal networks. In: Advances in Neural Information Processing Systems (NeurIPS)
(2015) 3,6,7

[24] Tian, Y., Krishnan, D., Isola, P.: Contrastive multiview coding. arXiv preprint arXiv:1906.05849
(2019) 5

[25] Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2. https://github.com/
facebookresearch/detectron2 (2019) 3

[26] Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance
discrimination. In: Proceedings of the Conference on Computer Vision and Pattern Recognition
(CVPR) (2018) 6, 8,9

[27] You, Y., Gitman, L., Ginsburg, B.: Large batch training of convolutional networks. arXiv preprint
arXiv:1708.03888 (2017) 2,4

[28] Zhuang, C., Zhai, A.L., Yamins, D.: Local aggregation for unsupervised learning of visual
embeddings. In: Proceedings of the International Conference on Computer Vision (ICCV)
(2019) 6, 8

11

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

