
Neuron-level Structured Pruning using Polarization
Regularizer

Tao Zhuang1, Zhixuan Zhang∗1, Yuheng Huang2, Xiaoyi Zeng1, Kai Shuang2, Xiang Li1
1Alibaba Group

2Beijing University of Posts and Telecommunications
{zhuangtao.zt, zhibing.zzx}@alibaba-inc.com, hyhlryf@bupt.edu.cn,
yuanhan@taobao.com, shuangk@bupt.edu.cn, leo.lx@alibaba-inc.com

Abstract

Neuron-level structured pruning is a very effective technique to reduce the compu-
tation of neural networks without compromising prediction accuracy. In previous
works, structured pruning is usually achieved by imposing L1 regularization on the
scaling factors of neurons, and pruning the neurons whose scaling factors are below
a certain threshold. The reasoning is that neurons with smaller scaling factors have
weaker influence on network output. A scaling factor close to 0 actually suppresses
a neuron. However, L1 regularization lacks discrimination between neurons be-
cause it pushes all scaling factors towards 0. A more reasonable pruning method is
to only suppress unimportant neurons (with 0 scaling factors), and simultaneously
keep important neurons intact (with larger scaling factor). To achieve this goal,
we propose a new regularizer on scaling factors, namely polarization regularizer.
Theoretically, we prove that polarization regularizer pushes some scaling factors to
0 and others to a value a > 0. Experimentally, we show that structured pruning
using polarization regularizer achieves much better results than using L1 regular-
izer. Experiments on CIFAR and ImageNet datasets show that polarization pruning
achieves the state-of-the-art result.

1 Introduction

Network pruning is proved to effectively reduce the computational cost of inference without signifi-
cantly compromising accuracy [Liu et al., 2019a]. There are two major branches of network pruning.
One branch is unstructured pruning, which prunes at the level of individual weights [LeCun et al.,
1989, Han et al., 2015, Zhou et al., 2019, Ding et al., 2019, Frankle and Carbin, 2019]. The other
branch is structured pruning, which prunes at the level of neurons (or channels) [Wen et al., 2016,
Liu et al., 2017, Ye et al., 2018]. Although unstructured pruning usually reduces more weights than
structured pruning [Liu et al., 2019a], it has the drawback that the resulting weight matrices are
sparse, which cannot lead to speedup without dedicated hardware or libraries [Han et al., 2016]. In
this paper, we focus on neuron-level structured pruning, which does not require additional hardware
or libraries to reduce computation on common GPU/CPU devices.

For structured pruning, one promising method is to associate each neuron with a scaling factor,
and regularize these scaling factors in training. Then neurons with scaling factors below a certain
threshold are pruned [Huang and Wang, 2018]. The regularizer on scaling factors is usually chosen
to be L1 [Liu et al., 2017]. However, L1 regularizer tries to push all scaling factors to 0. It is often
difficult to find a reasonable pruning threshold. For example, the distribution of scaling factors under
L1 regularization for VGG-16 network trained on CIFAR-10 dataset is shown in Figure 1 (a), where

∗Corresponding author

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

0.0 0.2 0.4
100

101

102

103

C
ou

nt

(a) L1 Regularization

0.0 0.2 0.4
100

101

102

103

(b) Polarization

Value of scaling factors

Figure 1: The distributions of scaling factors in VGG-16 trained on CIFAR-10 dataset, with L1 and
polarization regularizers respectively. Under the same pruning ratio for both regularizers, the orange
part are pruned.

the scaling factors distribute densely around the threshold value. A cut at the threshold value is not
very reasonable because there is no margin around the threshold to separate the pruned neurons
from the preserved ones. Pruning with this threshold will lead to severe accuracy drop. A more
reasonable regularizer should separate the pruned and the preserved neurons more obviously, with a
larger margin between them. To attain this goal, we propose a novel regularizer named polarization.
Different from L1 regularizer that pushes all scaling factors to 0, polarization simultaneously pushes
a proportion of scaling factors to 0 (thus pruning these neurons), and the rest scaling factors to a
value larger than 0 (thus preserving these neurons). Intuitively, instead of suppressing all neurons
in pruning, polarization tries to suppress only a proportion of neurons while keeps others intact.
Polarization regularizer naturally makes a distinction between pruned and preserved neurons. And
the resulted scaling factors are more separable. As shown in Figure 1 (b), polarization leads to an
obvious margin between scaling factors of the pruned neurons (the orange part) and the preserved
ones (the blue part). Pruning using polarization is more reasonable because the pruned neurons
has much smaller influence on network output than the preserved neurons. Our code is available at
https://github.com/polarizationpruning/PolarizationPruning.

We summarize our contributions as follows:

• We propose a novel regularizer, namely polarization, for structured pruning of neural
networks. We theoretically analyzed the properties of polarization regularizer and proved
that it simultaneously pushes a proportion of scaling factors to 0 and others to values larger
than 0.

