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A Optimization challenges

In this section, we give the details of the full optimization cycle and discuss differences between the
single-modality baseline and our multi-modal models.

Trivial solutions. As discussed in [ 1], SDC may converge to trivial solutions, corresponding to empty
clusters or encoder parameterizations, where the classifier predicts the same label regardless of the
input. DeepCluster proposes workarounds to tackle these issues, involving reassigning empty cluster
centers and sampling training images uniformly over the cluster assignments. While these strategies
mitigate the issues, they do not fix the main cause of the problem: SDC learns a discriminative
classifier on the same input from which it learns the labels. On the other hand, our multi-modal deep
clustering models are less prone to trivial solutions because they learn the discriminative classifier on
one modality and obtain the labels from a different modality. In our training, we never encountered
the issue of empty clusters or few-class predictions for any of our multi-modal clustering approaches.

Initialization and convergence. Our initial pseudo-labels come from clustering features of randomly-
initialized encoders. Such pseudo-labels are “good enough” to capture some weak similarities between
the input samples as features from randomly-weighted networks have shown decent results on image
and audio classification [6, 7]. Another potential option involves generating the initial pseudo-labels
by clustering hand-crafted features, e.g. iDT [8] and audio spectrograms. Hand-crafted features
capture low-level semantics that may help the encoders learn better or faster. Indeed, in small-scale
experiments, we observed that clustering handcrafted features in the initial iteration reduces the
number of clustering iterations needed to learn a well-performing encoder. However, we decided to
not pursue this further, since these features are computationally expensive to extract and thus are not
suitable for large-scale training on millions of examples. Furthermore, handcrafted features may bias
the learning to reflect the design choices behind these manually-engineered descriptors.

Clustering and optimization schedule. Following previous work [1], we cluster the deep features
using the k-means algorithm primarily for its desirable properties of efficiency and scalability. The
number of k-means clusters is a key hyperparameter in our framework. Intuitively, using more
clusters makes the pretext task harder, as it increases the number of pseudo-classes the classifier must
recognize. On the other hand, the diversity of samples to cluster effectively dictates the maximum £,
for which the grouping is still sensible. Taking into account these factors, we explore the effects of k
in our ablation study in Subsection 4.2 of the main manuscript. Another important hyperparameter of
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Table 1: Training parameter definitions. The abbreviations and descriptions of each training parameters.

Abv. Name Description

es epoch size The total number of examples the
model trains on in one epoch.

bs batch size The size of a mini-batch.

Ir base Ir The initial learning rate.

we warmup epoch  The number of epochs used for
warmup [4].

se step epoch Every se epochs, the learning rate

0% Ir decay is decayed by multiplying with .

te total epoch The training lasts for te epochs.

wd weight decay The weight decay used in SGD.

e-stop early stop Stop training when validation loss
is increased in 3 consecutive epochs.

Table 2: Pretraining parameters. We use early-stopping for Kinetics and AudioSet since we observe some
overfiting on the pretext tasks. For the last iteration of XDC on IG-Kinetics and IG-Random, we pretrain XDC
3x longer (iteration denoted as IG-Kinetics* and IG-Random* in this table). y is set to 0.01 for all settings.

method | dataset es bs Ir we/se/te  wd e-stop
Superv Kinetics M 32 001 10/10/45 10°* no
Superv AudioSet 2M 32 004 10/20/45 107° no
ANl DCs | Kinetics IM 32001 10/10/30 10~ % yes
AllDCs | AudioSet 2M 32001 10/10/45 107* yes
All DCs | IG-Kinetics & IG-Random 10M 32 0.01 1/3/10 107* o
All DCs | IG-Kinetics* & IG-Random* 10M 32 0.01  0/9/30 107*  no

our framework is the number of training epochs for the encoders, before re-clustering the learned
features. DeepCluster re-clusters after each epoch, which is an expensive design choice when scaling
to millions of training samples. Thus, we choose to fix the pseudo-labels and train the encoders until
the validation loss for predicting the pseudo-labels saturates. Then, we re-cluster the newly learned
features, reassign pseudo-labels, reset the classification layer, and repeat the same process. We find
this strategy to be more efficient, as it reduces the number of times we need to invoke k-means.

B Learning using audio rather than text from ASR

We note that while our approach was demonstrated by leveraging audio, the method is general and is
easy to adapt to other modalities, including text. While video and text are semantically correlated,
audio and video are temporally correlated. Thus, these two form of correlations are likely to provide
different forms of self-supervision, potentially leading to further gains when used in combination. A
disadvantage of text from ASR is that it is only available for videos with speech. Audio provides
information about environmental sounds beyond speech (e.g. walking steps, playing guitar, and dog
barking) and allows us to train on uncurated datasets of arbitrary Web videos, as we demonstrated
with IG-Random.

C Hyperparameters and training details

Training. We train our models using caffe2 with distributed SGD on a GPU cluster, and employ the
warmup scheme proposed in [4]. The main training parameters are presented in Table 1. We note that
the epoch size can be different from the actual number of videos. This is because the total number of
clips the model sees during training (with temporal jittering) can be larger than the number of videos.

