
Dynamic Submodular Maximization
(Supplementary Material)

Morteza Monemizadeh
Department of Mathematics and Computer Science

TU Eindhoven, the Netherlands
m.monemizadeh@tue.nl

1 Dynamic Algorithm with Õ(
√
kn) Amortized Update Time

In this section we prove the following theorem.

Theorem 1 Suppose we start with an empty set V . Then, there exists a randomized dynamic
algorithm that with probability at least 1 − 1

n2 maintains a 1
2 -approximation of a cardinality-

constrained monotone submodular maximization for any sequence of z updates (inserts and deletes)
in Õ(z ·

√
kn)1 time, i.e., Õ(

√
kn) amortized update time.

Overview of Proof of Theorem 1. An interesting property of a submodular function f : 2V → R+

is that it satisfies f(A ∪ {e}) − f(A) ≥ f(A ∪ {e}) − f(A) for all A ⊆ B ⊆ V and e /∈ B. Our
main idea is to combine this property with a logarithmic rate of sampling and then greedily collect
the heavy items (whose marginal gain are above a threshold) and remove light items (whose marginal
gain are below a threshold) at each rate.

Let us first consider the offline scenario. We later show how to handle insertion and deletion of
elements. Suppose we are given a ground set V of size n endowed with a monotone submodular
function f : 2V → R+ under a cardinality constraint parameterized by 0 < k ≤ n. Recall
that OPT = maxS⊆V :|S|≤k f(S). Recall that we denote by S∗ the subset of size at most k that
achieves the optimal value OPT = f(S∗). Our algorithm (that we call it Algorithm Sampling)
is a refinement of Algorithm [LV19]. It returns a set G ⊆ V of size at most k with approximation
guarantee f(G) ≥ 1

2 ·OPT . We prove it in this section for the sake of completeness.

The algorithm is as follows: Suppose we are given the value of OPT . We sample a set S ⊆ V
of O(

√
kn) elements uniformly at random. We set a threshold τ = OPT

2k and invoke the greedy
algorithm (described in main part of the paper) with the input set S to return a set GS of elements
whose marginal gain is at least the threshold τ . We then filter (described in main part of the paper)
those elements of V \S whose marginal gain with respect to the set GS is below τ . Observe that the
set GS might be empty. Let R be the set of points that survive after the filtering step. We prove that
the size of R drops significantly, that is, |R| ≤ O(k ·

√
n). We later invoke the greedy algorithm on

the input set R to complete the set G of elements whose marginal gain is at least the threshold τ .

Next consider a dynamic scenario where elements are inserted to V or deleted from V . Suppose
at a time t a new element e is inserted. We assume that we are given the sets V, S,GS , R,G in the
beginning of time t. We first add e to the ground set V . Recall that at any time t the ground set
contains those elements that have been inserted up to the time t, but not deleted.

With probability p = 4
√

k
n , we do a heavy computation. During the heavy computation, we restart

the sampling process (Algorithm Sampling) from scratch. With probability 1 − p, we do a light
computation. A light computation consists of checking two conditions.

1Õ(g(n)) = O(ε−1 logn · g(n)) for an asymptotic function g(n).

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

• If the marginal gain of adding the element e to GS is above the threshold τ and GS has less
than k elements, we add e to the set R.

• If the first condition is fulfilled and the marginal gain of adding the element e to G is above
the threshold τ and G has less than k elements, we add e to the set G.

Next suppose at a time t a new element e is deleted. We assume that we are given the sets
V, S,GS , R,G in the beginning of time t. We first remove e from the ground set V . Recall that at any
time t the ground set contains those elements that have been inserted up to the time t, but not deleted.

If e ∈ GS , we do a heavy computation. During the heavy computation, we restart the sampling
process (Algorithm Sampling) from scratch. If e /∈ GS , we do a semi-heavy computation. As for the
semi-heavy computation, if e /∈ R, we do nothing. But if e ∈ R, we eliminate e from R and then run
the greedy algorithm for the set R to find those elements of R whose marginal gain with respect to
the set GS is at least the threshold τ .