• We verify the effectiveness of polarization pruning on the widely-used CIFAR and ImageNet
datasets, and achieve state-of-the-art pruning results.

2 Related Work

Neuron-level structured pruning is also called channel/filter pruning in works focusing on convolu-
tional neural network (CNN) structures. It is equivalent to unstructured pruning with the constraint
that all weights connected to one neuron must be pruned or preserved together. There are usually
three stages for structured pruning [Liu et al., 2019a]: 1) train an over-parameterized model, 2) prune
the trained model according to some criteria, and 3) fine-tune the pruned model to boost performance.
Structured pruning methods are characterized by how to handle these 3 stages, especially the training
stage. Some methods [Li et al., 2017, He et al., 2018a, 2019] do not add extra sparsity regularizer
on the weights of networks in the training stage, while other works [Wen et al., 2016, Zhou et al.,
2016, Alvarez and Salzmann, 2016, Lebedev and Lempitsky, 2016, He et al., 2017] impose group
sparsity regularization on network weights during training. Yang et al. [2020] propose to use the
Hoyer regularizer for pruning. Peng et al. [2019] exploit the inter-channel dependency to determine
the optimal combination of preserved channels in the pre-trained model. Luo and Wu [2020] insert
binary mask layers after convolution layers during training and removes filters corresponding to zero
mask values. Zhuang et al. [2018] fine-tune the pre-trained model with discrimination-aware losses
to choose the channels of each layer in the training stage. A group of sparsity regularization pruning

2

https://github.com/polarizationpruning/PolarizationPruning

methods introduce a scaling factor for each neuron and add sparsity regularization on the scaling
factors in training. Then neurons are pruned based on the values of their scaling factors. Liu et al.
[2017] and Ye et al. [2018] use the scale factor in Batch Normalization (BN) as the scaling factor for
each neuron, whereas Huang and Wang [2018] add a new scaling factor for each neuron and thus
does not depend on BN anymore. During training, L1 regularizer is imposed on the scaling factors of
neurons to induce sparsity [Liu et al., 2017, Ye et al., 2018]. After training, neurons with the smallest
scaling factors are pruned. Our method falls into this group. And the work most related to ours is [Liu
et al., 2017]. We also use the scale factor in BN as the scaling factor of a neuron. But different from
all previous works, we propose a novel polarization regularizer to make the pruned and preserved
neurons more separable.

Another remotely related area is Neural Architecture Search (NAS), which is employed to find
computationally efficient architectures [He et al., 2018b, Liu et al., 2019b]. And some works [Cai
et al., 2020] requires much more computation in the training and search processes. Our method is a
sparsity regularization pruning method. So we do not focus on comparisons with these NAS methods
in this paper.

3 Structured Pruning through Polarization

3.1 Preliminaries

Given a training set {(xi,yi)}Ni=1, where xi,yi denote the input feature and the label of sample
i respectively, we need to train a neural network f(x;θ) where θ denotes the parameters of the
network. We introduce a scaling factor for each neuron and represent the scaling factors as a vector
γ ∈ Rn, where n is the number of neurons in the network. As in [Liu et al., 2017], we use the scale
factor in BN as the scaling factor of each neuron, because of the wide adoption of BN in modern
neural networks. The objective function for network training with regularization on scaling factors is:

min
θ

1

N

N∑
i=1

L(f(xi;θ),yi) +R(θ) + λRs(γ) (1)

where L(·) is the loss function, R(·) is usually the L2 regularization on weights of the network, and
Rs(·) is the sparsity regularizer on scaling factors of neurons. In pruning, a threshold is chosen
and neurons with scaling factors below the threshold are pruned. In [Liu et al., 2017], the sparsity
regularizer is chosen to be L1, i.e. Rs(γ) = ‖γ‖1. The effect of L1 regularization is to push all
scaling parameters to 0. Therefore, L1 regularization lacks discrimination between pruned and
preserved neurons. A more reasonable pruning method is to only suppress unimportant neurons (with
0 scaling factor) and simultaneously keep important neurons intact (with larger scaling factor). To
achieve this goal, we propose a new regularizer on scaling factors, namely polarization regularizer.

3.2 Polarization Regularizer

Let γ = (γ1, γ2, . . . , γn), and 1n = (1, 1, · · · , 1) ∈ Rn. Let γ̄ denote the mean of γ1, . . . , γn:

γ̄ :=
1

n
1>n γ =

1

n

n∑
i=1

γi

γi is the scaling factor for neuron i. Obviously, a scaling factor should be positive and bounded. So
it is reasonable to constrain each scaling factor to a range: γi ∈ [0, a], where a > 0. L1 regularizer
pushes all scaling factors to 0, because the optimal solution of minγ∈[0,a]n‖γ‖1 is 0. To obtain the
polarization effect, we need to prevent the scaling factors from converging to one value. So we define
the polarization regularizer to be:

Rs(γ) = t‖γ‖1 − ‖γ − γ̄1n‖1

=

n∑
i=1

t|γi| − |γi − γ̄|, (t ∈ R, γi ∈ [0, a]) (2)

In Equation (2), we add the new term−‖γ− γ̄1n‖1 to the L1 term ‖γ‖1. The effect of−‖γ− γ̄1n‖1
is to separate γi, 1 ≤ i ≤ n from their average as far as possible. Actually, −‖γ − γ̄1n‖1 reaches its

3

maximum value when all γi are equal, and reaches its minimum value when half of γi, 1 ≤ i ≤ n
equals 0, while the other half equals a. We also use a hyper-parameter t to control the weight of ‖γ‖1
relative to −‖γ − γ̄1n‖1. As we will show later, t also controls the proportion of scaling factors that
equal 0 under polarization regularizer.