Pretraining parameters. We pretrain XDC and other baselines using the parameters described in
Table 2. Early stopping is used for pretraining on small datasets such as Kinetics [5] and AudioSet []
to stop before the model starts overfitting on the pretext task. For IG-Kinetics [3] and IG-Random, we
do not observe overfitting. We pretrain XDC on IG-Kinetics and IG-Random longer in the last deep
clustering iteration (denoted as IG-Kinetics* and IG-Random™* in Table 2). When pretraining our
R(2+1)D on longer clips (e.g. 32 frames), due to the GPU memory limit, we reduce the mini-batch
size to 8 (instead of 32) and the base learning rate to 0.0025 (instead of 0.01).



Table 3: Finetuning parameters. Different pretraining methods have different ranges of optimal base learning
rate when finetuning on downstream tasks. Thus, we cross-validate all methods with the same set of base
learning rates and report the best result for each method. + is set to 0.01 for all settings.

dataset es bs  we/se/te wd e-stop
HMDB51 40K 32 2/2/8 0.005 no
UCF101 106K 32 2/2/8 0.005 no
ESC50 20K 32 2/2/8 0.005 no

Table 4: Finetuning base learning rates. For a fair comparison, we cross-validate all pretraining methods with
the same set of base learning rates. We report the best finetuning result for each method. Learning FC-only
benefits from cross-validation with a wider range of base learning rates.

Setup Base learning rates

Full 0.001, 0.002, 0.004, 0.006, 0.008, 0.01

FConly 0.001,0.002,0.004,0.006,0.008,0.01, 0.02,0.04

Table 5: XDC using a different backbone. We present the results of XDC on a different backbone, ResNet3D-
18, for the visual encoder. We compare XDC pretrained on Kinetics vs. the two baselines: Scratch and
fully-supervised Kinetics-pretraining (Superv) for the same backbone. We report the top-1 accuracy on split-1 of
each dataset.

Method UCF101 HMDB51 ESC50
Scratch (ResNet3D-18) 60.1 25.7 54.3
Superv (ResNet3D-18) 87.5 54.5 82.3
XDC (ResNet3D-18) 68.0 36.3 75.5

Finetuning parameters. We provide finetuning hyperparameters in Table 3. Different pretraining
methods may have different optimal base learning rate when finetuned on downstream tasks. Thus to
make a fair comparison, we cross-validate the finetuning using the same set of base learning rates
(presented in Table 4) and report the best result for each pretraining method. As we observed that
higher learning rates tend to be beneficial when learning FC-only, we use a wider set of learning rates
to cross-validate FC-only models. As done during pretraining, when finetuning R(2+1)D on longer
clips (i.e. 32 frames), we reduce the mini-batch size to 8 and reduce the base learning rate to 1/4 of
its original rate.

D XDC using a different backbone architecture

We pretrain XDC on Kinetics with ResNet3D-18 as the visual backbone and keep the same audio
encoder (ResNet-18). The results are compared with those of baselines in Table 5. XDC with the
ResNet3D-18 backbone outperforms the training from scratch baseline by good margins on three
downstream tasks.

E Additional qualitative results

XDC clusters. Tables 6 and 7 present the top and bottom 10 audio and video clusters learned with
XDC on Kinetics, ranked by their purity with respect to Kinetics labels. We list the 5 most frequent
concepts of each cluster.

XDC filters. Figure 1 visualizes and compares conv_1 spatial and temporal filters of R(2+1)D
learned by self-supervised XDC pretraining on IG-Kinetics versus fully-supervised pretraining
on Kinetics. We observe some differences in both spatial and temporal filters between XDC and
fully-supervised pretraining. In particular, XDC learns a more diverse set of motion filters.
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Table 6: XDC audio clusters. Top and bottom 10 XDC audio clusters ranked by clustering purity w.r.z. Kinetics
labels. For each, we list the 5 concepts with the highest purity (given in parentheses).

#

Kinetics concepts

O 001N B W~

playing bagpipes(0.70), playing 2harmonica(0.04), playing violin(0.03), playing accordion(0.02), marching(0.01)

scuba diving(0.33), snorkeling(0.27), feeding fish(0.11), canoeing or kayaking(0.02), jumping into pool(0.02)

playing cymbals(0.21), playing drums(0.17), marching(0.03), air drumming(0.02), drumming fingers(0.02)

passing American football(0.17), play kickball(0.06), catching or throwing softball(0.05), kick field goal(0.02), sled dog racing(0.02)
presenting weather forecast(0.17), playing poker(0.05), testifying(0.03), tying knot (not on a tie)(0.02), golf putting(0.02)

hurling (sport)(0.17), swimming backstroke(0.05), skiing slalom(0.04), vault(0.03), ski jumping(0.02)

presenting weather forecast(0.15), news anchoring(0.05), filling eyebrows(0.02), braiding hair(0.02), tossing salad(0.02)

playing cello(0.15), playing trombone(0.11), playing accordion(0.09), playing harp(0.07), playing clarinet(0.06)

playing recorder(0.14), playing violin(0.12), playing trumpet(0.08), playing harmonica(0.07), tapping guitar(0.06)

mowing lawn(0.14), driving tractor(0.09), motorcycling(0.06), blowing leaves(0.04), water skiing(0.04)