To have the dynamic algorithm that works with high probability we create O(log n) instances of this
recursive sampling and run all of them in parallel. After any sequence of z insertions and deletions,
we drop those instances whose computations are more than cz

√
kn for some constant c. We show

that with high probability it remains at least one instance whose total computation is at most cz
sqrtkn. That is, the amortized update time of that instance is c

√
kn.

Finally we should mention that for the threshold τ we choose OPT
2k assuming we know OPT . In

reality we do not know OPT . We can consider two scenarios. The first scenario is when we are given
a bound on the maximum element of V , that is, say maxe∈V f(e) = Θ(Γ). This is actually a fair
assumption that we often make when we generalize the insertion-only streaming model to dynamic
streaming models. For example, Frahling and Sohler in [FS05] show that we can find coresets of
small size for many clustering problems (a subset of submodular optimization problems) in dynamic
geometric streams if we have an upper-bound on the maximum cost of the optimal clustering,
something which is not possible if we do not have such an upper-bound. Since OPT ≤ ck · Γ for
a reasonably large constant c, we run our recursive sampling algorithm for ` ∈ [0..ε−1 · log(ckΓ)]
guesses (1 + ε)` of OPT and report the best solution of all guesses. This blows up the update time
by a factor ε−1 log(kΓ) and the approximation factor would be (1/2− ε).

If we are not given such a bound, we can keep a max heap of the elements that are inserted but not
deleted at any time t. The insertion and deletion times of the max heap are logarithmic in terms of
the number n of items that are stored in the max heap. Finding the maximum r elements stored in the
heap can be done in O(r log n) time. We then do as follows. We sample a set S of O(

√
nk) elements

and let Γ = maxe∈V f(e) and run the algorithm as for the first scenario. In parallel, at any time t, we
extract the set T of maximum O(

√
nk) elements from the max heap and run the greedy algorithm

due to Nemhauser, Wolsey and Fisher [NWF78] for T . At the end, we report the best solution of
these two parallel runs. In this way, the update time remains as Õ(

√
nk) and the approximation factor

would be (1/2± ε).

We first give the offline algorithm and prove that the approximation factor of this algorithm is
(1/2± ε). Later we show how we can implement the insertion and deletion subroutines in Õ(

√
kn)

amortized update time.

1.1 Offline Algorithm

We first prove the size of the set R is at most
√
nk with high probability and then we prove that the

approximation ratio of Algorithm Sampling is 1/2.

Lemma 2 The size of the set R returned by Subroutine Filtering in Step 4 of Algorithm Sampling is
at most

√
nk with probability at least 1− e− k

12 .

Proof : Recall that we sample each element of the ground set V with probability p = 4
√

k
n . Thus,

E[|S|] = p · |V | = p · n = 4

√
k

n
· n = 4

√
kn .

2

Sampling

Input: A ground set V of size n = |V | and a parameter 0 < k ≤ n.
1: Let τ = OPT

2k .

2: Let S ⊆ V be a sample set where each e ∈ V is sampled with p = 4
√

k
n .

3: Let GS be the output of Algorithm Greedy(S, ∅, τ, k).
4: Let R be the output of Algorithm Filtering(V \Si, GS , τ, k).
5: Let G be the output of Algorithm Greedy(R,GS , τ, k).

Output: Return the sets V, S,GS , R,G.

Now we use the multiplicative Chernoff bound to prove that the size of S cannot be less than its
expectation with a reasonably good probability. In particular, for ε = 1/4 and since n ≥ k we have

Pr[|S| ≤ (1− ε) ·E[|S|]] ≤ exp(−ε2 ·E[|S|]/3) = exp(− 1

16
· 4
√
kn

3
) ≤ e− k

12 .