The polarization regularizer has several nice properties. The first property is permutation invariance:
Let π(γ) denote the vector obtained by an arbitrary permutation of γ on its n dimensions. Then it
is obvious that Rs(π(γ)) = Rs(γ), which means that the polarization regularizer is permutation
invariant. This property ensures all neurons be equally treated in pruning: no prior pruning bias for
any neuron. The second property is concavity, as stated in Lemma 3.1:
Lemma 3.1. Rs(γ) defined in Equation (2) is concave.

To see the effect of polarization regularizer more clearly, we need to solve the following minimization
problem:

min
γ∈[0,a]n

Rs(γ) =

n∑
i=1

t|γi| − |γi − γ̄|, (t ∈ R) (3)

This is a minimization of Rs(γ) on an n-dimensional cube. Utilizing the concavity of Rs(γ), we
prove that the optimal value of Equation (3) is attained on vertices of the n-dimensional cube [0, a]n.
It is well known that an n-dimensional cube has 2n vertices. Utilizing the permutation invariance
property of Rs(γ), we finally prove the following theorem:
Theorem 3.2. A class of optimal solutions of Equation (3) is that either bnρc or bnρc+ 1 number
of γi, (1 ≤ i ≤ n) are a, and the rest are 0, where:

ρ =

{ −t/4 + 1/2, −2 ≤ t ≤ 2
0, t > 2
1, t < −2

(4)

The detailed proof of Lemma 3.1 and Theorem 3.2 is in Appendix A. Theorem 3.2 states that the
effect of polarization regularizer is to push a proportion of scaling factors to 0 and the rest scaling
factors to a. The proportion ρ depends piecewise linearly on the hyper-parameter t as in Equation (4).
Therefore, Theorem 3.2 precisely shows the effect of polarization regularizer, and tells that the
proportion of 0s is determined by t.

As for the choice of a scaling factor for a neuron, it is convenient to reuse the scale factor in BN
of this neuron if it has BN. It is also feasible to introduce an extra scaling factor on the output of a
neuron as in [Huang and Wang, 2018]. Our polarization regularizer is applicable for both choices of
scaling factors above. To fully separate the two poles, the upper bound a of scaling factors should not
be too small, especially when reusing the scale factors in BN. The reason is as follows. Let z(i)in and
z
(i)
out be the input and output of BN on neuron i, then BN performs the following transformation:

ẑ =
z
(i)
in − E[z

(i)
in]√

Var[z(i)in]

z
(i)
out = γiẑ + βi

where E[z
(i)
in] and Var[z(i)in] are the mean and variance of z(i)in respectively. As pointed out in [Ioffe and

Szegedy, 2015], it is important for BN to include the identity transform by setting γi =

√
Var[z(i)in]

and βi = E[z
(i)
in]. Therefore, a should be sufficiently large such that ∀1 ≤ i ≤ n, a >

√
Var[z(i)in].

Implementation Details In the training stage, we optimize Equation (1) using Stochastic Gradient
Descent (SGD). Due to the L1 norm in Rs(·), there exist nondifferentiable points in Equation (1).
We use subgradients on these nondifferentiable points. To implement the constraint that γi ∈ [0, a],
we simply clamp the value of γi to a when it is larger than a, and clamp it to 0 when it is smaller
than 0 during the training process. All scaling factors are initialized to be 0.5 in image classification
tasks as in [Liu et al., 2017]. We find that in our neural networks, the standard deviation of input to
BN is mostly smaller than 1. Therefore, we set the upper bound of scaling factor a to 1 in this paper.
Empirically, we find that the pruning result is insensitive to the exact value of a.

4

0.00 0.05 0.10 0.15 0.20 0.25
Value of scaling factors

100

101

102

C
ou

nt

threshold

Figure 2: Our strategy to determine the pruning threshold.