119 side kick(0.02), front raises(0.01), dunking basketball(0.01), smoking(0.01), high kick(0.01)

120 | clay pottery making(0.02), crawling baby(0.02), brushing teeth(0.01), playing harmonica(0.01), eating spaghetti(0.01)
121 pushing cart(0.01), hula hooping(0.01), high kick(0.01), blowing out candles(0.01), bench pressing(0.01)

122 shot put(0.01), feeding birds(0.01), squat(0.01), push up(0.01), high jump(0.01)

123 | opening present(0.01), petting cat(0.01), pushing cart(0.01), washing dishes(0.01), punching bag(0.01)

124 trimming or shaving beard(0.01), petting cat(0.01), front raises(0.01), massaging back(0.01), tai chi(0.01)

125 | feeding birds(0.01), tobogganing(0.01), riding elephant(0.01), feeding goats(0.01), jumping into pool(0.01)

126 climbing tree(0.01), writing(0.01), archery(0.01), brushing hair(0.01), shining shoes(0.01)

127 | abseiling(0.01), grooming horse(0.01), milking cow(0.01), feeding goats(0.01), juggling balls(0.01)

128 washing feet(0.01), motorcycling(0.01), headbanging(0.01), cheerleading(0.01), krumping(0.01)

Table 7: XDC video clusters. Top and bottom 10 XDC video clusters ranked by clustering purity w.r.t. Kinetics
labels. For each, we list the 5 concepts with the highest purity (given in parentheses).

# Kinetics concepts
1 playing bass guitar(0.37), playing guitar(0.16), tapping guitar(0.15), strumming guitar(0.09), playing ukulele(0.09)
2 scuba diving(0.36), snorkeling(0.32), feeding fish(0.10), diving cliff(0.02), jumping into pool(0.02)
3 presenting weather forecast(0.26), playing poker(0.10), news anchoring(0.05), testifying(0.03), giving or receiving award(0.02)
4 swimming backstroke(0.21), swimming breast stroke(0.16), swimming butterfly stroke(0.10), play ice hockey(0.04), jump into pool(0.04)
5 golf putting(0.18), golf chipping(0.11), golf driving(0.05), hitting baseball(0.03), archery(0.03)
6 hurling (sport)(0.17), passing American football (in game)(0.06), skiing slalom(0.04), playing ice hockey(0.03), vault(0.03)
7 filling eyebrows(0.13), braiding hair(0.05), massaging back(0.05), curling hair(0.05), dying hair(0.03)
8 playing cello(0.12), playing harp(0.12), playing trombone(0.06), playing piano(0.06), playing accordion(0.05)
9 windsurfing(0.12), jetskiing(0.10), water skiing(0.09), surfing water(0.08), kitesurfing(0.06)
10 | cooking chicken(0.11), barbequing(0.07), frying vegetables(0.06), cooking sausages(0.04), making pizza(0.04)
55 yoga(0.02), folding napkins(0.02), doing nails(0.02), cutting watermelon(0.01), writing(0.01)
56 | eating spaghetti(0.02), making pizza(0.02), brushing teeth(0.02), blowing out candles(0.02), reading book(0.02)
57 answering questions(0.02), tai chi(0.02), dancing ballet(0.02), dunking basketball(0.02), sign language interpreting(0.01)
58 | trimming or shaving beard(0.02), barbequing(0.02), kissing(0.02), dining(0.01), playing poker(0.01)
59 | punching bag(0.02), blowing out candles(0.02), pumping fist(0.02), dancing gangnam style(0.02), opening present(0.01)
60 feeding goats(0.02), blowing out candles(0.02), milking cow(0.02), arm wrestling(0.02), finger snapping(0.02)
61 air drumming(0.02), pumping fist(0.02), pushing cart(0.02), brushing teeth(0.02), eating ice cream(0.01)
62 clean and jerk(0.01), robot dancing(0.01), bench pressing(0.01), side kick(0.01), punching bag(0.01)
63 pull ups(0.01), gymnastics tumbling(0.01), punching bag(0.01), cracking neck(0.01), eating ice cream(0.01)
64 capoeira(0.01), riding elephant(0.01), feeding goats(0.01), feeding birds(0.01), crawling baby(0.01)
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a) conv1 spatial and temproal filtes learned by Kinetics fully supervision.
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b) conv1 spatial and temporal filters learned by IG65M self-supervised XDC.

Figure 1: R(2+1)D filters learned with self-supervised XDC vs. fully-supervised training. (a) R(2+1)D
conv_1 filters learned by fully-supervised training on Kinetics. (b) The same filters learned by self-supervised
XDC pretraining on IG-Kinetics. XDC learns a more diverse set of temporal filters compared to fully-supervised
pretraining.
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