Let us condition on the event that |S| ≥ 3
√
kn that happens with probability 1 − e− k

12 . We split
the sampled set S into 3k chunks of equal size

√
n
k . Let us call them S1, · · · , S3k. We process

each chunk sequentially. Suppose we want to sample the chunk Si independently one at a time.
Suppose for the sets S1, · · · , Si−1 we have picked a set G of elements whose marginal gain are
greater than OPT

2k . Now if before chunk Si there are at least
√
nk elements whose marginal gain with

respect to the current set G are greater than OPT
2k , then with probability at least 1− (1−

√
n
k)
√

n
k ,

we sample one of them and will add to G. This happens conditioned on any prior history of the
algorithm. Thus, we can use martingale argument to bound the number of elements whose marginal
gain are greater than OPT

2k and are added to G. Let us define an indicator random variable for
the event that at least one such an element with big marginal gain is sampled in Si. So, we have
E[Xi|X1, · · · , Xi−1] ≥ 1/2. Now corresponding to the random variable Xi, we define the random
variable Yi =

∑i
i=1(Xi − 1

2). Observe that the sequence Y1, Y2, · · · is a submartingale since
E[Yi|Y1, · · · , Yi−1] ≥ Yi−1. Moreover, |Yi − Yi−1| ≤ 1.

Thus, we can apply Azuma’s inequality to obtain:

Pr[Y3k < −
1

2
· k] ≤ exp(−(

1

2
· k)2/2) = e

k2

8 .

This essentially means that with probability at least 1− e k2

8 we have
∑3k

j=1Xj = Y3k + 3
2 · k ≥ k.

Thus, |G| ≥ k. Otherwise, the number of remaining elements of marginal value at least OPT
2k drops

below
√
nk. �

Lemma 3 Suppose we are given a ground set V of size n endowed with a monotone submodular
function f : 2V → R+ under a cardinality constraint parameterized by 0 < k ≤ n. Then, Algorithm
Sampling-Max-k-Submodular returns a set G ⊆ V of size at most k such that f(G) ≥ 1

2 ·OPT ,
where OPT = maxS⊆V :|S|≤k f(S).

Proof : Recall that the set G contains elements whose marginal value is at least OPT
2k . We have

two cases. The first case is when |G| = k and the second case is when |G| < k. In the former case,
f(G) ≥ OPT

2 .

In the latter case, suppose O is the optimal solution. Since f is submodular and monotone, we then
have:

OPT = f(O) ≤ f(O ∪G) ≤ f(G) +
∑

e∈O\G

∆f (e|G) ≤ f(G) + k · OPT
2k

.

Therefore, f(G) ≥ OPT
2 . �

3

Lemma 4 The number of times that we query the function f (i.e., query complexity) to compute the
marginal value in Algorithm Sampling is O(n).

Proof : Recall that Algorithm Sampling invokes two times Greedy and once Filtering. The
query complexity of both subroutines is linear in terms of input size. Thus, the query complexity of
Algorithm Sampling is O(n).

�

1.2 Insertion

Suppose at a time t a new element e is inserted. We assume that we are given the sets V, S,GS , R,G
in the beginning of time t. We first add e to the ground set V . Recall that at any time t the ground set
contains those elements that have been inserted up to the time t, but not deleted.

With probability p = 4
√

k
n , we do a heavy computation. During the heavy computation, we restart

the sampling process (Algorithm Sampling) from scratch. With probability 1 − p, we do a light
computation. A light computation consists of checking two conditions.

• If the marginal gain of adding the element e to GS is above the threshold τ and GS has less
than k elements, we add e to the set R.

• If the first condition is fulfilled and the marginal gain of adding the element e to G is above
the threshold τ and G has less than k elements, we add e to the set G.

The pseudocode of the insertion subroutine is given in below.

Insertion

Input: A new element e, the sets V, S,GS , R,G and the threshold τ .
1: Let V = V ∪ {e}.
2: With probability p = 4

√
k
n , let o = True, and with probability 1− p, let o = False.

3: if o = True then
4: Invoke Sampling(V, k) that returns new sets V, S,GS , R,G.
5: else
6: if ∆f (e|GS) ≥ τ and |GS | < k then
7: R = R ∪ {e}.
8: if ∆f (e|G) ≥ τ and |G| < k then
9: G = G ∪ {e}.

Output: Return the updated sets V, S,GS , R,G.

Lemma 5 Suppose at a time t an element e is inserted. Then, the expected computation time of
Subroutine Insertion is E[UpdateTime(Insertion)] = c ·

√
nk, where c is a large enough constant

and n is the maximum size of the ground set V at any time t.