3.3 Pruning Strategy

After training with the polarization regularizer, we obtain the values and distribution of scaling factors.
We still need a threshold value to prune away neurons with small scaling factors. In [Liu et al.,
2017], the threshold is determined by the percentile of neurons to be pruned. Although this method
precisely controls the percentile of neurons to be pruned, it often leads to an unreasonable threshold,
as shown in Figure 1 (a). We utilize the polarization effect and propose a more reasonable strategy to
automatically set the threshold. Because of the polarization effect, the distribution graph always has
at least two local maximums (peaks): one is centered near 0, and others are centered around larger
values, as is shown in Figure 2. Our strategy is to only prune the neurons that belong to the peak
nearest to 0. So the threshold is located at the tail of the peak nearest to 0, as shown by the example
in Figure 2. More specifically, when we draw the distribution histogram, we set the bin width to
0.01. Then we scan the bins in the histogram from left to right and find the first local minimum
bin. Then the horizontal coordinate of this bin is the threshold for pruning. Using this strategy, we
automatically prune the neurons with scaling factors nearest to 0. And empirically we find that this
strategy produces good pruning results very robustly.

In our method, we control the number of reduced Floating-point Operations (FLOPs) by adjusting
two hyper-parameters: λ in Equation (1) and t in Equation (2). Given a targeted number of reduced
FLOPs, our aim is to choose values of λ and t so that polarization pruning will actually reduce the
targeted number of FLOPs. Note that the number of reduced FLOPs is positively related to the
number of pruned neurons. Theorem 3.2 gives the equation on how the ratio of 0 scaling factors,
which equals 1−ρ, is determined by hyper-parameter t under polarization regularizer alone. However,
when minimizing the training objective in Equation (1), where polarization regularizer is just one
part of the objective, there is no theory to quantitatively describe the relation between ρ and t. It is
obvious that the hyper-parameter λ in Equation (1) also affects the number of reduced FLOPs. We
will present experiment results on the effects of the hyper-parameters λ and t in Section 4.4.

Given a targeted reduced FLOPs, we use a search strategy to determine the hyper-parameters λ and
t. We first empirically set λ and t to a range and a value, and then proceed by line search until we
are close to the targeted FLOPs. The search algorithm aims to find hyper-parameters that lead to a
FLOPs reduction F ∈ (F ∗−δ, F ∗+δ), where F ∗ is the target reduction and δ is a permissible range.
Our algorithm first performs a coarse search on λ, then carries out a fine search on t, as described
in Algorithm 1. In the image classification experiments in this paper, the permissible range δ is set
to 5%. Empirically, our algorithm needs to try out about 5 groups of hyper-parameters to stop. For
each group of hyper-parameters we only need to train 30 epochs on ImageNet dataset for the FLOPs
reduction to be stable, rather than the 120 epochs in full training. So the computational overhead of
our search is not too much in practice. Note that Algorithm 1 is empirically designed for the image
classification tasks in this paper. Strictly speaking, lines 11-18 in Algorithm 1 have a risk of being an
infinite loop. However, empirically Algorithm 1 works well and efficiently in our experiments.

After pruning, we fine-tune the pruned network on the training data.

4 Experiments

In this section, we carried out extensive experiments to evaluate our approach on the image classifi-
cation task, which is the most widely-used task to test pruning methods. We presents the our main

5

Algorithm 1 Search for hyper-parameters of Polarization Pruning
Input: Target FLOPs reduction F ∗ with a permissible range δ.
Output: Hyper-parameter values (λ, t), such that, after pruning, the FLOPs reduction F ∈ (F ∗ −

δ, F ∗ + δ).
1 Initialize (λl, λu, t) = (0, 2.0× 10−4, 1.2)
// Fix t and search for λ such that |F − F ∗| < 2δ using binary search.

2 do
3 λ← (λl + λu)/2;
4 Train network with (λ, t) until the corresponding FLOPs reduction F is stable;
5 if F − F ∗ ≥ 2δ then
6 λu ← λ;
7 else if F − F ∗ ≤ −2δ then
8 λl ← λ;
9 end

10 while |F − F ∗| ≥ 2δ;
// Fix λ and search for t such that |F − F ∗| < δ.

11 while |F − F ∗| ≥ δ do
12 if F − F ∗ ≥ δ then
13 t← t− 0.1
14 else
15 t← t+ 0.1
16 end
17 Train network with (λ, t) until the corresponding FLOPs reduction F is stable;
18 end

experiment results in Section 4.3. In Section 4.4, we discuss the effect of hyper-parameters in our
approach. To compare the effects of L1 and polarization regularizers, we visualize the distributions
of scaling factors in the training process. We also compare the distributions of the scale factors in BN
induced by different regularizers with that of the baseline model. At last, we experiment on a wider
spectrum of FLOPs reduction.

4.1 Datasets and Compared Methods

As pointed out in [Gale et al., 2019], the same pruning method may behave differently on small
datasets and large datasets. Therefore, we evaluate our method on both small datasets (CIFAR
10/100 [Krizhevsky et al., 2009]) and a large dataset (ImageNet [Russakovsky et al., 2015]). We also
experiment with three widely-used deep CNN structures: the VGG-Net [Simonyan and Zisserman,
2015], ResNet [He et al., 2016], and MobileNet V2 [Sandler et al., 2018]. This also makes difficulties
for us to compare with previous works, because many works only performed experiment in one
dataset, or on one network structure. Therefore, on each dataset and network structure, we only
compare with those works that have published experiment results on this dataset and network structure.
For a method that released codes, we also run it in our experimental setting. If we get better results
for this method than the originally published ones, we will use the better results for this method in our
comparisons, and append a “(Our-impl.)” suffix for this method in our result tables. Otherwise we
will use the originally published results for this method. We have reviewed all the compared methods
in Section 2. Some methods, such as CCP-AC in [Peng et al., 2019], insert additional auxiliary
classifiers into the network. As pointed out in [Peng et al., 2019], it is unfair to directly compare
these methods with other methods. So we do not compare with these methods in our experiments.

4.2 Experimental Setup

The base VGG model is implemented following [Liu et al., 2017], which add BN to the fully
connected layers of VGG. The base ResNet model is implemented following [He et al., 2016].
Specifically, our code implementation is based on PyTorch and Torchvision [Paszke et al., 2019]. We
list the detailed parameters in our training in Appendix B. We adjust the hyper-parameters λ and t in
our polarization regularizer to control the reduced FLOPs as described in Section 3.3. For ResNet
and MobileNet V2, we prune blocks with residual connections as [He et al., 2019], where the last

6

Table 1: Results on CIFAR-10 and CIFAR-100. Best results are bolded.

Dataset Model Approach
Baseline Pruned

Acc. (%) Acc. (%) Acc.
Drop (%)

FLOPs
Reduction

CIFAR-10

ResNet-56

NS [Liu et al., 2017] (Our-impl.) 93.80 93.27 0.53 48%
CP [He et al., 2017] 92.80 91.80 1.00 50%

AMC [He et al., 2018b] 92.80 91.90 0.90 50%
DCP [Zhuang et al., 2018] 93.80 93.49 0.31 50%

DCP-adapt [Zhuang et al., 2018] 93.80 93.81 -0.01 47%
SFP [He et al., 2018a] 93.59 93.35 0.24 51%

FPGM [He et al., 2019] 93.59 93.49 0.10 53%
CCP [Peng et al., 2019] 93.50 93.46 0.04 47%

DeepHoyer [Yang et al., 2020] (Our-impl.) 93.80 93.54 0.26 48%
Ours 93.80 93.83 -0.03 47%

VGG-16
FPGM [He et al., 2019] 93.58 93.54 0.04 34%

NS [Liu et al., 2017] (Our-impl.) 93.88 93.62 0.26 51%
Ours 93.88 93.92 -0.04 54%

CIFAR-100

ResNet-56 NS [Liu et al., 2017] (Our-impl.) 72.49 71.40 1.09 24%
Ours 72.49 72.46 0.06 25%

VGG-16
NS [Liu et al., 2017] (Our-impl.) 73.83 74.20 -0.37 38%

COP [Wang et al., 2019] 72.59 71.77 0.82 43%
Ours 73.83 74.25 -0.42 43%

convolution layer in each residual block is padded with zeros to align with the input to the block and
the details on pruning ResNet-50 are shown in Appendix C.

Table 2: Results on ImageNet. Best results are bolded.

Model Approach
Baseline Pruned

Acc. (%) Acc. (%) Acc.
Drop (%)

FLOPs
Reduction

ResNet-50

NS [Liu et al., 2017] (Our-impl.) 76.15 74.88 1.27 53%
SSS [Huang and Wang, 2018] 76.12 71.82 4.30 43%

DCP [Zhuang et al., 2018] 76.01 74.95 1.06 56%
FPGM [He et al., 2019] 76.15 74.13 2.02 53%
CCP [Peng et al., 2019] 76.15 75.21 0.94 54%

MetaPruning [Liu et al., 2019b] 76.6 75.4 1.2 50%
SFP [He et al., 2018a] 76.15 62.14 14.01 42%

PFP [Liebenwein et al., 2020] 76.13 75.21 0.92 30%
AutoPruner [Luo and Wu, 2020] 76.15 74.76 1.39 49%

Ours 76.15 75.63 0.52 54%

MobileNet v2

AMC [He et al., 2018b] 71.8 70.8 1.0 27%
MetaPruning [Liu et al., 2019b] 72.0 71.2 0.8 27%

DeepHoyer [Yang et al., 2020] (Our-impl.) 72.0 71.7 0.3 25%
Ours 72.0 71.8 0.2 28%

4.3 Experiment Results

We compare the performances of different pruning methods in terms of the accuracy and FLOPs
reduction. For each method, we report its baseline model accuracy (Baseline Acc.), its fine-tuned
accuracy after pruning (Pruned Acc.), and the accuracy drop (Acc. Drop) between baseline and
pruned accuracy. The FLOPs are reported as the pruning ratio, i.e. the ratio of the FLOPs reduced by
pruning to the FLOPs of the baseline model.