Proof : We do a heavy computation with probability p = 4
√

k
n and a light computation with

probability 1− p. During the heavy computation we invoke Algorithm Sampling that in time O(n)
(see Lemma 4) returns a set G of size at most k for which f(G) ≥ OPT

2 . On the other hand, a light
computation (i.e., Steps 6 − 9 of Algorithm Sampling) needs O(1) computation time. Here we
assume that ∆f (e|G) ≥ τ takes constant time. Thus,

E[UpdateTime(Insertion)] = p·O(n)+(1−p)·O(1) = 4

√
k

n
·O(n)+(1−4

√
k

n
)·O(1) ≤ 5

√
nk .

�

4

1.3 Deletion

Suppose at a time t a new element e is deleted. We assume that we are given the sets V, S,GS , R,G
in the beginning of time t. We first remove e from the ground set V . Recall that at any time t the
ground set contains those elements that have been inserted up to the time t, but not deleted.

If e ∈ GS , we do a heavy computation. During the heavy computation, we restart the sampling
process (Algorithm Sampling) from scratch. If e /∈ GS , we do a semi-heavy computation. As for the
semi-heavy computation, if e /∈ R, we do nothing. But if e ∈ R, we eliminate e from R and then run
the greedy algorithm for the set R to find those elements of R whose marginal gain with respect to
the set GS is at least the threshold τ .

The pseudocode of the insertion subroutine is given in below.

Deletion

Input: An element e, the sets V, S,GS , R,G and the threshold τ .
1: Let V = V \{e}.
2: if e ∈ GS then
3: Invoke Sampling(V, k) that returns new sets V, S,GS , R,G.
4: else
5: if e ∈ R then
6: R = R\{e}.
7: Let G be the output of Algorithm Greedy(R,GS , τ, k).

Output: Return the updated sets V, S,GS , R,G.

Lemma 6 Suppose at a time t an element e is deleted. Then, the expected computation time of
Subroutine Deletion is E[UpdateTime(Deletion)] = c ·

√
nk, where c is a large enough constant and

n is the maximum size of the ground set V at any time t.

Proof : We do a heavy computation if e ∈ S which happens with probability p = 4
√

k
n . We

do a semi-heavy computation if e /∈ S which happens with probability 1 − p. During the heavy
computation we invoke Algorithm Sampling that in time O(n) (see Lemma 4) returns a set G of
size at most k for which f(G) ≥ OPT

2 . On the other hand, as for a semi-heavy computation (i.e.,
Steps 5 − 7 of Algorithm Sampling) if e ∈ R, we run the greedy algorithm for the set R to find
those elements of R whose marginal gain with respect to the set GS is at least the threshold τ .

From Lemma 2, with probability at least 1− e− k
12 , the size of the set R is at most

√
nk for which we

need O(
√
nk) calls to the function f . Thus,

E[UpdateTime(Deletion)] = p·O(n)+(1−p)·O(
√
nk) = 4

√
k

n
·O(n)+(1−4

√
k

n
)·O(
√
nk) ≤ 5

√
nk .

�

References
[FS05] Gereon Frahling and Christian Sohler. Coresets in dynamic geometric data streams. In Harold N.

Gabow and Ronald Fagin, editors, Proceedings of the 37th Annual ACM Symposium on Theory of
Computing, Baltimore, MD, USA, May 22-24, 2005, pages 209–217. ACM, 2005.

[LV19] Paul Liu and Jan Vondrák. Submodular optimization in the mapreduce model. In Jeremy T. Fineman
and Michael Mitzenmacher, editors, 2nd Symposium on Simplicity in Algorithms, SOSA@SODA
2019, January 8-9, 2019 - San Diego, CA, USA, volume 69 of OASICS, pages 18:1–18:10. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[NWF78] George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. An analysis of approximations
for maximizing submodular set functions - I. Math. Program., 14(1):265–294, 1978.

5

	Dynamic Algorithm with (kn) Amortized Update Time
	Offline Algorithm
	Insertion
	Deletion