The CIFAR dataset is a relatively small dataset for image classification. It is the most widely used
dataset to compare neural network pruning methods. The experiment results on CIFAR datasets
are shown in Table 1. Note that a negative accuracy drop in Table 1 means that the pruned model
gets better accuracy than its unpruned baseline model. On CIFAR-10, ResNet-56 task, our method
achieves the smallest accuracy drop (-0.03%) and the best pruned accuracy while pruning 47%

7

0.5 1.0 1.5
t

0.004

0.006

0.008

0.010

0.012

Ac
c.
 D
ro
p
(%

)

Acc. Drop
FLOPs

0.2 0.4 0.6 0.8 1.0
λ 1e−4

−0.002

0.000

0.002

0.004

0.006

0.008

0.010

Ac
c.
 D
ro
p
(%

)

Acc. Drop
FLOPs0.50

0.55

0.60

0.65

FL
OP

s (
%
)

0.30
0.35
0.40
0.45
0.50
0.55
0.60

FL
OP

s (
%
)

Figure 3: The effect of the hyper-parameters t and λ on the reduced FLOPs and accuracy drop for
polarization pruning. When we draw the figure of t, the value of λ is fixed to 1e-4. When we draw
the figure of λ, the value of t is fixed to 1.0. We conduct each experiment for 3 times and report the
mean value of the accuracy drop and the FLOPs.

FLOPs, which is much better than other methods. On CIFAR-10, VGG-16 task, our method also
achieves the smallest accuracy drop and the best pruned accuracy, with FLOPs reduction similar
to NS. On the CIFAR-100 dataset, few previous works on channel pruning have experimented and
reported their results. So we only compare with NS and COP on CIFAR-100. And our method still
achieves the best results as shown in Table 1.

The ImageNet dataset is a much larger dataset compared to CIFAR. The experiment results on
ImageNet dataset are shown in Table 2. On ImageNet, ResNet-50 task, our method achieves the
smallest accuracy drop and the best pruned accuracy with a FLOPs very close to other methods.
MobileNet V2 is optimized for computation efficiency on mobile devices and contains less redundant
computations. Therefore, it is more difficult to prune compared to ResNet-50. On ImageNet,
MobileNet task, our method still has the smallest accuracy drop with similar FLOPs reduction to
other methods. In summary, our method achieves state-of-the-art channel pruning results on both
CIFAR and ImageNet datasets.

4.4 Analysis

The Effect of Hyper-parameters In Section 3.3, we point out that there is no theory to quantita-
tively describe how the number of reduced FLOPs depends on the hyper-parameters λ in Equation (1)
and t in Equation (2). As shown in Figure 3, we empirically studied the effect of the hyper-parameters
t and λ on the number of reduced FLOPs as well as the accuracy drop between baseline and the
pruned model. Figure 3 shows that when t gets larger, the reduced FLOPs also gets larger. This is
reasonable because according to Theorem 3.2, when t gets larger, polarization regularizer will push
more scaling factors to 0, and thus more neurons/FLOPs will be pruned. At the same time, the overall
trend of the accuracy drop is to gets larger, but with more fluctuations in the curve. This shows that
the accuracy drop does not increase monotonically with respect to t. A larger t, and thus more FLOPs
reduction, does not always lead to a larger accuracy drop. When λ gets larger, both of the FLOPs
reduction and accuracy drop get larger monotonically. This is also reasonable because λ is the overall
weight for polarization regularizer in Equation (1). As λ gets larger, polarization regularizer has more
influence in training, causing more neurons being pruned and larger accuracy drop.

Visualizing the Effects of Regularizers in Pruning The effect of L1 and polarization regularizers
can be visualized through the distribution/histogram of scaling factors. Although Figure 1 already
shows an example, we visualize them in more details in Figure 4. Figure 4 shows the evolution of the
distributions of scaling factors in the training process. In Figure 4, subfigures (a, b, c) correspond to
the training process of baseline ResNet-50, pruning ResNet-50 using L1 regularizer, and pruning
ResNet-50 using polarization regularizer on the ImageNet dataset respectively. In subfigure (c), we
can clearly see that polarization regularizer gradually pushes the scaling factors to two clusters, with
one cluster located at 0, and the other cluster located at a larger value. There is a clear margin between
these two clusters. On the other hand, subfigure (b) shows that L1 regularizer pushes the scaling
factors to one cluster located near 0.09. Visualization in this subsection verified our conclusion in
Section 3.2 that polarization regularizer has the effect of pushing scaling factors to different poles,
thus making the pruned and preserved neurons more separable.

8

(a) Baseline ResNet-50. (b) Pruning ResNet-50 using L1
regularizer.

(c) Pruning ResNet-50 using po-
larization regularizer.

Figure 4: The histograms of scaling factors for neurons in a layer of ResNet-50 during the training
process. The width, height, and depth of a histogram corresponds to the value of scaling factors, the
number of scaling factors, and the training epochs.

Experiments on Wider Spectrum of FLOPs Reduction Previous works on channel pruning
usually experiments with a FLOPs reduction no more than 50%. A larger FLOPs reduction may not
favor a regularization-based pruning method like ours, due to the huge regularization imposed in
the training loss. So we add experiments on larger FLOPs reduction. We compare with a simple
channel pruning method that is not based on regularization: the Uniform Channel Scaling (UCS)
method, which uses a width-multiplier to uniformly increases or decreases the channel counts across
all layers with the same proportion. We also compare with two regularization based methods: NS and
DeepHoyer. The original DeepHoyer uses pre-trained models before pruning with the regularizer,
which requires extra pre-training epochs before pruning. For fair comparisons, we run all methods
using the same experimental setup in our paper, which means exactly the same number of training
epochs are used for all methods. The results are in Table 3, which shows that our method performs
consistently better under a wide spectrum of FLOPs reductions.

Table 3: Results on large FLOPs reduction.

Dataset / Model Approach
Baseline Pruned

Acc. (%) Acc. (%) Acc.
Drop (%)

FLOPs
Reduction

CIFAR10 / ResNet56

UCS 93.80 92.25 1.55 70%
NS [Liu et al., 2017] (Our-impl.) 93.80 91.20 2.60 68%
DeepHoyer [Yang et al., 2020] 93.80 91.26 2.54 71%

Ours 93.80 92.63 1.17 71%

ImageNet / ResNet50
UCS 76.15 73.78 2.37 70%

NS [Liu et al., 2017] (Our-impl.) 76.15 70.61 5.54 70%
Ours 76.15 74.15 2.00 70%

ImageNet / MobileNetv2
UCS 72.0 63.71 8.29 61%

NS [Liu et al., 2017] (Our-impl.) 72.0 65.65 6.35 56%
Ours 72.0 67.49 4.51 57%

5 Conclusion

In this paper, we propose a novel polarization regularizer and perform structured pruning by applying
it on the scaling factors of neurons. Different from existing regularizers which push parameters to one
pole (usually 0), polarization regularizer pushes parameters to two poles. We theoretically analyzed
the properties of our polarization regularizer and empirically validate our analysis by examining
the distribution of scaling factors in pruning. Extensive experiments on image classification tasks
show that polarization regularizer produces the state-of-the-art pruning results, much better than
the commonly used L1 regularizer. Our method is easy to implement and computationally efficient,
requiring only one pass of network “pruning+fine-tuning”. The polarization regularizer can be
conveniently added to neural network training, suppressing some neurons and activating others
simultaneously. In the future, we will find more applications where the polarization effect is needed.

9

6 Broader Impact

This work has the following potential positive impact in the society: because our work saves the
computational cost of neural network inference, we can apply it to online inference services to reduce
energy consumption, which is beneficial for environmental protection. We have not noticed any
obvious negative consequences of our work.

Acknowledgments and Disclosure of Funding

This work is supported by Alibaba Group. The authors would like to thank the Search and Rec-
ommendation Division of Alibaba Group for support of this work. The authors are also grateful to
their colleagues in Alibaba who helped to provide the computing resources: Tao Lan, Pengfei Fan,
Xiaochuan Tang, and Xiaowei Lu.

References
Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of

network pruning. In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019, 2019a.

Yann LeCun, John S. Denker, and Sara A. Solla. Optimal brain damage. In David S. Touretzky, editor,
Advances in Neural Information Processing Systems 2, [NIPS Conference, Denver, Colorado, USA,
November 27-30, 1989], pages 598–605. Morgan Kaufmann, 1989.

Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and connections for
efficient neural network. In Corinna Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama,
and Roman Garnett, editors, Advances in Neural Information Processing Systems 28: Annual
Conference on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal,
Quebec, Canada, pages 1135–1143, 2015.

Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosinski. Deconstructing lottery tickets: Zeros,
signs, and the supermask. In Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS 2019, 8-14 December 2019,
Vancouver, BC, Canada, pages 3592–3602, 2019.

Xiaohan Ding, Guiguang Ding, Xiangxin Zhou, Yuchen Guo, Jungong Han, and Ji Liu. Global
sparse momentum SGD for pruning very deep neural networks. In Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, 8-14 December 2019, Vancouver, BC, Canada, pages 6379–6391, 2019.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In 7th International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019, 2019.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in deep
neural networks. In Advances in Neural Information Processing Systems 29: Annual Conference
on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pages
2074–2082, 2016.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learning
efficient convolutional networks through network slimming. In IEEE International Conference
on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017, pages 2755–2763. IEEE
Computer Society, 2017. doi: 10.1109/ICCV.2017.298.

Jianbo Ye, Xin Lu, Zhe Lin, and James Z. Wang. Rethinking the smaller-norm-less-informative
assumption in channel pruning of convolution layers. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings. OpenReview.net, 2018.

10

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz, and William J.
Dally. EIE: efficient inference engine on compressed deep neural network. In 43rd ACM/IEEE
Annual International Symposium on Computer Architecture, ISCA 2016, Seoul, South Korea, June
18-22, 2016, pages 243–254. IEEE Computer Society, 2016. doi: 10.1109/ISCA.2016.30.

Zehao Huang and Naiyan Wang. Data-driven sparse structure selection for deep neural networks. In
Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair Weiss, editors, Computer Vision -
ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings,
Part XVI, volume 11220 of Lecture Notes in Computer Science, pages 317–334. Springer, 2018.
doi: 10.1007/978-3-030-01270-0_19.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. In 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings, 2017.

Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. Soft filter pruning for accelerating
deep convolutional neural networks. In Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, IJCAI-18, pages 2234–2240. International Joint Conferences
on Artificial Intelligence Organization, 7 2018a. doi: 10.24963/ijcai.2018/309.

Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric median for
deep convolutional neural networks acceleration. In IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pages 4340–4349.
Computer Vision Foundation / IEEE, 2019. doi: 10.1109/CVPR.2019.00447.

Hao Zhou, Jose M. Alvarez, and Fatih Porikli. Less is more: Towards compact cnns. In Computer
Vision - ECCV 2016 - 14th European Conference, Amsterdam, The Netherlands, October 11-14,
2016, Proceedings, Part IV, pages 662–677, 2016. doi: 10.1007/978-3-319-46493-0_40.

Jose M. Alvarez and Mathieu Salzmann. Learning the number of neurons in deep networks. In
Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett,
editors, Advances in Neural Information Processing Systems 29: Annual Conference on Neural
Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pages 2262–2270,
2016.

Vadim Lebedev and Victor S. Lempitsky. Fast convnets using group-wise brain damage. In 2016
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA,
June 27-30, 2016, pages 2554–2564. IEEE Computer Society, 2016. doi: 10.1109/CVPR.2016.280.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks.
In IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29,
2017, pages 1398–1406. IEEE Computer Society, 2017. doi: 10.1109/ICCV.2017.155.

Huanrui Yang, Wei Wen, and Hai Li. Deephoyer: Learning sparser neural network with differentiable
scale-invariant sparsity measures. In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

Hanyu Peng, Jiaxiang Wu, Shifeng Chen, and Junzhou Huang. Collaborative channel pruning for
deep networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the
36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, volume 97 of Proceedings of Machine Learning Research, pages 5113–5122.
PMLR, 2019.

Jian-Hao Luo and Jianxin Wu. Autopruner: An end-to-end trainable filter pruning method for
efficient deep model inference. Pattern Recognition, page 107461, 2020. ISSN 0031-3203. doi:
https://doi.org/10.1016/j.patcog.2020.107461.

Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu, Yong Guo, Qingyao Wu, Junzhou Huang,
and Jin-Hui Zhu. Discrimination-aware channel pruning for deep neural networks. In Samy
Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman
Garnett, editors, Advances in Neural Information Processing Systems 31: Annual Conference
on Neural Information Processing Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal,
Canada, pages 883–894, 2018.

11

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. AMC: automl for model
compression and acceleration on mobile devices. In Computer Vision - ECCV 2018 - 15th European
Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part VII, pages 815–832,
2018b. doi: 10.1007/978-3-030-01234-2_48.

Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin Yang, Kwang-Ting Cheng, and Jian Sun.
Metapruning: Meta learning for automatic neural network channel pruning. In 2019 IEEE/CVF
International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 -
November 2, 2019, pages 3295–3304. IEEE, 2019b. doi: 10.1109/ICCV.2019.00339.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-all: Train one
network and specialize it for efficient deployment. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Francis R. Bach and David M. Blei, editors, Proceedings of the
32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015,
volume 37 of JMLR Workshop and Conference Proceedings, pages 448–456. JMLR.org, 2015.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. CoRR,
abs/1902.09574, 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115
(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016,
Las Vegas, NV, USA, June 27-30, 2016, pages 770–778. IEEE Computer Society, 2016. doi:
10.1109/CVPR.2016.90.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In CVPR, 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems 32, pages 8024–8035.
Curran Associates, Inc., 2019.

Y. He, X. Dong, G. Kang, Y. Fu, C. Yan, and Y. Yang. Asymptotic soft filter pruning for deep
convolutional neural networks. IEEE Transactions on Cybernetics, pages 1–11, 2019. ISSN
2168-2275. doi: 10.1109/TCYB.2019.2933477.

Wenxiao Wang, Cong Fu, Jishun Guo, Deng Cai, and Xiaofei He. COP: customized deep model com-
pression via regularized correlation-based filter-level pruning. In Sarit Kraus, editor, Proceedings
of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao,
China, August 10-16, 2019, pages 3785–3791. ijcai.org, 2019. doi: 10.24963/ijcai.2019/525.

Lucas Liebenwein, Cenk Baykal, Harry Lang, Dan Feldman, and Daniela Rus. Provable filter pruning
for efficient neural networks. In 8th International Conference on Learning Representations, ICLR
2020, Addis Ababa, Ethiopia, April 26-30, 2020, 2020.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Proceedings of the British
Machine Vision Conference 2016, BMVC 2016, York, UK, September 19-22, 2016, 2016.

12

Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent with warm restarts. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017.

13

